The ORF3a protein of SARS-CoV-2 induces apoptosis in

Cellular and Molecular Immunology 17, 881-883 DOI: 10.1038/s41423-020-0485-9

Citation Report

#	Article	IF	CITATIONS
1	Syncytia formation by SARSâ€CoVâ€2â€infected cells. EMBO Journal, 2020, 39, e106267.	3.5	361
2	Cell death signalling in virus infection. Cellular Signalling, 2020, 76, 109772.	1.7	44
3	An aberrant STAT pathway is central to COVID-19. Cell Death and Differentiation, 2020, 27, 3209-3225.	5.0	224
4	Coronaviruses: Innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. Trends in Immunology, 2020, 41, 1083-1099.	2.9	154
5	Infections of the lung: a predictive, preventive and personalized perspective through the lens of evolution, the emergence of SARS-CoV-2 and its pathogenesis. EPMA Journal, 2020, 11, 581-601.	3.3	11
6	Global analysis of more than 50,000 SARS-CoV-2 genomes reveals epistasis between eight viral genes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31519-31526.	3.3	50
7	Loss of orf3b in the circulating SARS-CoV-2 strains. Emerging Microbes and Infections, 2020, 9, 2685-2696.	3.0	40
8	Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be. Frontiers in Molecular Biosciences, 2020, 7, 605236.	1.6	159
9	Viral Infections: Negative Regulators of Apoptosis and Oncogenic Factors. Biochemistry (Moscow), 2020, 85, 1191-1201.	0.7	15
10	COVID-19: The Emerging Immunopathological Determinants for Recovery or Death. Frontiers in Microbiology, 2020, 11, 588409.	1.5	19
11	Positive Selection of ORF1ab, ORF3a, and ORF8 Genes Drives the Early Evolutionary Trends of SARS-CoV-2 During the 2020 COVID-19 Pandemic. Frontiers in Microbiology, 2020, 11, 550674.	1.5	106
12	Aprotinin Inhibits SARS-CoV-2 Replication. Cells, 2020, 9, 2377.	1.8	72
13	Implications of Oxidative Stress and Potential Role of Mitochondrial Dysfunction in COVID-19: Therapeutic Effects of Vitamin D. Antioxidants, 2020, 9, 897.	2.2	89
14	Targeting the sAC-Dependent cAMP Pool to Prevent SARS-Cov-2 Infection. Cells, 2020, 9, 1962.	1.8	12
15	The HMOX1 Pathway as a Promising Target for the Treatment and Prevention of SARS-CoV-2 of 2019 (COVID-19). International Journal of Molecular Sciences, 2020, 21, 6412.	1.8	28
16	Recent progress in the repurposing of drugs/molecules for the management of COVID-19. Expert Review of Anti-Infective Therapy, 2020, 19, 1-9.	2.0	9
17	Recent updates on COVID-19: A holistic review. Heliyon, 2020, 6, e05706.	1.4	16
18	Trends of mutation accumulation across global SARS-CoV-2 genomes: Implications for the evolution of the novel coronavirus. Genomics, 2020, 112, 5331-5342.	1.3	32

ATION RED

#	Article	IF	CITATIONS
19	COVID-19 and Parkinson's Disease: Shared Inflammatory Pathways Under Oxidative Stress. Brain Sciences, 2020, 10, 807.	1.1	25
20	High Prevalence of SARS-CoV-2 Genetic Variation and D614G Mutation in Pediatric Patients With COVID-19. Open Forum Infectious Diseases, 2021, 8, ofaa551.	0.4	26
21	Coronavirus Disease 2019–Associated Thrombosis and Coagulopathy: Review of the Pathophysiological Characteristics and Implications for Antithrombotic Management. Journal of the American Heart Association, 2021, 10, e019650.	1.6	122
22	Structural insights into SARS-CoV-2 proteins. Journal of Molecular Biology, 2021, 433, 166725.	2.0	241
23	The deregulated immune reaction and cytokines release storm (CRS) in COVID-19 disease. International Immunopharmacology, 2021, 90, 107225.	1.7	75
24	Tetracycline and viruses: a possible treatment for COVID-19?. Archives of Virology, 2021, 166, 1-7.	0.9	36
25	Tâ€cell responses and therapies against SARSâ€CoVâ€2 infection. Immunology, 2021, 162, 30-43.	2.0	159
26	Through DNA sensors and hidden mitochondrial effects of SARS-CoV-2. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2021, 27, e20200183.	0.8	5
27	Apoptosis induced by SARS-CoV-2: can we target it?. Apoptosis: an International Journal on Programmed Cell Death, 2021, 26, 7-8.	2.2	21
28	COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 905-919.	1.3	445
29	SARS-CoV-2 mutations: the biological trackway towards viral fitness. Epidemiology and Infection, 2021, 149, e110.	1.0	53
30	Genes of SARS-CoV-2 and emerging variants. Microbiology Australia, 2021, 42, 10.	0.1	2
31	Similarities and Dissimilarities of COVID-19 and Other Coronavirus Diseases. Annual Review of Microbiology, 2021, 75, 19-47.	2.9	52
32	SARS-CoV-2 3a expression, purification, and reconstitution into lipid nanodiscs. Methods in Enzymology, 2021, 653, 207-235.	0.4	2
33	Interactions of Influenza and SARS-CoV-2 with the Lung Endothelium: Similarities, Differences, and Implications for Therapy. Viruses, 2021, 13, 161.	1.5	17
34	The ApoA-I mimetic peptide 4F attenuates in vitro replication of SARS-CoV-2, associated apoptosis, oxidative stress and inflammation in epithelial cells. Virulence, 2021, 12, 2214-2227.	1.8	9
38	Analysis of SARS-CoV-2 mutations in the United States suggests presence of four substrains and novel variants. Communications Biology, 2021, 4, 228.	2.0	126
40	The Potential Role of Lithium as an Antiviral Agent against SARS-CoV-2 via Membrane Depolarization: Review and Hypothesis. Scientia Pharmaceutica, 2021, 89, 11.	0.7	11

#	Article	IF	CITATIONS
42	SARS-Cov-2 ORF3a: Mutability and function. International Journal of Biological Macromolecules, 2021, 170, 820-826.	3.6	77
43	Animal Coronaviruses Induced Apoptosis. Life, 2021, 11, 185.	1.1	11
44	SARS-CoV-2 Causes Severe Epithelial Inflammation and Barrier Dysfunction. Journal of Virology, 2021, 95, .	1.5	70
46	Functional alterations caused by mutations reflect evolutionary trends of SARS-CoV-2. Briefings in Bioinformatics, 2021, 22, 1442-1450.	3.2	32
47	Insight into the emerging role of SARS-CoV-2 nonstructural and accessory proteins in modulation of multiple mechanisms of host innate defense. Bosnian Journal of Basic Medical Sciences, 2021, 21, 515-527.	0.6	4
48	Circular RNA–MicroRNA–MRNA interaction predictions in SARS-CoV-2 infection. Journal of Integrative Bioinformatics, 2021, 18, 45-50.	1.0	17
49	SARS-CoV-2 Proteome-Wide Analysis Revealed Significant Epitope Signatures in COVID-19 Patients. Frontiers in Immunology, 2021, 12, 629185.	2.2	42
51	SARS-CoV-2 and Human Immunodeficiency Virus: Pathogen Pincer Attack. HIV/AIDS - Research and Palliative Care, 2021, Volume 13, 361-375.	0.4	5
52	Severe acute respiratory syndrome coronavirus 2 ORF3a induces the expression of ACE2 in oral and pulmonary epithelial cells and the food supplement Vita Deyun [®] diminishes this effect. Experimental and Therapeutic Medicine, 2021, 21, 485.	0.8	4
53	Characterization of SARS-CoV-2 proteins reveals Orf6 pathogenicity, subcellular localization, host interactions and attenuation by Selinexor. Cell and Bioscience, 2021, 11, 58.	2.1	92
54	Structural biology of coronavirus ion channels. Acta Crystallographica Section D: Structural Biology, 2021, 77, 391-402.	1.1	8
56	An Overview of Current Knowledge of Deadly CoVs and Their Interface with Innate Immunity. Viruses, 2021, 13, 560.	1.5	15
58	An Integrated Approach of the Potential Underlying Molecular Mechanistic Paradigms of SARS-CoV-2-Mediated Coagulopathy. Indian Journal of Clinical Biochemistry, 2021, 36, 387-403.	0.9	5
59	SARS-CoV-2, Inflammatory Apoptosis, and Cytokine Storm Syndrome. The Open Covid Journal, 2021, 1, 22-31.	0.4	1
60	Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells, 2021, 10, 821.	1.8	279
61	Exploring the Allosteric Territory of Protein Function. Journal of Physical Chemistry B, 2021, 125, 3763-3780.	1.2	26
62	Genomic and epidemiological characteristics of SARS-CoV-2 in Africa. PLoS Neglected Tropical Diseases, 2021, 15, e0009335.	1.3	17
63	Modeling the binding of protoporphyrin IX, verteporfin, and chlorin e6 to SARS-CoV-2 proteins. Chemistry of Heterocyclic Compounds, 2021, 57, 423-431.	0.6	7

#	Article	IF	CITATIONS
64	A signaling pathway-driven bioinformatics pipeline for predicting therapeutics against emerging infectious diseases. F1000Research, 2021, 10, 330.	0.8	4
65	First Report on the Latvian SARS-CoV-2 Isolate Genetic Diversity. Frontiers in Medicine, 2021, 8, 626000.	1.2	10
66	Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract. Nature Reviews Microbiology, 2021, 19, 425-441.	13.6	202
67	Cell-Type Apoptosis in Lung during SARS-CoV-2 Infection. Pathogens, 2021, 10, 509.	1.2	47
68	Functional and tissue enrichment analyses suggest that SARS-CoV-2 infection affects host metabolism and catabolism mediated by interference on host proteins. Brazilian Journal of Microbiology, 2021, 52, 1151-1159.	0.8	1
70	SARS-CoV-2: Insights into its structural intricacies and functional aspects for drug and vaccine development. International Journal of Biological Macromolecules, 2021, 179, 45-60.	3.6	14
71	Innate immune sensing of coronavirus and viral evasion strategies. Experimental and Molecular Medicine, 2021, 53, 723-736.	3.2	130
72	Pulmonary stromal expansion and intra-alveolar coagulation are primary causes of COVID-19 death. Heliyon, 2021, 7, e07134.	1.4	17
73	The SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes. Cell Discovery, 2021, 7, 31.	3.1	151
74	The Immunopathobiology of SARS-CoV-2 Infection. FEMS Microbiology Reviews, 2021, 45, .	3.9	9
75	In vitro Characterization of Fitness and Convalescent Antibody Neutralization of SARS-CoV-2 Cluster 5 Variant Emerging in Mink at Danish Farms. Frontiers in Microbiology, 2021, 12, 698944.	1.5	40
76	Cytokine Overproduction and Immune System Dysregulation in alloHSCT and COVID-19 Patients. Frontiers in Immunology, 2021, 12, 658896.	2.2	14
78	Cell Death in Coronavirus Infections: Uncovering Its Role during COVID-19. Cells, 2021, 10, 1585.	1.8	33
79	Lung-Centric Inflammation of COVID-19: Potential Modulation by Vitamin D. Nutrients, 2021, 13, 2216.	1.7	15
80	COVID-19-associated diarrhea. World Journal of Gastroenterology, 2021, 27, 3208-3222.	1.4	32
81	Targeting highly pathogenic coronavirus-induced apoptosis reduces viral pathogenesis and disease severity. Science Advances, 2021, 7, .	4.7	48
82	Viral Respiratory Pathogens and Lung Injury. Clinical Microbiology Reviews, 2021, 34, .	5.7	76
83	SARS-CoV-2 mutations in Brazil: from genomics to putative clinical conditions. Scientific Reports, 2021, 11, 11998.	1.6	17

	Сітаті	on Report	
#	Article	IF	CITATIONS
84	Functions of Coronavirus Accessory Proteins: Overview of the State of the Art. Viruses, 2021, 13, 1139.	1.5	37
85	The landscape of antibody binding in SARS-CoV-2 infection. PLoS Biology, 2021, 19, e3001265.	2.6	58
86	SARS-CoV-2 signaling pathway map: A functional landscape of molecular mechanisms in COVID-19. Journal of Cell Communication and Signaling, 2021, 15, 601-608.	1.8	15
87	Cryo-EM structure of SARS-CoV-2 ORF3a in lipid nanodiscs. Nature Structural and Molecular Biology, 2021, 28, 573-582.	3.6	172
88	Evolution trace of SARS oVâ€2 from January 19 to March 12, 2020, in the United States. Journal of Medical Virology, 2021, 93, 6595-6604.	2.5	1
89	Is there a place for mesenchymal stromal cell-based therapies in the therapeutic armamentarium against COVID-19?. Stem Cell Research and Therapy, 2021, 12, 425.	2.4	15
90	Case Report: Discovery a Novel SARS-CoV-2 Variant in a Six-Months Long-Term Swab Positive Female Suffering From Non-Hodgkin Lymphoma. Frontiers in Oncology, 2021, 11, 705948.	1.3	1
91	Insights into the potential role of alpha1â€antitrypsin in COVIDâ€19 patients: Mechanisms, current updat and future perspectives. Clinical Respiratory Journal, 2021, 15, 1019-1024.	e, 0.6	5
92	Pathogenic perspective of missense mutations of ORF3a protein of SARS-CoV-2. Virus Research, 2021, 300, 198441.	1.1	13
93	The extent of molecular variation in novel SARS-CoV-2 after the six-month global spread. Infection, Genetics and Evolution, 2021, 91, 104800.	1.0	5
94	Coronavirus, the King Who Wanted More Than a Crown: From Common to the Highly Pathogenic SARS-CoV-2, Is the Key in the Accessory Genes?. Frontiers in Microbiology, 2021, 12, 682603.	1.5	10
95	Tetraciclinas: ¿Antibióticos de uso potencial en la COVID-19?. Investigacion Clinica, 0, 62, 69-84.	0.0	0
96	SARS-CoV-2 Accessory Proteins in Viral Pathogenesis: Knowns and Unknowns. Frontiers in Immunology, 2021, 12, 708264.	2.2	204
98	Novel and emerging mutations of SARS-CoV-2: Biomedical implications. Biomedicine and Pharmacotherapy, 2021, 139, 111599.	2.5	28
99	Mutational Landscape and Interaction of SARS-CoV-2 with Host Cellular Components. Microorganisms, 2021, 9, 1794.	1.6	9
100	A signaling pathway-driven bioinformatics pipeline for predicting therapeutics against emerging infectious diseases. F1000Research, 0, 10, 330.	0.8	8
101	SARS-CoV-2 Accessory Protein ORF7b Mediates Tumor Necrosis Factor-α-Induced Apoptosis in Cells. Frontiers in Microbiology, 2021, 12, 654709.	1.5	38
102	SARS-CoV-2 and other coronaviruses negatively influence mitochondrial quality control: beneficial effects of melatonin. , 2021, 224, 107825.		33

#	Article	IF	CITATIONS
103	A SARS-CoV-2 mutant from B.1.258 lineage with â^†H69/â^†V70 deletion in the Spike protein circulating in Central Europe in the fall 2020. Virus Genes, 2021, 57, 556-560.	0.7	27
104	Major Insights in Dynamics of Host Response to SARS-CoV-2: Impacts and Challenges. Frontiers in Microbiology, 2021, 12, 637554.	1.5	8
105	HIF-11 \pm promotes SARS-CoV-2 infection and aggravates inflammatory responses to COVID-19. Signal Transduction and Targeted Therapy, 2021, 6, 308.	7.1	124
106	Evolutionary trajectory of SARS-CoV-2 and emerging variants. Virology Journal, 2021, 18, 166.	1.4	105
107	Reducing SARS-CoV-2 pathological protein activity with small molecules. Journal of Pharmaceutical Analysis, 2021, 11, 383-397.	2.4	11
108	Contribution of SARS-CoV-2 Accessory Proteins to Viral Pathogenicity in K18 Human ACE2 Transgenic Mice. Journal of Virology, 2021, 95, e0040221.	1.5	97
109	Polypharmacology of some medicinal plant metabolites against SARS-CoV-2 and host targets: Molecular dynamics evaluation of NSP9 RNA binding protein. Journal of Biomolecular Structure and Dynamics, 2022, 40, 11467-11483.	2.0	7
110	Deep survey for designing a vaccine against SARS-CoV-2 and its new mutations. Biologia (Poland), 2021, 76, 3465-3476.	0.8	6
111	Mass spectrometry-based proteomics in basic and translational research of SARS-CoV-2 coronavirus and its emerging mutants. Clinical Proteomics, 2021, 18, 19.	1.1	12
112	SARS-CoV-2 Membrane Glycoprotein M Triggers Apoptosis With the Assistance of Nucleocapsid Protein N in Cells. Frontiers in Cellular and Infection Microbiology, 2021, 11, 706252.	1.8	22
113	An overview on the seven pathogenic human coronaviruses. Reviews in Medical Virology, 2022, 32, e2282.	3.9	72
114	COVID-19 Immunobiology: Lessons Learned, New Questions Arise. Frontiers in Immunology, 2021, 12, 719023.	2.2	28
115	Understanding Individual SARS-CoV-2 Proteins for Targeted Drug Development against COVID-19. Molecular and Cellular Biology, 2021, 41, e0018521.	1.1	21
117	Advanced glycation end products (AGEs) and its receptor, RAGE, modulate age-dependent COVID-19 morbidity and mortality. A review and hypothesis. International Immunopharmacology, 2021, 98, 107806.	1.7	35
118	Mapping the Nonstructural Transmembrane Proteins of Severe Acute Respiratory Syndrome Coronavirus 2. Journal of Computational Biology, 2021, 28, 909-921.	0.8	25
119	Reduced subgenomic RNA expression is a molecular indicator of asymptomatic SARS-CoV-2 infection. Communications Medicine, 2021, 1, .	1.9	13
120	Programmed Cell Death in SARS-CoV-2 Infection: A Short Review. Journal of Respiration, 2021, 1, 223-228.	0.4	2
121	Myocardial Damage by SARS-CoV-2: Emerging Mechanisms and Therapies. Viruses, 2021, 13, 1880.	1.5	11

#	Article	IF	CITATIONS
122	Pro-inflammatory microenvironment and systemic accumulation of CXCR3+ cell exacerbate lung pathology of old rhesus macaques infected with SARS-CoV-2. Signal Transduction and Targeted Therapy, 2021, 6, 328.	7.1	11
123	Nanotechnology-empowered vaccine delivery for enhancing CD8+ T cells-mediated cellular immunity. Advanced Drug Delivery Reviews, 2021, 176, 113889.	6.6	48
124	Cell death mechanisms involved in cell injury caused by SARS oVâ€2. Reviews in Medical Virology, 2022, 32, e2292.	3.9	19
125	ACE2 in the Gut: The Center of the 2019-nCoV Infected Pathology. Frontiers in Molecular Biosciences, 2021, 8, 708336.	1.6	15
126	Potential Molecular Mechanisms of Rare Anti-Tumor Immune Response by SARS-CoV-2 in Isolated Cases of Lymphomas. Viruses, 2021, 13, 1927.	1.5	10
127	Alzheimer's disease in elderly COVID-19 patients: potential mechanisms and preventive measures. Neurological Sciences, 2021, 42, 4913-4920.	0.9	9
128	ORF3a Protein of Severe Acute Respiratory Syndrome Coronavirus 2 Inhibits Interferon-Activated Janus Kinase/Signal Transducer and Activator of Transcription Signaling via Elevating Suppressor of Cytokine Signaling 1. Frontiers in Microbiology, 2021, 12, 752597.	1.5	27
129	Effect of ORF7 of SARS-CoV-2 on the Chemotaxis of Monocytes and Neutrophils In Vitro. Disease Markers, 2021, 2021, 1-9.	0.6	1
130	Antibody landscapes of SARS-CoV-2 can reveal novel vaccine and diagnostic targets. Current Opinion in Virology, 2021, 50, 139-146.	2.6	7
131	Classification and specific primer design for accurate detection of SARS-CoV-2 using deep learning. Scientific Reports, 2021, 11, 947.	1.6	66
132	A critical overview of computational approaches employed for COVID-19 drug discovery. Chemical Society Reviews, 2021, 50, 9121-9151.	18.7	128
133	Genome-wide DNA methylation profiling of peripheral blood reveals an epigenetic signature associated with severe COVID-19. Journal of Leukocyte Biology, 2021, 110, 21-26.	1.5	82
135	Lessons learned 1 year after SARS-CoV-2 emergence leading to COVID-19 pandemic. Emerging Microbes and Infections, 2021, 10, 507-535.	3.0	202
149	Pathogen Genomics and Host Cellular Susceptibility Factors of COVID-19. Global Clinical and Translational Research, 2020, , 107-126.	0.4	4
150	Mutational spectra of SARS-CoV-2 isolated from animals. PeerJ, 2020, 8, e10609.	0.9	38
151	The crosstalk between the caspase family and the cGAS‒STING signaling pathway. Journal of Molecular Cell Biology, 2021, 13, 739-747.	1.5	17
152	Mitochondrial Dynamics in SARS-COV2 Spike Protein Treated Human Microglia: Implications for Neuro-COVID. Journal of NeuroImmune Pharmacology, 2021, 16, 770-784.	2.1	37
153	Flower lose, a cell fitness marker, predicts COVIDâ€19 prognosis. EMBO Molecular Medicine, 2021, 13, e13714.	3.3	4

#	Article	IF	CITATIONS
154	Emerging SARS-CoV-2 Variants: A Review of Its Mutations, Its Implications and Vaccine Efficacy. Vaccines, 2021, 9, 1195.	2.1	90
155	Emerging Severe Acute Respiratory Syndrome Coronavirus 2 Mutation Hotspots Associated With Clinical Outcomes and Transmission. Frontiers in Microbiology, 2021, 12, 753823.	1.5	15
156	Development of synthetic antigen vaccines for COVID-19. Human Vaccines and Immunotherapeutics, 2021, 17, 3855-3870.	1.4	4
158	Unravelling the Immunomodulatory Effects of Viral Ion Channels, towards the Treatment of Disease. Viruses, 2021, 13, 2165.	1.5	13
159	Tracking SARS-CoV-2: Novel Trends and Diagnostic Strategies. Diagnostics, 2021, 11, 1981.	1.3	13
160	Dominant cladeâ€featured SARS oVâ€2 coâ€occurring mutations reveal plausible epistasis: An in silico based hypothetical model. Journal of Medical Virology, 2022, 94, 1035-1049.	2.5	16
161	Endomembrane Systems are Reorganized by ORF3a and Membrane (M) of SARS-CoV-2. SSRN Electronic Journal, 0, , .	0.4	2
162	Complex Pathophysiological Mechanisms and the Propose of the Three-Dimensional Schedule For Future COVID-19 Treatment. Frontiers in Immunology, 2021, 12, 716940.	2.2	1
163	Monoclonal Human Antibodies That Recognise the Exposed N and C Terminal Regions of the Often-Overlooked SARS-CoV-2 ORF3a Transmembrane Protein. Viruses, 2021, 13, 2201.	1.5	4
164	A Review of Medicinal Plants with Antiviral Activity Available in Bangladesh and Mechanistic Insight Into Their Bioactive Metabolites on SARS-CoV-2, HIV and HBV. Frontiers in Pharmacology, 2021, 12, 732891.	1.6	40
165	Devil's tools: SARS-CoV-2 antagonists against innate immunity. Current Research in Virological Science, 2021, 2, 100013.	1.8	19
166	Molecular pathways involved in COVID-19 and potential pathway-based therapeutic targets. Biomedicine and Pharmacotherapy, 2022, 145, 112420.	2.5	78
167	Overview of the immune response against SARS-CoV-2. , 2022, , 95-113.		0
168	NSAIDs and Kelleni's protocol as potential early COVID-19 treatment game changer: could it be the final countdown?. Inflammopharmacology, 2022, 30, 343-348.	1.9	9
169	The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduction and Targeted Therapy, 2021, 6, 396.	7.1	111
170	Peripheral innate and adaptive immune cells during <scp>COVID</scp> â€19: Functional neutrophils, proâ€inflammatory monocytes, and halfâ€dead lymphocytes. Cytometry Part B - Clinical Cytometry, 2022, 102, 153-167.	0.7	14
172	Haplotype distribution of SARS-CoV-2 variants in low and high vaccination rate countries during ongoing global COVID-19 pandemic in early 2021. Infection, Genetics and Evolution, 2022, 97, 105164.	1.0	9
173	Identifying potential novel insights for COVID-19 pathogenesis and therapeutics using an integrated bioinformatics analysis of host transcriptome. International Journal of Biological Macromolecules, 2022, 194, 770-780.	3.6	6

#	Article	IF	CITATIONS
174	SARS-CoV-2 ORF10 suppresses the antiviral innate immune response by degrading MAVS through mitophagy. Cellular and Molecular Immunology, 2022, 19, 67-78.	4.8	98
176	Amantadine inhibits known and novel ion channels encoded by SARS-CoV-2 in vitro. Communications Biology, 2021, 4, 1347.	2.0	29
178	The adaptation of SARS-CoV-2 to humans. Memorias Do Instituto Oswaldo Cruz, 2022, 116, e210127.	0.8	4
179	The evolution of regulated cell death pathways in animals and their evasion by pathogens. Physiological Reviews, 2022, 102, 411-454.	13.1	45
180	SARS- CoV-2 infection and oxidative stress in early-onset preeclampsia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166321.	1.8	7
182	An insight into SARS-CoV-2 structure, pathogenesis, target hunting for drug development and vaccine initiatives. RSC Medicinal Chemistry, 2022, 13, 647-675.	1.7	3
183	The Central Role of Extracellular Vesicles in the Mechanisms of Thrombosis in COVID-19 Patients With Cancer and Therapeutic Strategies. Frontiers in Cell and Developmental Biology, 2021, 9, 792335.	1.8	3
184	Host E3 ligase HUWE1 attenuates the proapoptotic activity of the MERS-CoV accessory protein ORF3 by promoting its ubiquitin-dependent degradation. Journal of Biological Chemistry, 2022, 298, 101584.	1.6	9
185	Attenuation of SARS-CoV-2 infection by losartan in human kidney organoids. IScience, 2022, 25, 103818.	1.9	15
186	SARS-CoV-2 and the Host Cell: A Tale of Interactions. Frontiers in Virology, 2022, 1, .	0.7	37
186 187	SARS-CoV-2 and the Host Cell: A Tale of Interactions. Frontiers in Virology, 2022, 1, . The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2. Viruses, 2022, 14, 78.	0.7	37 64
186 187 188	SARS-CoV-2 and the Host Cell: A Tale of Interactions. Frontiers in Virology, 2022, 1, . The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2. Viruses, 2022, 14, 78. Lymphopenia as a Predictor for Adverse Clinical Outcomes in Hospitalized Patients with COVID-19: A Single Center Retrospective Study of 4485 Cases. Journal of Clinical Medicine, 2022, 11, 700.	0.7 1.5 1.0	37 64 23
186 187 188 189	SARS-CoV-2 and the Host Cell: A Tale of Interactions. Frontiers in Virology, 2022, 1, . The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2. Viruses, 2022, 14, 78. Lymphopenia as a Predictor for Adverse Clinical Outcomes in Hospitalized Patients with COVID-19: A Single Center Retrospective Study of 4485 Cases. Journal of Clinical Medicine, 2022, 11, 700. Mutation profile of SARS-CoV-2 genome in a sample from the first year of the pandemic in Colombia. Infection, Genetics and Evolution, 2022, 97, 105192.	0.7 1.5 1.0 1.0	37 64 23 8
186 187 188 189 190	SARS-CoV-2 and the Host Cell: A Tale of Interactions. Frontiers in Virology, 2022, 1, . The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2. Viruses, 2022, 14, 78. Lymphopenia as a Predictor for Adverse Clinical Outcomes in Hospitalized Patients with COVID-19: A Single Center Retrospective Study of 4485 Cases. Journal of Clinical Medicine, 2022, 11, 700. Mutation profile of SARS-CoV-2 genome in a sample from the first year of the pandemic in Colombia. Infection, Genetics and Evolution, 2022, 97, 105192. Liver Injury in Patients with COVID-19 without Underlying Liver Disease. Journal of Clinical Medicine, 2022, 11, 308.	0.7 1.5 1.0 1.0 1.0	 37 64 23 8 13
186 187 188 189 190	SARS-CoV-2 and the Host Cell: A Tale of Interactions. Frontiers in Virology, 2022, 1, . The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2. Viruses, 2022, 14, 78. Lymphopenia as a Predictor for Adverse Clinical Outcomes in Hospitalized Patients with COVID-19: A Single Center Retrospective Study of 4485 Cases. Journal of Clinical Medicine, 2022, 11, 700. Mutation profile of SARS-CoV-2 genome in a sample from the first year of the pandemic in Colombia. Infection, Genetics and Evolution, 2022, 97, 105192. Liver Injury in Patients with COVID-19 without Underlying Liver Disease. Journal of Clinical Medicine, 2022, 11, 308. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduction and Targeted Therapy, 2022, 7, 26.	0.7 1.5 1.0 1.0 1.0 7.1	 37 64 23 8 13 139
186 187 188 189 190 191	SARS-CoV-2 and the Host Cell: A Tale of Interactions. Frontiers in Virology, 2022, 1, . The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2. Viruses, 2022, 14, 78. Lymphopenia as a Predictor for Adverse Clinical Outcomes in Hospitalized Patients with COVID-19: A Single Center Retrospective Study of 4485 Cases. Journal of Clinical Medicine, 2022, 11, 700. Mutation profile of SARS-CoV-2 genome in a sample from the first year of the pandemic in Colombia. Infection, Genetics and Evolution, 2022, 97, 105192. Liver Injury in Patients with COVID-19 without Underlying Liver Disease. Journal of Clinical Medicine, 2022, 11, 308. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduction and Targeted Therapy, 2022, 7, 26. D155Y substitution of SARS-CoV-2 ORF3a weakens binding with Caveolin-1. Computational and Structural Biotechnology Journal, 2022, 20, 766-778.	0.7 1.5 1.0 1.0 1.0 7.1	 37 64 23 8 13 139 8
 186 187 188 189 190 191 192 193 	SARS-CoV-2 and the Host Cell: A Tale of Interactions. Frontiers in Virology, 2022, 1, . The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2. Viruses, 2022, 14, 78. Lymphopenia as a Predictor for Adverse Clinical Outcomes in Hospitalized Patients with COVID-19: A Single Center Retrospective Study of 4485 Cases. Journal of Clinical Medicine, 2022, 11, 700. Mutation profile of SARS-CoV-2 genome in a sample from the first year of the pandemic in Colombia. Infection, Genetics and Evolution, 2022, 97, 105192. Liver Injury in Patients with COVID-19 without Underlying Liver Disease. Journal of Clinical Medicine, 2022, 11, 308. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduction and Targeted Therapy, 2022, 7, 26. D155Y substitution of SARS-CoV-2 ORF3a weakens binding with Caveolin-1. Computational and Structural Biotechnology Journal, 2022, 20, 766-778. COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Research, 0, 11, 102.	0.7 1.5 1.0 1.0 1.0 7.1 1.9 0.8	 37 64 23 8 139 8 4

#	Article	IF	Citations
195	Investigation of CYP2E1 and Caspase-3 Gene Expressions in COVID-19 patients. Gene Reports, 2022, 26, 101497.	0.4	3
196	Immunoediting in SARS-CoV-2: Mutual relationship between the virus and the host. International Immunopharmacology, 2022, 105, 108531.	1.7	1
198	SARS-CoV-2-mediated evasion strategies for antiviral interferon pathways. Journal of Microbiology, 2022, 60, 290-299.	1.3	24
199	A genome-wide CRISPR screen identifies interactors of the autophagy pathway as conserved coronavirus targets. PLoS Biology, 2021, 19, e3001490.	2.6	33
200	COVID-19 and cancer: start the resolution!. Cancer and Metastasis Reviews, 2022, 41, 1-15.	2.7	5
201	Genome-Wide Characterization of SARS-CoV-2 Cytopathogenic Proteins in the Search of Antiviral Targets. MBio, 2022, 13, e0016922.	1.8	14
202	Ergosterol Peroxide Inhibits Porcine Epidemic Diarrhea Virus Infection in Vero Cells by Suppressing ROS Generation and p53 Activation. Viruses, 2022, 14, 402.	1.5	5
205	COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis. F1000Research, 2022, 11, 102.	0.8	13
206	Programmed cell death: the pathways to severe COVID-19?. Biochemical Journal, 2022, 479, 609-628.	1.7	30
207	Targeting Viral Ion Channels: A Promising Strategy to Curb SARS-CoV-2. Pharmaceuticals, 2022, 15, 396.	1.7	4
208	Antibody escape and global spread of SARS-CoV-2 lineage A.27. Nature Communications, 2022, 13, 1152.	5.8	20
209	SARS-CoV-2 Diagnostics Based on Nucleic Acids Amplification: From Fundamental Concepts to Applications and Beyond. Frontiers in Cellular and Infection Microbiology, 2022, 12, 799678.	1.8	13
210	Identification of G-quadruplex DNA sequences in SARS-CoV2. Immunogenetics, 2022, , 1.	1.2	6
211	Transcriptome Analysis of Lungs in a Mouse Model of Severe COVID-19. Frontiers in Virology, 2022, 2, .	0.7	3
212	Understanding the Role of SARS-CoV-2 ORF3a in Viral Pathogenesis and COVID-19. Frontiers in Microbiology, 2022, 13, 854567.	1.5	58
213	Importance of Efferocytosis in COVID-19 Mortality. Infection and Drug Resistance, 2022, Volume 15, 995-1007.	1.1	1
214	Open Reading Frame-3a gene of the 2019 novel coronavirus inhibits the occurrence and development of colorectal cancer. Discover Oncology, 2022, 13, 14.	0.8	1
216	Detection of SARS-CoV-2 Proteins in Wastewater Samples by Mass Spectrometry. Environmental Science & Technology, 2022, 56, 5062-5070.	4.6	12

#	Article	IF	CITATIONS
217	Molecular Virology of SARS-CoV-2 and Related Coronaviruses. Microbiology and Molecular Biology Reviews, 2022, 86, e0002621.	2.9	22
218	An issue of concern: unique truncated ORF8 protein variants of SARS-CoV-2. PeerJ, 2022, 10, e13136.	0.9	7
219	SARS-CoV-2 Infection Induces Ferroptosis of Sinoatrial Node Pacemaker Cells. Circulation Research, 2022, 130, 963-977.	2.0	49
221	Viroporins: Structure, function, and their role in the life cycle of SARS-CoV-2. International Journal of Biochemistry and Cell Biology, 2022, 145, 106185.	1.2	29
222	Stratification of COVID-19 patients based on quantitative immune-related gene expression in whole blood. Molecular Immunology, 2022, 145, 17-26.	1.0	4
223	Tacrolimus-resistant SARS-CoV-2-specific T cell products to prevent and treat severe COVID-19 in immunosuppressed patients. Molecular Therapy - Methods and Clinical Development, 2022, 25, 52-73.	1.8	11
224	Coronavirus Infection-Associated Cell Death Signaling and Potential Therapeutic Targets. Molecules, 2021, 26, 7459.	1.7	30
225	Emerging Insights on Caspases in COVID-19 Pathogenesis, Sequelae, and Directed Therapies. Frontiers in Immunology, 2022, 13, 842740.	2.2	13
226	Inducible CRISPR activation screen for interferon-stimulated genes identifies OAS1 as a SARS-CoV-2 restriction factor. PLoS Pathogens, 2022, 18, e1010464	2.1	24
230	Covid-19: virology, variants, and vaccines. , 2022, 1, e000040.		24
230 231	Covid-19: virology, variants, and vaccines., 2022, 1, e000040. Genetic differentiation and diversity of SARS-CoV-2 Omicron variant in its early outbreak. Biosafety and Health, 2022, 4, 171-178.	1.2	24
230 231 232	Covid-19: virology, variants, and vaccines. , 2022, 1, e000040. Genetic differentiation and diversity of SARS-CoV-2 Omicron variant in its early outbreak. Biosafety and Health, 2022, 4, 171-178. Whole genome sequencing of SARS-CoV2 strains circulating in Iran during five waves of pandemic. PLoS ONE, 2022, 17, e0267847.	1.2	24 11 20
230 231 232 233	Covid-19: virology, variants, and vaccines. , 2022, 1, e000040. Genetic differentiation and diversity of SARS-CoV-2 Omicron variant in its early outbreak. Biosafety and Health, 2022, 4, 171-178. Whole genome sequencing of SARS-CoV2 strains circulating in Iran during five waves of pandemic. PLoS ONE, 2022, 17, e0267847. Network for network concept offers new insights into host- SARS-CoV-2 protein interactions and potential novel targets for developing antiviral drugs. Computers in Biology and Medicine, 2022, 146, 105575.	1.2 1.1 3.9	24 11 20 12
230 231 232 233 233	Covid-19: virology, variants, and vaccines. , 2022, 1, e000040. Genetic differentiation and diversity of SARS-CoV-2 Omicron variant in its early outbreak. Biosafety and Health, 2022, 4, 171-178. Whole genome sequencing of SARS-CoV2 strains circulating in Iran during five waves of pandemic. PLoS ONE, 2022, 17, e0267847. Network for network concept offers new insights into host- SARS-CoV-2 protein interactions and potential novel targets for developing antiviral drugs. Computers in Biology and Medicine, 2022, 146, 105575. Therapy Targets SARS-CoV-2 Infection-Induced Cell Death. Frontiers in Immunology, 2022, 13, .	1.2 1.1 3.9 2.2	24 11 20 12 7
230 231 232 233 233 234	Covid-19: virology, variants, and vaccines. , 2022, 1, e000040. Genetic differentiation and diversity of SARS-CoV-2 Omicron variant in its early outbreak. Biosafety and Health, 2022, 4, 171-178. Whole genome sequencing of SARS-CoV2 strains circulating in Iran during five waves of pandemic. PLoS ONE, 2022, 17, e0267847. Network for network concept offers new insights into host- SARS-CoV-2 protein interactions and potential novel targets for developing antiviral drugs. Computers in Biology and Medicine, 2022, 146, 105575. Therapy Targets SARS-CoV-2 Infection-Induced Cell Death. Frontiers in Immunology, 2022, 13, . Stability of SARS-CoV-2-Encoded Proteins and Their Antibody Levels Correlate with Interleukin 6 in COVID-19 Patients. MSystems, 2022, 7, e0005822.	1.2 1.1 3.9 2.2 1.7	24 11 20 12 7 3
230 231 232 233 233 234 235	Covid-19: virology, variants, and vaccines. , 2022, 1, e000040. Genetic differentiation and diversity of SARS-CoV-2 Omicron variant in its early outbreak. Biosafety and Health, 2022, 4, 171-178. Whole genome sequencing of SARS-CoV2 strains circulating in Iran during five waves of pandemic. PLoS ONE, 2022, 17, e0267847. Network for network concept offers new insights into host- SARS-CoV-2 protein interactions and potential novel targets for developing antiviral drugs. Computers in Biology and Medicine, 2022, 146, 105575. Therapy Targets SARS-CoV-2 Infection-Induced Cell Death. Frontiers in Immunology, 2022, 13, . Stability of SARS-CoV-2-Encoded Proteins and Their Antibody Levels Correlate with Interleukin 6 in COVID-19 Patients. MSystems, 2022, 7, e0005822. Dual inhibition of innate immunity and apoptosis by human cytomegalovirus protein UL37x1 enables efficient virus replication. Nature Microbiology, 2022, 7, 1041-1053.	1.2 1.1 3.9 2.2 1.7 5.9	24 11 20 12 7 3 18
 230 231 232 233 233 234 235 237 238 	Covid-19: virology, variants, and vaccines. , 2022, 1, e000040. Genetic differentiation and diversity of SARS-CoV-2 Omicron variant in its early outbreak. Biosafety and Health, 2022, 4, 171-178. Whole genome sequencing of SARS-CoV2 strains circulating in Iran during five waves of pandemic. PLoS ONE, 2022, 17, e0267847. Network for network concept offers new insights into host- SARS-CoV-2 protein interactions and potential novel targets for developing antiviral drugs. Computers in Biology and Medicine, 2022, 146, 105575. Therapy Targets SARS-CoV-2 Infection-Induced Cell Death. Frontiers in Immunology, 2022, 13, . Stability of SARS-CoV-2-Encoded Proteins and Their Antibody Levels Correlate with Interleukin 6 in COVID-19 Patients. MSystems, 2022, 7, e0005822. Dual inhibition of innate immunity and apoptosis by human cytomegalovirus protein UL37x1 enables efficient virus replication. Nature Microbiology, 2022, 7, 1041-1053. Functions of Viroporins in the Viral Life Cycle and Their Regulation of Host Cell Responses. Frontiers in Immunology, 0, 13, .	1.2 1.1 3.9 2.2 1.7 5.9	24 11 20 12 7 3 3 18

#	Article	IF	CITATIONS
240	Polyphosphate in Antiviral Protection: A Polyanionic Inorganic Polymer in the Fight Against Coronavirus SARS-CoV-2 Infection. Progress in Molecular and Subcellular Biology, 2022, , 145-189.	0.9	4
241	Prospects for the use of macrocyclic photosensitizers for inactivation of SARS-CoV-2: selection of compounds leaders based on the molecular docking data. Journal of Biomolecular Structure and Dynamics, 0, , 1-10.	2.0	1
243	A Review of the Potential Effects of Melatonin in Compromised Mitochondrial Redox Activities in Elderly Patients With COVID-19. Frontiers in Nutrition, 0, 9, .	1.6	5
244	Cell deaths: Involvement in the pathogenesis and intervention therapy of COVID-19. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	31
245	The past, current and future epidemiological dynamic of SARS-CoV-2. Oxford Open Immunology, 2022, 3,	1.2	24
246	Efferocytosis of SARS-CoV-2-infected dying cells impairs macrophage anti-inflammatory functions and clearance of apoptotic cells. ELife, 0, 11, .	2.8	31
247	Potential mechanism of <scp>SARS oV</scp> â€2â€associated central and peripheral nervous system impairment. Acta Neurologica Scandinavica, 2022, 146, 225-236.	1.0	6
249	Evolution of SARS-CoV-2 in Spain during the First Two Years of the Pandemic: Circulating Variants, Amino Acid Conservation, and Genetic Variability in Structural, Non-Structural, and Accessory Proteins. International Journal of Molecular Sciences, 2022, 23, 6394.	1.8	17
250	A global lipid map reveals host dependency factors conserved across SARS-CoV-2 variants. Nature Communications, 2022, 13, .	5.8	22
251	Remission of liquid tumors and SARS-CoV-2 infection: A literature review. Molecular Therapy - Oncolytics, 2022, 26, 135-140.	2.0	5
252	Genomic, proteomic and metabolomic profiling of severe acute respiratory syndrome-Coronavirus-2. , 2022, , 49-76.		0
253	Ongoing Positive Selection Drives the Evolution of SARS-CoV-2 Genomes. Genomics, Proteomics and Bioinformatics, 2022, 20, 1214-1223.	3.0	9
254	Modeling recapitulates the heterogeneous outcomes of SARS-CoV-2 infection and quantifies the differences in the innate immune and CD8 T-cell responses between patients experiencing mild and severe symptoms. PLoS Pathogens, 2022, 18, e1010630.	2.1	14
255	Revisiting Regulated Cell Death Responses in Viral Infections. International Journal of Molecular Sciences, 2022, 23, 7023.	1.8	11
257	Identifying Markers of Emerging SARS-CoV-2 Variants in Patients With Secondary Immunodeficiency. Frontiers in Microbiology, 0, 13, .	1.5	6
258	Temporal changes in the accessory protein mutations of SARSâ€CoVâ€2 variants and their predicted structural and functional effects. Journal of Medical Virology, 2022, 94, 5189-5200.	2.5	6
259	SARS-CoV-2 potential drugs, drug targets, and biomarkers: a viral-host interaction network-based analysis. Scientific Reports, 2022, 12, .	1.6	12
260	ChanFAD: A Functional Annotation Database for Ion Channels. Frontiers in Bioinformatics, 0, 2, .	1.0	2

#	Article	IF	CITATIONS
261	Caspase-1 and Gasdermin D Afford the Optimal Targets with Distinct Switching Strategies in NLRP1b Inflammasome-Induced Cell Death. Research, 2022, 2022, .	2.8	36
262	Hydroxytyrosol Recovers SARS-CoV-2-PLpro-Dependent Impairment of Interferon Related Genes in Polarized Human Airway, Intestinal and Liver Epithelial Cells. Antioxidants, 2022, 11, 1466.	2.2	4
263	COVID-19 Pandemic: Insights into Interactions between SARS-CoV-2 Infection and MAFLD. International Journal of Biological Sciences, 2022, 18, 4756-4767.	2.6	5
264	Targeting the YXXΦ Motifs of the SARS Coronaviruses 1 and 2 ORF3a Peptides by In Silico Analysis to Predict Novel Virus—Host Interactions. Biomolecules, 2022, 12, 1052.	1.8	3
266	SARS-CoV-2 recombinant spike protein induces cell apoptosis in rat taste buds. Journal of Dental Sciences, 2023, 18, 428-431.	1.2	1
267	Emergence and Spread of the SARS-CoV-2 Variant of Concern Delta across Different Brazilian Regions. Microbiology Spectrum, 2022, 10, .	1.2	9
268	The roles of cellular protease interactions in viral infections and programmed cell death: a lesson learned from the SARS-CoV-2 outbreak and COVID-19 pandemic. Pharmacological Reports, 2022, 74, 1149-1165.	1.5	5
269	Potential of targeting host cell calcium dynamics to curtail SARS-CoV-2 infection and COVID-19 pathogenesis. Cell Calcium, 2022, 106, 102637.	1.1	6
270	Unique mutations in SARS-CoV-2 Omicron subvariants' non-spike proteins: Potential impacts on viral pathogenesis and host immune evasion. Microbial Pathogenesis, 2022, 170, 105699.	1.3	37
271	A live-attenuated SARS-CoV-2 vaccine candidate with accessory protein deletions. Nature Communications, 2022, 13, .	5.8	51
272	Potassium viroporins as model systems for understanding eukaryotic ion channel behaviour. Virus Research, 2022, 320, 198903.	1.1	1
273	Mitochondria in Cell Death Regulation. , 2022, , .		Ο
274	Distinct Molecular Mechanisms Characterizing Pathogenesis of SARS-CoV-2. Journal of Microbiology and Biotechnology, 2022, 32, 1073-1085.	0.9	2
275	SARS-CoV-2 Is Persistent in Placenta and Causes Macroscopic, Histopathological, and Ultrastructural Changes. Viruses, 2022, 14, 1885.	1.5	4
276	Time Series Analysis of SARS-CoV-2 Genomes and Correlations among Highly Prevalent Mutations. Microbiology Spectrum, 2022, 10, .	1.2	8
277	Renalase Challenges the Oxidative Stress and Fibroproliferative Response in COVID-19. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-27.	1.9	1
278	Gut Microbiota and COVID-19: Potential Implications for Disease Severity. Pathogens, 2022, 11, 1050.	1.2	13
279	Expediting the drug discovery for ideal leads against SARS-CoV-2 via molecular docking of repurposed drugs. Journal of Biomolecular Structure and Dynamics, 2023, 41, 7949-7965.	2.0	2

#	Article	IF	CITATIONS
280	SARSâ€CoVâ€2 ORF3a inhibits cGASâ€&TINGâ€mediated autophagy flux and antiviral function. Journal of Medical Virology, 2023, 95, .	2.5	24
283	Non-uniform aspects of the SARS-CoV-2 intraspecies evolution reopen question of its origin. International Journal of Biological Macromolecules, 2022, 222, 972-993.	3.6	2
284	Contribution of Lipid Mediators in Divergent Outcomes following Acute Bacterial and Viral Lung Infections in the Obese Host. Journal of Immunology, 2022, 209, 1323-1334.	0.4	2
285	Potential Therapeutic Approach of Melatonin against Omicron and Some Other Variants of SARS-CoV-2. Molecules, 2022, 27, 6934.	1.7	8
286	A Syntenin Inhibitor Blocks Endosomal Entry of SARS-CoV-2 and a Panel of RNA Viruses. Viruses, 2022, 14, 2202.	1.5	0
287	A comprehensive SARS-CoV-2–human protein–protein interactome reveals COVID-19 pathobiology and potential host therapeutic targets. Nature Biotechnology, 2023, 41, 128-139.	9.4	61
288	Temporal epistasis inference from more than 3Â500Â000 SARS-CoV-2 genomic sequences. Physical Review E, 2022, 106, .	0.8	1
289	COVID-19 signalome: Pathways for SARS-CoV-2 infection and impact on COVID-19 associated comorbidity. Cellular Signalling, 2023, 101, 110495.	1.7	11
291	<scp>COVID</scp> â€19 and neurodegeneration: The mitochondrial connection. Aging Cell, 2022, 21, .	3.0	7
292	Redox Status Is the Mainstay of SARS-CoV-2 and Host for Producing Therapeutic Opportunities. Antioxidants, 2022, 11, 2061.	2.2	1
293	The Organogermanium Compound 3-(Trihydroxygermyl) Propanoic Acid (THGP) Suppresses Inflammasome Activation Via Complexation with ATP. International Journal of Molecular Sciences, 2022, 23, 13364.	1.8	6
294	Ubiquitination of SARS-CoV-2 ORF7a Prevents Cell Death Induced by Recruiting BclXL To Activate ER Stress. Microbiology Spectrum, 2022, 10, .	1.2	10
295	The role of SARS-CoV-2 accessory proteins in immune evasion. Biomedicine and Pharmacotherapy, 2022, 156, 113889.	2.5	45
296	Inhibition of SARS-CoV-2 Viral Channel Activity Using FDA-Approved Channel Modulators Independent of Variants. Biomolecules, 2022, 12, 1673.	1.8	2
297	Evidence of mitochondria origin of SARS-CoV-2 double-membrane vesicles: a review F1000Research, 0, 10, 1009.	0.8	1
299	A review on structural, non-structural, and accessory proteins of SARS-CoV-2: Highlighting drug target sites. Immunobiology, 2023, 228, 152302.	0.8	14
300	COVID-19 and diarrhea: putative mechanisms and management. International Journal of Infectious Diseases, 2023, 126, 125-131.	1.5	2
301	Mitochondria-targeted fluorescent probe for imaging viscosity in hepatic ischemia–reperfusion injury cell model. Chemical Communications, 2023, 59, 1030-1033.	2.2	8

#	Article	IF	CITATIONS
302	A novel diG motif in ORF3a protein of SARS-Cov-2 for intracellular transport. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
304	Innate immunity, cytokine storm, and inflammatory cell death in COVID-19. Journal of Translational Medicine, 2022, 20, .	1.8	29
305	Pathological Roles of Pulmonary Cells in Acute Lung Injury: Lessons from Clinical Practice. International Journal of Molecular Sciences, 2022, 23, 15027.	1.8	2
306	SARS-CoV-2 viral protein ORF3A injures renal tubules by interacting with TRIM59 to induce STAT3 activation. Molecular Therapy, 2023, 31, 774-787.	3.7	8
307	Focus on Marine Animal Safety and Marine Bioresources in Response to the SARS-CoV-2 Crisis. International Journal of Molecular Sciences, 2022, 23, 15136.	1.8	3
309	In-depth genetic characterization of the SARS-CoV-2 pandemic in a two-year frame in North Macedonia using second and third generation sequencing technologies. Frontiers in Virology, 0, 2, .	0.7	0
310	Genetic diversity and molecular epidemiology of Middle East Respiratory Syndrome Coronavirus in dromedaries in Ethiopia, 2017–2020. Emerging Microbes and Infections, 2023, 12, .	3.0	4
311	Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform. IScience, 2023, 26, 105944.	1.9	9
312	L-shaped distribution of the relative substitution rate (c/μ) observed for SARS-COV-2's genome, inconsistent with the selectionist theory, the neutral theory and the nearly neutral theory but a near-neutral balanced selection theory: Implication on "neutralist-selectionist―debate. Computers in Biology and Medicine, 2023, 153, 106522.	3.9	0
313	SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to down-regulate MHC-I surface expression. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	49
315	THE WITHIN-HOST VIRAL KINETICS OF SARS-COV-2. Journal of Applied Analysis and Computation, 2020, .	0.2	0
316	Links between COVID-19 and Alzheimer's Disease—What Do We Already Know?. International Journal of Environmental Research and Public Health, 2023, 20, 2146.	1.2	9
317	Targeting Viral ORF3a Protein: A New Approach to Mitigate COVID-19 Induced Immune Cell Apoptosis and Associated Respiratory Complications. Advanced Pharmaceutical Bulletin, 2023, 13, 678-687.	0.6	1
318	A SARS-CoV-2 full genome sequence of the B.1.1 lineage sheds light on viral evolution in Sicily in late 2020. Frontiers in Public Health, 0, 11, .	1.3	Ο
319	Unconventional secretion of unglycosylated ORF8 is critical for the cytokine storm during SARS-CoV-2 infection. PLoS Pathogens, 2023, 19, e1011128.	2.1	11
320	SARS-CoV-2 ORF3a positively regulates NF-κB activity by enhancing IKKβ-NEMO interaction. Virus Research, 2023, 328, 199086.	1.1	5
321	Severe acute respiratory syndrome coronaviruses contributing to mitochondrial dysfunction: Implications for post-COVID complications. Mitochondrion, 2023, 69, 43-56.	1.6	7
322	Comparison of COVID-19 Vaccine-Associated Myocarditis and Viral Myocarditis Pathology. Vaccines, 2023, 11, 362.	2.1	1

#	Article	IF	CITATIONS
323	Complexation ability of tetrasulfosubstituted cobalt(II) phthalocyanine toward ORF3a protein of SARS-CoV-2 virus. Russian Chemical Bulletin, 2023, 72, 233-238.	0.4	2
324	Evidence of natural selection and dominance of SARS-CoV-2 variant Lambda (C.37) over variants of concern in Cusco, Peru. Archives of Virology, 2023, 168, .	0.9	2
326	Coronavirus accessory protein ORF3 biology and its contribution to viral behavior and pathogenesis. IScience, 2023, 26, 106280.	1.9	9
327	Whole-Genome Comparison of Representatives of All Variants of SARS-CoV-2, Including Subvariant BA.2 and the GKA Clade. Advances in Virology, 2023, 2023, 1-8.	0.5	1
329	Canine Coronavirus Infection Modulates the Biogenesis and Composition of Cell-Derived Extracellular Vesicles. Biomedicines, 2023, 11, 976.	1.4	1
330	Modeling of SARS-CoV-2 Virus Proteins: Implications on Its Proteome. Methods in Molecular Biology, 2023, , 265-299.	0.4	0
331	Prospective Roles of Tumor Necrosis Factor-Alpha (TNF-α) in COVID-19: Prognosis, Therapeutic and Management. International Journal of Molecular Sciences, 2023, 24, 6142.	1.8	17
332	Immunosuppression as a Hub for SARS-CoV-2 Mutational Drift. Viruses, 2023, 15, 855.	1.5	2
333	Natural Products as Potential Therapeutic Agents for SARS-CoV-2: A Medicinal Chemistry Perspective. Current Topics in Medicinal Chemistry, 2023, 23, 1664-1698.	1.0	4
335	Roles of p53-Mediated Host–Virus Interaction in Coronavirus Infection. International Journal of Molecular Sciences, 2023, 24, 6371.	1.8	4
336	Channel activity of SARS-CoV-2 viroporin ORF3a inhibited by adamantanes and phenolic plant metabolites. Scientific Reports, 2023, 13, .	1.6	6
337	Severe acute respiratory syndrome coronavirus-2 accessory proteins ORF3a and ORF7a modulate autophagic flux and Ca2+ homeostasis in yeast. Frontiers in Microbiology, 0, 14, .	1.5	1
338	SARS-CoV-2 <i>ORF3A</i> interacts with the Clic-like chloride channel-1 (<i>CLCC1</i>) and triggers an unfolded protein response. PeerJ, 0, 11, e15077.	0.9	2
339	SARS-CoV-2: Structure, Pathogenesis, and Diagnosis. , 2024, , 24-51.		0
340	Mycobacterium tuberculosis and SARS-CoV-2 co-infections: The knowns and unknowns. IScience, 2023, 26, 106629.	1.9	3
341	SARSâ€CoVâ€2 ORF3a expression in brain disrupts the autophagy–lysosomal pathway, impairs sphingolipid homeostasis, and drives neuropathogenesis. FASEB Journal, 2023, 37, .	0.2	7
342	Organotypic human lung bud microarrays identify BMP-dependent SARS-CoV-2 infection in lung cells. Stem Cell Reports, 2023, , .	2.3	0
364	The role of cell death in SARS-CoV-2 infection. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	4

#	Article	IF	CITATIONS
365	Immune landscape and redox imbalance during neurological disorders in COVID-19. Cell Death and Disease, 2023, 14, .	2.7	1
377	SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks― , 2024, 21, 171-183.		4
386	Apoptosis and Phagocytosis as Antiviral Mechanisms. Sub-Cellular Biochemistry, 2023, , 77-112.	1.0	0
390	SARS-CoV-2 biology and host interactions. Nature Reviews Microbiology, 2024, 22, 206-225.	13.6	1