Partitioning of cancer therapeutics in nuclear condensa

Science 368, 1386-1392 DOI: 10.1126/science.aaz4427

Citation Report

#	Article	IF	CITATIONS
1	MeCP2 links heterochromatin condensates and neurodevelopmental disease. Nature, 2020, 586, 440-444.	13.7	112
2	Biomolecular Condensates and Gene Activation in Development and Disease. Developmental Cell, 2020, 55, 84-96.	3.1	40
3	Biomolecular Condensates in the Nucleus. Trends in Biochemical Sciences, 2020, 45, 961-977.	3.7	259
4	Protein phase separation: A novel therapy for cancer?. British Journal of Pharmacology, 2020, 177, 5008-5030.	2.7	13
5	Predictable phase-separated proteins. Nature Chemistry, 2020, 12, 787-789.	6.6	15
6	Drugs enter a liquid phase. Nature Reviews Molecular Cell Biology, 2020, 21, 419-419.	16.1	6
7	A framework for understanding the functions of biomolecular condensates across scales. Nature Reviews Molecular Cell Biology, 2021, 22, 215-235.	16.1	450
8	Environmental fate, distribution and state-of-the-art removal of antineoplastic drugs: A comprehensive insight. Chemical Engineering Journal, 2021, 407, 127184.	6.6	26
9	NUDT5 as a novel drug target and prognostic biomarker for ER-positive breast cancer. Drug Discovery Today, 2021, 26, 620-625.	3.2	8
10	RNA-Mediated Feedback Control of Transcriptional Condensates. Cell, 2021, 184, 207-225.e24.	13.5	324
11	Multifaceted Effects of Ligand on Nuclear Receptor Mobility. , 2021, , 37-66.		0
12	Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands. Chemical Science, 2021, 12, 7334-7349.	3.7	48
13	Wetting regulates autophagy of phase-separated compartments and the cytosol. Nature, 2021, 591, 142-146.	13.7	140
14	Moonlighting Proteins Shine New Light on Molecular Signaling Niches. International Journal of Molecular Sciences, 2021, 22, 1367.	1.8	27
15	Targeted brachyury degradation disrupts a highly specific autoregulatory program controlling chordoma cell identity. Cell Reports Medicine, 2021, 2, 100188.	3.3	15
17	Targeting NSD2-mediated SRC-3 liquid–liquid phase separation sensitizes bortezomib treatment in multiple myeloma. Nature Communications, 2021, 12, 1022.	5.8	37
18	Biomolecular Condensates and Cancer. Cancer Cell, 2021, 39, 174-192.	7.7	157
19	Isolating and Analyzing Protein Containing Granules from Cells. Current Protocols, 2021, 1, e35.	1.3	5

ATION REDO

#	Article	IF	CITATIONS
20	Ligand effects on phase separation of multivalent macromolecules. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	95
21	Clobal multi-method analysis of interaction parameters for reversibly self-associating macromolecules at high concentrations. Scientific Reports, 2021, 11, 5741.	1.6	7
22	Chemical Insights into Liquid-Liquid Phase Separation in Molecular Biology. Bulletin of the Chemical Society of Japan, 2021, 94, 1045-1058.	2.0	24
23	Aberrant phase separation and cancer. FEBS Journal, 2022, 289, 17-39.	2.2	42
24	Biomolecular Condensates: Sequence Determinants of Phase Separation, Microstructural Organization, Enzymatic Activity, and Material Properties. Journal of Physical Chemistry B, 2021, 125, 3441-3451.	1.2	48
25	Understanding the phase separation characteristics of nucleocapsid protein provides a new therapeutic opportunity against SARS-CoV-2. Protein and Cell, 2021, 12, 734-740.	4.8	31
27	Spatiotemporal organization of coacervate microdroplets. Current Opinion in Colloid and Interface Science, 2021, 52, 101420.	3.4	21
28	Altered Phase Separation and Cellular Impact in C9orf72-Linked ALS/FTD. Frontiers in Cellular Neuroscience, 2021, 15, 664151.	1.8	18
29	The role of liquid–liquid phase separation in regulating enzyme activity. Current Opinion in Cell Biology, 2021, 69, 70-79.	2.6	95
30	Low amounts of heavy water increase the phase separation propensity of a fragment of the androgen receptor activation domain. Protein Science, 2021, 30, 1427-1437.	3.1	16
31	Advances in targeting â€~undruggable' transcription factors with small molecules. Nature Reviews Drug Discovery, 2021, 20, 669-688.	21.5	152
33	The Role of Epigenomic Regulatory Pathways in the Gut-Brain Axis and Visceral Hyperalgesia. Cellular and Molecular Neurobiology, 2022, 42, 361-376.	1.7	6
34	The Integral Role of RNA in Stress Granule Formation and Function. Frontiers in Cell and Developmental Biology, 2021, 9, 621779.	1.8	71
35	Enhancer rewiring in tumors: an opportunity for therapeutic intervention. Oncogene, 2021, 40, 3475-3491.	2.6	10
36	Targeting KDM4A epigenetically activates tumor-cell-intrinsic immunity by inducing DNA replication stress. Molecular Cell, 2021, 81, 2148-2165.e9.	4.5	30
37	Biochemical Timekeeping Via Reentrant Phase Transitions. Journal of Molecular Biology, 2021, 433, 166794.	2.0	22
39	Generic nature of the condensed states of proteins. Nature Cell Biology, 2021, 23, 587-594.	4.6	94
40	Subcellular Localization of miRNAs and Implications in Cellular Homeostasis. Genes, 2021, 12, 856.	1.0	26

#	Article	IF	Citations
41	Fusion proteins form onco-condensates. Nature Structural and Molecular Biology, 2021, 28, 543-545.	3.6	6
42	Liquid–Liquid Phase Separation in Chromatin. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040683.	2.3	80
43	Interaction hot spots for phase separation revealed by NMR studies of a CAPRIN1 condensed phase. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	40
44	lt's not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nature Structural and Molecular Biology, 2021, 28, 465-473.	3.6	88
45	Protein phase separation and its role in chromatin organization and diseases. Biomedicine and Pharmacotherapy, 2021, 138, 111520.	2.5	9
46	Oncogenic signaling of RTK fusions becomes more granular. Molecular Cell, 2021, 81, 2504-2506.	4.5	2
47	Insights into gene regulation: From regulatory genomic elements to DNA-protein and protein-protein interactions. Current Opinion in Cell Biology, 2021, 70, 58-66.	2.6	19
48	Intrinsically disordered proteins and biomolecular condensates as drug targets. Current Opinion in Chemical Biology, 2021, 62, 90-100.	2.8	57
49	Roles of Phase Separation for Cellular Redox Maintenance. Frontiers in Genetics, 2021, 12, 691946.	1.1	12
50	FUS and TDP-43 Phases in Health and Disease. Trends in Biochemical Sciences, 2021, 46, 550-563.	3.7	154
51	Functional Analysis of Non-Genetic Resistance to Platinum in Epithelial Ovarian Cancer Reveals a Role for the MBD3-NuRD Complex in Resistance Development. Cancers, 2021, 13, 3801.	1.7	6
52	Subcellular localization of biomolecules and drug distribution by high-definition ion beam imaging. Nature Communications, 2021, 12, 4628.	5.8	33
53	Prion-Like Proteins in Phase Separation and Their Link to Disease. Biomolecules, 2021, 11, 1014.	1.8	26
54	Biomolecular Condensates and Their Links to Cancer Progression. Trends in Biochemical Sciences, 2021, 46, 535-549.	3.7	51
55	RNA impacts formation of biomolecular condensates in the nucleus. Biomedical Research, 2021, 42, 153-160.	0.3	5
56	RNA-bound PGC-1 $\hat{l}\pm$ controls gene expression in liquid-like nuclear condensates. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
57	Modulating α-Synuclein Liquid–Liquid Phase Separation. Biochemistry, 2021, 60, 3676-3696.	1.2	67
58	Phase separation in genome organization across evolution. Trends in Cell Biology, 2021, 31, 671-685.	3.6	62

#	Article	IF	CITATIONS
59	Exploiting epigenetic dependencies in ovarian cancer therapy. International Journal of Cancer, 2021, 149, 1732-1743.	2.3	22
60	MECP2 and the biology of MECP2 duplication syndrome. Journal of Neurochemistry, 2021, 159, 29-60.	2.1	19
61	Targeted modulation of protein liquid–liquid phase separation by evolution of amino-acid sequence. PLoS Computational Biology, 2021, 17, e1009328.	1.5	21
62	Merging Established Mechanisms with New Insights: Condensates, Hubs, and the Regulation of RNA Polymerase II Transcription. Journal of Molecular Biology, 2022, 434, 167216.	2.0	44
63	Targeting the Transcriptome Through Globally Acting Components. Frontiers in Genetics, 2021, 12, 749850.	1.1	1
64	The oncogenic transcription factor FUS-CHOP can undergo nuclear liquid–liquid phase separation. Journal of Cell Science, 2021, 134, .	1.2	28
65	Making Connections: Integrative Signaling Mechanisms Coordinate DNA Break Repair in Chromatin. Frontiers in Genetics, 2021, 12, 747734.	1.1	9
66	Liquid–liquid phase separation: a principal organizer of the cell's biochemical activity architecture. Trends in Pharmacological Sciences, 2021, 42, 845-856.	4.0	28
67	Biomolecular condensates at sites of DNA damage: More than just a phase. DNA Repair, 2021, 106, 103179.	1.3	51
68	Phase separation in transcription factor dynamics and chromatin organization. Current Opinion in Structural Biology, 2021, 71, 148-155.	2.6	30
69	Complex dynamics of multicomponent biological coacervates. Current Opinion in Colloid and Interface Science, 2021, 56, 101488.	3.4	9
70	The transcriptional stress response and its implications in cancer treatment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188620.	3.3	7
71	Phasing the intranuclear organization of steroid hormone receptors. Biochemical Journal, 2021, 478, 443-461.	1.7	20
72	Physics of compartmentalization: How phase separation and signaling shape membrane and organelle identity. Computational and Structural Biotechnology Journal, 2021, 19, 3225-3233.	1.9	9
73	1,6-Hexanediol, commonly used to dissolve liquid–liquid phase separated condensates, directly impairs kinase and phosphatase activities. Journal of Biological Chemistry, 2021, 296, 100260.	1.6	84
74	Harnessing the power of fluorescence to characterize biomolecular condensates. Methods in Microbiology, 2021, , 1-47.	0.4	1
75	The BET family in immunity and disease. Signal Transduction and Targeted Therapy, 2021, 6, 23.	7.1	135
76	Partitioning of Chemotherapeutics into Nuclear Condensates—Opening the Door to New Approaches for Drug Development. Molecular Cell, 2020, 79, 544-545.	4.5	7

# 82	ARTICLE Regulation and inhibition of the DNA sensor cGAS. EMBO Reports, 2020, 21, e51345.	IF 2.0	CITATIONS 32
84	Targeting transcription cycles in cancer. Nature Reviews Cancer, 2022, 22, 5-24.	12.8	59
85	BRD4 in physiology and pathology: â€~ã€~BET'' on its partners. BioEssays, 2021, 43, e2100180.	1.2	28
86	How cells' â€~lava lamp' effect could make cancer drugs more powerful. Nature, 2020, , .	13.7	0
87	Screening and Quantification of the Encapsulation of Dyes in Supramolecular Particles. Langmuir, 2021, 37, 12681-12689.	1.6	1
90	Epigenetic heterogeneity promotes acquired resistance to BET bromodomain inhibition in ovarian cancer. American Journal of Cancer Research, 2021, 11, 3021-3038.	1.4	1
91	Liquid-liquid phase separation (LLPS) in cellular physiology and tumor biology. American Journal of Cancer Research, 2021, 11, 3766-3776.	1.4	4
92	What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?. Rna, 2022, 28, 36-47.	1.6	23
93	Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates. Journal of Molecular Biology, 2021, 434, 167348.	2.0	2
94	Approaches towards understanding the mechanism-of-action of metallodrugs. Coordination Chemistry Reviews, 2022, 453, 214311.	9.5	20
95	Reversible Kinetic Trapping of FUS Biomolecular Condensates. Advanced Science, 2022, 9, e2104247.	5.6	28
96	cAMPâ€Induced Nuclear Condensation of CRTC2 Promotes Transcription Elongation and Cystogenesis in Autosomal Dominant Polycystic Kidney Disease. Advanced Science, 2022, , 2104578.	5.6	5
97	Therapeutic targeting of "undruggable―MYC. EBioMedicine, 2022, 75, 103756.	2.7	136
98	Phase separation drives tumor pathogenesis and evolution: all roads lead to Rome. Oncogene, 2022, 41, 1527-1535.	2.6	3
99	Liquid–liquid phase separation drives cellular function and dysfunction in cancer. Nature Reviews Cancer, 2022, 22, 239-252.	12.8	115
100	Capillary flow experiments for thermodynamic and kinetic characterization of protein liquid-liquid phase separation. Nature Communications, 2021, 12, 7289.	5.8	27
101	Dynamical component exchange in a model phase separating system: an NMR-based approach. Physical Chemistry Chemical Physics, 2022, 24, 6169-6175.	1.3	4
102	Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry. Chemical Reviews, 2022, 122, 6719-6748.	23.0	55

#	Article	IF	CITATIONS
103	The living interface between synthetic biology and biomaterial design. Nature Materials, 2022, 21, 390-397.	13.3	68
104	FET fusion oncoproteins interact with BRD4 and SWI/SNF chromatin remodelling complex subtypes in sarcoma. Molecular Oncology, 2022, 16, 2470-2495.	2.1	12
105	Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nature Reviews Cardiology, 2022, 19, 620-638.	6.1	40
106	Liquid–Liquid Phase Separation in Cancer Signaling, Metabolism and Anticancer Therapy. Cancers, 2022, 14, 1830.	1.7	9
107	Nucleic acid actions on abnormal protein aggregation, phase transitions and phase separation. Current Opinion in Structural Biology, 2022, 73, 102346.	2.6	12
108	Biomolecular condensates in cancer biology. Cancer Science, 2022, 113, 382-391.	1.7	12
109	Amphiphilic proteins coassemble into multiphasic condensates and act as biomolecular surfactants. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	37
110	Roles of Key Epigenetic Regulators in the Gene Transcription and Progression of Prostate Cancer. Frontiers in Molecular Biosciences, 2021, 8, 743376.	1.6	1
112	Oncogenic fusion proteins and their role in three-dimensional chromatin structure, phase separation, and cancer. Current Opinion in Genetics and Development, 2022, 74, 101901.	1.5	11
113	Ectopic biomolecular phase transitions: fusion proteins in cancer pathologies. Trends in Cell Biology, 2022, 32, 681-695.	3.6	18
115	Large-Scale Chromatin Rearrangements in Cancer. Cancers, 2022, 14, 2384.	1.7	3
116	Post-translational modifications in liquid-liquid phase separation: a comprehensive review. Molecular Biomedicine, 2022, 3, 13.	1.7	42
117	Phase Separation: "The Master Key―to Deciphering the Physiological and Pathological Functions of Cells. Advanced Biology, 2022, , 2200006.	1.4	6
118	Interactions between Membraneless Condensates and Membranous Organelles at the Presynapse: A Phase Separation View of Synaptic Vesicle Cycle. Journal of Molecular Biology, 2023, 435, 167629.	2.0	8
120	Mitoxantrone stacking does not define the active or inactive state of USP15 catalytic domain. Journal of Structural Biology, 2022, 214, 107862.	1.3	3
121	XIST loss impairs mammary stem cell differentiation and increases tumorigenicity through Mediator hyperactivation. Cell, 2022, 185, 2164-2183.e25.	13.5	22
122	Super-Enhancers, Phase-Separated Condensates, and 3D Genome Organization in Cancer. Cancers, 2022, 14, 2866.	1.7	16
123	The Mediator complex as a master regulator of transcription by RNA polymerase II. Nature Reviews Molecular Cell Biology, 2022, 23, 732-749.	16.1	71

~		~	
(11		REPO	דסר
	IAL	IL PU	ואכ

#	Article	IF	CITATIONS
124	Learning the chemical grammar of biomolecular condensates. Nature Chemical Biology, 2022, 18, 1298-1306.	3.9	56
125	A campaign targeting a conserved Hsp70 binding site uncovers how subcellular localization is linked to distinct biological activities. Cell Chemical Biology, 2022, 29, 1303-1316.e3.	2.5	7
126	Liquid–liquid phase separation in tumor biology. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	52
127	The Patterning and Proportion of Charged Residues in the Arginine-Rich Mixed-Charge Domain Determine the Membrane-Less Organelle Targeted by the Protein. International Journal of Molecular Sciences, 2022, 23, 7658.	1.8	5
128	Transcriptional enhancers at 40: evolution of a viral DNA element to nuclear architectural structures. Trends in Genetics, 2022, 38, 1019-1047.	2.9	11
129	Genetic variation associated with condensate dysregulation in disease. Developmental Cell, 2022, 57, 1776-1788.e8.	3.1	41
130	HuR as a molecular target for cancer therapeutics and immune-related disorders. Advanced Drug Delivery Reviews, 2022, 188, 114442.	6.6	21
131	A Review of Mathematical and Computational Methods in Cancer Dynamics. Frontiers in Oncology, 0, 12, .	1.3	8
132	<scp>BRD4</scp> and <scp>MYC</scp> : power couple in transcription and disease. FEBS Journal, 2023, 290, 4820-4842.	2.2	19
133	Charting the human disease condensate dysregulome. Developmental Cell, 2022, 57, 1677-1679.	3.1	1
135	Biomolecular Condensation: A New Phase in Cancer Research. Cancer Discovery, 2022, 12, 2031-2043.	7.7	3
136	Modulating biomolecular condensates: a novel approach to drug discovery. Nature Reviews Drug Discovery, 2022, 21, 841-862.	21.5	88
138	Optothermally Programmable Liquids with Spatiotemporal Precision and Functional Complexity. Advanced Materials, 2022, 34, .	11.1	10
139	LncRNAs divide and rule: The master regulators of phase separation. Frontiers in Genetics, 0, 13, .	1.1	10
140	Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics. Trends in Pharmacological Sciences, 2022, 43, 820-837.	4.0	26
141	Advances of Epigenetic Biomarkers and Epigenome Editing for Early Diagnosis in Breast Cancer. International Journal of Molecular Sciences, 2022, 23, 9521.	1.8	8
142	Phase separation in epigenetics and cancer stem cells. Frontiers in Oncology, 0, 12, .	1.3	3
144	Liquid–Liquid Phase Separation of an Intrinsically Disordered Region of a Germ Cell-Specific Protein Modulates the Stability and Conformational Exchange Rate of SH3 Domain. Journal of Physical Chemistry Letters, 2022, 13, 7804-7808.	2.1	2

#	Article	IF	CITATIONS
145	Scaffolding viral protein NC nucleates phase separation of the HIV-1 biomolecular condensate. Cell Reports, 2022, 40, 111251.	2.9	15
146	Chemical inhibitors of transcription-associated kinases. Current Opinion in Chemical Biology, 2022, 70, 102186.	2.8	6
147	Phase separation in Cancer: From the Impacts and Mechanisms to Treatment potentials. International Journal of Biological Sciences, 2022, 18, 5103-5122.	2.6	18
148	Probing Liquid–Liquid Phase Separation of RNA-Binding Proteins In Vitro and In Vivo. Methods in Molecular Biology, 2022, , 307-333.	0.4	4
149	Protein conformation and biomolecular condensates. Current Research in Structural Biology, 2022, 4, 285-307.	1.1	13
150	Fast and Accurate Prediction of Membrane-Less Organelle Constituents by Landscaping Protein-Protein Interaction Network with Liquid-Liquid Phase Separation Propensities. SSRN Electronic Journal, 0, , .	0.4	0
152	Protein condensation diseases: therapeutic opportunities. Nature Communications, 2022, 13, .	5.8	38
153	Biomaterial design inspired by membraneless organelles. Matter, 2022, 5, 2787-2812.	5.0	19
154	Emerging Implications of Phase Separation in Cancer. Advanced Science, 2022, 9, .	5.6	9
155	PhaSepDB in 2022: annotating phase separation-related proteins with droplet states, co-phase separation partners and other experimental information. Nucleic Acids Research, 2023, 51, D460-D465.	6.5	19
156	Subcellular Partitioning of Arsenic Trioxide Revealed by Label-Free Imaging. Analytical Chemistry, 2022, 94, 13889-13896.	3.2	2
157	Characterizing Properties of Biomolecular Condensates Below the Diffraction Limit In Vivo. Methods in Molecular Biology, 2023, , 425-445.	0.4	2
158	Roles of Chromatin Remodelling and Molecular Heterogeneity in Therapy Resistance in Glioblastoma. Cancers, 2022, 14, 4942.	1.7	2
159	Targeting androgen receptor phase separation to overcome antiandrogen resistance. Nature Chemical Biology, 2022, 18, 1341-1350.	3.9	48
160	Epigenetic-Mediated Regulation of Gene Expression for Biological Control and Cancer: Cell and Tissue Structure, Function, and Phenotype. Results and Problems in Cell Differentiation, 2022, , 339-373.	0.2	0
161	Aggregation controlled by condensate rheology. Biophysical Journal, 2023, 122, 197-214.	0.2	4
162	Oxaliplatin disrupts nucleolar function through biophysical disintegration. Cell Reports, 2022, 41, 111629.	2.9	13
163	Water-in-water droplet microfluidics: A design manual. Biomicrofluidics, 2022, 16, .	1.2	3

#	Article	IF	Citations
164	Chemical tools for study and modulation of biomolecular phase transitions. Chemical Science, 2022, 13, 14226-14245.	3.7	4
165	Principles and functions of condensate modifying drugs. Frontiers in Molecular Biosciences, 0, 9, .	1.6	10
166	Identification of molecular subtypes based on liquid–liquid phase separation and cross-talk with immunological phenotype in bladder cancer. Frontiers in Immunology, 0, 13, .	2.2	2
167	HNF1Bâ€driven threeâ€dimensional chromatin structure for molecular classification in pancreatic cancers. Cancer Science, 0, , .	1.7	1
168	How do RNA binding proteins trigger liquid-liquid phase separation in human health and diseases?. BioScience Trends, 2022, 16, 389-404.	1.1	3
169	Biomolecular condensate phase diagrams with a combinatorial microdroplet platform. Nature Communications, 2022, 13, .	5.8	24
170	Metabolic modulation of transcription: The role of one-carbon metabolism. Cell Chemical Biology, 2022, 29, 1664-1679.	2.5	7
171	Molecular determinants for the layering and coarsening of biological condensates. Aggregate, 2022, 3, .	5.2	7
172	Liquid-liquid phase separation of nucleocapsid proteins during SARS-CoV-2 and HIV-1 replication. Cell Reports, 2023, 42, 111968.	2.9	8
173	Protein Phase Separation: New Insights into Carcinogenesis. Cancers, 2022, 14, 5971.	1.7	0
174	DNA Droplets: Intelligent, Dynamic Fluid. Advanced Biology, 2023, 7, .	1.4	11
176	The super elongation complex (SEC) mediates phase transition of SPT5 during transcriptional pause release. EMBO Reports, 2023, 24, .	2.0	3
177	The Role of Phase-Separated Condensates in Fusion Oncoprotein–Driven Cancers. Annual Review of Cancer Biology, 2023, 7, 73-91.	2.3	10
179	Thermodynamic origins of two-component multiphase condensates of proteins. Chemical Science, 2023, 14, 1820-1836.	3.7	12
180	Bestimmung der physikalischâ€chemischen Zusammensetzung von biomolekularen Kondensaten durch rämlich aufgelöste NMR. Angewandte Chemie, 2023, 135, .	1.6	0
181	Interaction modules that impart specificity to disordered protein. Trends in Biochemical Sciences, 2023, 48, 477-490.	3.7	22
182	Phase separation enhances probability of receptor signalling and drug targeting. Trends in Biochemical Sciences, 2023, 48, 428-436.	3.7	7
183	Chemical probes for investigating protein liquid-liquid phase separation and aggregation. Current Opinion in Chemical Biology, 2023, 74, 102291.	2.8	2

#	Article	lF	CITATIONS
184	Engineering synthetic biomolecular condensates. , 2023, 1, 466-480.		21
185	Phase Separation in Biology and Disease; Current Perspectives and Open Questions. Journal of Molecular Biology, 2023, 435, 167971.	2.0	13
186	From the Catastrophic Objective Irreproducibility of Cancer Research and Unavoidable Failures of Molecular Targeted Therapies to the Sparkling Hope of Supramolecular Targeted Strategies. International Journal of Molecular Sciences, 2023, 24, 2796.	1.8	2
187	Intracellular Organization of Proteins and Nucleic Acids via Biomolecular Condensates in Human Health and Diseases. Biochem, 2023, 3, 31-46.	0.5	Ο
188	Substitution to hydrophobic linker and formation of host–guest complex enhanced the effect of synthetic transcription factor made of pyrroleâ"imidazole polyamide. Bioorganic and Medicinal Chemistry, 2023, 81, 117208.	1.4	1
190	A Five-LLPS Gene Risk Score Prognostic Signature Predicts Survival in Hepatocellular Carcinoma. International Journal of Genomics, 2023, 2023, 1-12.	0.8	1
192	Determining the Physicoâ€Chemical Composition of Biomolecular Condensates from Spatiallyâ€Resolved NMR. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
193	Endoskeletal coacervates with mobile-immobile duality for long-term utility. Chemical Engineering Journal, 2023, 462, 142165.	6.6	0
194	Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm, 2023, 4, .	3.1	3
195	LSD1 Inhibition Disrupts Super-Enhancer–Driven Oncogenic Transcriptional Programs in Castration-Resistant Prostate Cancer. Cancer Research, 2023, 83, 1684-1698.	0.4	12
196	Phase Transitions of Associative Biomacromolecules. Chemical Reviews, 2023, 123, 8945-8987.	23.0	68
197	Encoding Coacervate Droplets with Paramagnetism for Dynamical Reconfigurability and Spatial Addressability. ACS Nano, 2023, 17, 6234-6246.	7.3	3
198	Biocondensates fuel tumor immune evasion. Nature Cancer, 2023, 4, 312-314.	5.7	0
199	Disrupting the phase separation of KAT8–IRF1 diminishes PD-L1 expression and promotes antitumor immunity. Nature Cancer, 2023, 4, 382-400.	5.7	16
203	Phase separation in cancer at a glance. Journal of Translational Medicine, 2023, 21, .	1.8	4
204	Defining basic rules for hardening influenza A virus liquid condensates. ELife, 0, 12, .	2.8	10
205	Seeing Biomolecular Condensates Through the Lens of Viruses. Annual Review of Virology, 2023, 10, .	3.0	1
206	Small molecules in the race of COVID-19 drug development. Journal of Asian Natural Products Research, 2023, 25, 1133-1154.	0.7	0

#	Article	IF	CITATIONS
209	Metals and inorganic molecules in regulating protein and nucleic acid phase separation. Current Opinion in Chemical Biology, 2023, 74, 102308.	2.8	0
215	Interrelationship in Organized Biological Systems. , 2023, , 205-257.		0
243	Biomolecular condensates in kidney physiology and disease. Nature Reviews Nephrology, 0, , .	4.1	1
257	In search of chemical rationales. Nature Chemical Biology, 2024, 20, 264-265.	3.9	0
261	SMALL-MOLECULE INTERACTIONS WITH BIOMOLECULAR CONDENSATES. Medicinal Chemistry Reviews, 0, , 419-443.	0.1	0
265	A bivalent inhibitor against TDRD3 to suppress phase separation of methylated G3BP1. Chemical Communications, 0, , .	2.2	0