Comparison of <i>iin vivo</i> pathogenicity of four <i>Comparison of <i>iin vivo</i> pathogenicity of four <i>iin vivo</i> pathogenicity of four <i>iin vivo</i> pathogenicity of four <i>iin vivo</ii> pathogenicity of four <i>iin vivo</i> pathogenicity of four <i>iin vivo</ii> pathogenicity of four <i>iin vivo</i> pathogenicity of four <i>iin vivo</ii> pathogenicity o

Emerging Microbes and Infections 9, 1160-1169

DOI: 10.1080/22221751.2020.1771218

Citation Report

#	Article	IF	CITATIONS
1	Potent Synergistic Interactions between Lopinavir and Azole Antifungal Drugs against Emerging Multidrug-Resistant Candida auris. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	30
2	Candida auris Mannans and Pathogen–Host Interplay. Trends in Microbiology, 2020, 28, 954-956.	7.7	2
3	The <i>Galleria mellonella</i> infection model as a system to investigate the virulence of <i>Candida auris</i> strains. Pathogens and Disease, 2020, 78, .	2.0	28
4	Comparative Evaluations of the Pathogenesis of Candida auris Phenotypes and Candida albicans Using Clinically Relevant Murine Models of Infections. MSphere, 2020, 5, .	2.9	19
5	Echinocandins as Biotechnological Tools for Treating Candida auris Infections. Journal of Fungi (Basel, Switzerland), 2020, 6, 185.	3.5	12
6	Investigation of the Physiological, Biochemical and Antifungal Susceptibility Properties of Candida auris. Mycopathologia, 2021, 186, 189-198.	3.1	2
9	Comparison of In Vitro Killing Activity of Rezafungin, Anidulafungin, Caspofungin, and Micafungin against Four Candida auris Clades in RPMI-1640 in the Absence and Presence of Human Serum. Microorganisms, 2021, 9, 863.	3.6	22
10	<i>In vitro</i> and <i>in vivo</i> interaction of caspofungin with isavuconazole against <i>Candida auris</i> planktonic cells and biofilms. Medical Mycology, 2021, 59, 1015-1023.	0.7	13
11	In Vitro Interaction and Killing-Kinetics of Amphotericin B Combined with Anidulafungin or Caspofungin against Candida auris. Pharmaceutics, 2021, 13, 1333.	4.5	12
12	Unpredictable In Vitro Killing Activity of Amphotericin B against Four Candida auris Clades. Pathogens, 2021, 10, 990.	2.8	6
13	Characterization of the Differential Pathogenicity of Candida auris in a Galleria mellonella Infection Model. Microbiology Spectrum, 2021, 9, e0001321.	3.0	27
14	Diagnostic Allele-Specific PCR for the Identification of Candida auris Clades. Journal of Fungi (Basel,) Tj ETQq1 1 0.7	784314 rg 3.5	ggT /Overloc
15	Augmenting the Activity of Chlorhexidine for Decolonization of Candida auris from Porcine skin. Journal of Fungi (Basel, Switzerland), 2021, 7, 804.	3.5	16
16	What Do We Know about Candida auris? State of the Art, Knowledge Gaps, and Future Directions. Microorganisms, 2021, 9, 2177.	3.6	28
17	Raman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification. Frontiers in Microbiology, 2021, 12, 769597.	3.5	14
18	Antifungal Peptide CGA-N9 Protects Against Systemic Candidiasis in Mice. International Journal of Peptide Research and Therapeutics, 2022, 28, 1.	1.9	2
19	Depletion of the Microbiota Has a Modest but Important Impact on the Fungal Burden of the Heart and Lungs during Early Systemic Candida auris Infection in Neutropenic Mice. Microorganisms, 2022, 10, 330.	3.6	2
20	Overview about Candida auris: What's up 12 years after its first description?. Journal De Mycologie Medicale, 2022, 32, 101248.	1.5	16

#	Article	IF	CITATIONS
21	Forward and reverse genetic dissection of morphogenesis identifies filament-competent Candida auris strains. Nature Communications, 2021, 12, 7197.	12.8	32
22	ClaID: a Rapid Method of Clade-Level Identification of the Multidrug Resistant Human Fungal Pathogen Candida auris. Microbiology Spectrum, 2022, 10, e0063422.	3.0	7
23	The effect of antifungal resistance development on the virulence of <i>Candida</i> species. FEMS Yeast Research, 2022, 22, .	2.3	13
24	Host–pathogen interactions upon <i>Candida auris</i> infection: fungal behaviour and immune response in <i>Galleria mellonella</i> Emerging Microbes and Infections, 2022, 11, 136-146.	6.5	11
25	Dissemination of Candida auris to deep organs in neonatal murine invasive candidiasis. Microbial Pathogenesis, 2021, 161, 105285.	2.9	2
26	In Vivo Efficacy of Amphotericin B against Four Candida auris Clades. Journal of Fungi (Basel,) Tj ETQq1 1 0.78431	4 _. rgBT/C	verlock 10 1
27	Drug repurposing against <i>Candida auris</i> : A systematic review. Mycoses, 2022, 65, 784-793.	4.0	10
28	The Use of Galleria mellonella Larvae to Study the Pathogenicity and Clonal Lineage-Specific Behaviors of the Emerging Fungal Pathogen Candida auris. Methods in Molecular Biology, 2022, , 287-298.	0.9	4
29	Innate immune responses against the fungal pathogen Candida auris. Nature Communications, 2022, 13,	12.8	30
30	Comparative Outcomes <i>of Candida auris</i> Bloodstream Infections: A Multicenter Retrospective Case-Control Study. Clinical Infectious Diseases, 2023, 76, e1436-e1443.	5.8	12
31	Immunogenicity and protective efficacy of a pan-fungal vaccine in preclinical models of aspergillosis, candidiasis, and pneumocystosis., 2022, 1 , .		6
33	Drug Repurposing for, ENT and Head and Neck, Infectious and Oncologic Diseases: Current Practices and Future Possibilities., 2023,, 253-282.		0
35	Fatty acid modification of antimicrobial peptide CGA-N9 and the combats against Candida albicans infection. Biochemical Pharmacology, 2023, 211, 115535.	4.4	2
36	Functional Expression of Recombinant Candida auris Proteins in Saccharomyces cerevisiae Enables Azole Susceptibility Evaluation and Drug Discovery. Journal of Fungi (Basel, Switzerland), 2023, 9, 168.	3.5	3
37	Candida auris biofilm: a review on model to mechanism conservation. Expert Review of Anti-Infective Therapy, 2023, 21, 295-308.	4.4	3
38	Plasma Gelsolin Enhances Phagocytosis of Candida auris by Human Neutrophils through Scavenger Receptor Class B. Microbiology Spectrum, 2023, 11 , .	3.0	2
39	<i>Candida Auris</i> : What do We Know about the Most Enigmatic Pathogen of the 21 st Century?. Postepy Mikrobiologii, 2023, 62, 27-46.	0.1	0
40	The Mortality Attributable to Candidemia in C. auris Is Higher than That in Other Candida Species: Myth or Reality?. Journal of Fungi (Basel, Switzerland), 2023, 9, 430.	3.5	6

#	Article	IF	CITATIONS
42	In Vitro Killing Activities of Anidulafungin and Micafungin with and without Nikkomycin Z against Four Candida auris Clades. Pharmaceutics, 2023, 15, 1365.	4. 5	0
43	Evaluation of a Novel FKS1 R1354H Mutation Associated with Caspofungin Resistance in Candida auris Using the CRISPR-Cas9 System. Journal of Fungi (Basel, Switzerland), 2023, 9, 529.	3.5	4
45	Strain and temperature dependent aggregation of Candida auris is attenuated by inhibition of surface amyloid proteins. Cell Surface, 2023, 10, 100110.	3.0	7
46	Cell Aggregation Capability of Clinical Isolates from Candida auris and Candida haemulonii Species Complex. Tropical Medicine and Infectious Disease, 2023, 8, 382.	2.3	1
47	Virulence Traits and Azole Resistance in Korean Candida auris Isolates. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgB	T / Gverloc	k 10 Tf 50 58
48	A Bibliometric Review on Candida auris of the First Fifteen Years of Research (2009-2023). BioMed Research International, 2023, 2023, 1-13.	1.9	0
49	Tools and techniques to identify, study, and control Candida auris. PLoS Pathogens, 2023, 19, e1011698.	4.7	0
50	Ploidy evolution in a wild yeast is linked to an interaction between cell type and metabolism. PLoS Biology, 2023, 21, e3001909.	5 . 6	0
51	Comparing the virulence of four major clades of <i>Candida auris</i> strains using a silkworm infection model: Clade IV isolates had higher virulence than the other clades. Medical Mycology, 2023, 61, .	0.7	0
52	Mechanisms of pathogenicity for the emerging fungus Candida auris. PLoS Pathogens, 2023, 19, e1011843.	4.7	2
53	Skin and hard surface disinfection against Candida auris $\hat{a} \in W$ What we know today. Frontiers in Medicine, 0, 11 , .	2.6	0
54	The many faces of Candida auris: Phenotypic and strain variation in an emerging pathogen. PLoS Pathogens, 2024, 20, e1012011.	4.7	0
55	Rapid evolution of an adaptive multicellular morphology of Candida auris during systemic infection. Nature Communications, 2024, 15, .	12.8	0