Functionalizing TiO2 with graphene oxide for enhancin methylene blue (MB) in contaminated wastewater

Journal of Environmental Management 270, 110871

DOI: 10.1016/j.jenvman.2020.110871

Citation Report

#	Article	IF	Citations
1	Application of nanostructured aluminium titanate (Al2TiO5) photocatalyst for removal of organic pollutants from water: Influencing factors and kinetic study. Materials Chemistry and Physics, 2020, 256, 123740.	2.0	11
2	Fabrication, characterization, and application of ternary magnetic recyclable Bi2WO6/BiOI@Fe3O4 composite for photodegradation of tetracycline in aqueous solutions. Journal of Environmental Management, 2020, 270, 110839.	3.8	55
3	Effect mechanism of copper ions on photocatalytic activity of TiO2/graphene oxide composites for phenol-4-sulfonic acid photodegradation. Journal of Colloid and Interface Science, 2021, 586, 563-575.	5.0	19
4	Biochar as a support for nanocatalysts and other reagents: Recent advances and applications. Coordination Chemistry Reviews, 2021, 426, 213585.	9.5	87
5	Applicability of TiO2(B) nanosheets@hydrochar composites for adsorption of tetracycline (TC) from contaminated water. Journal of Hazardous Materials, 2021, 405, 123999.	6.5	62
6	A novel electrodeposited sandwich electrode with an efficient performance in complex water treatment. Surface and Coatings Technology, 2021, 406, 126645.	2.2	10
7	Facet-Dependent Photodegradation of Methylene Blue by Hematite Nanoplates in Visible Light. Environmental Science & Environmen	4.6	67
8	Physical and photocatalytic properties of sprayed Dy doped ZnO thin films under sunlight irradiation for degrading methylene blue. RSC Advances, 2021, 11, 24917-24925.	1.7	16
9	Strategy for the advanced treatment of simulated tail water of dyeing wastewater based on a short-cut photocatalysis/algal degradation hybrid technology. Environmental Science and Pollution Research, 2021, 28, 31470-31478.	2.7	1
10	Preparation of Fe and Co co-doped TiO ₂ by precipitation method in an impinging stream-rotating packed bed for photodegradation of phenol wastewater. Advances in Applied Ceramics, 2021, 120, 134-143.	0.6	5
11	Construction of physically crosslinked cellulose nanofibrils/alkali lignin/montmorillonoite/polyvinyl alcohol network hydrogel and its application in methylene blue removal. Cellulose, 2021, 28, 5531.	2.4	25
12	Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity. Science of the Total Environment, 2021, 767, 144896.	3.9	207
13	Arsenic removal in aqueous solutions using FeS2. Journal of Environmental Management, 2021, 286, 112246.	3.8	63
14	Central-collapsed structure of CoFeAl layered double hydroxides and its photocatalytic performance. Journal of Colloid and Interface Science, 2021, 590, 571-579.	5.0	14
15	Graphene coupled TiO2 photocatalysts for environmental applications: A review. Chemosphere, 2021, 271, 129506.	4.2	132
16	rGO-TiO2-CdO-ZnO-Ag photocatalyst for enhancing photocatalytic degradation of methylene blue. Optical Materials, 2021, 116, 111090.	1.7	36
17	Resource recovery toward sustainability through nutrient removal from landfill leachate. Journal of Environmental Management, 2021, 287, 112265.	3.8	57
18	Efficient SiO2/WO3–TiO2@rGO nanocomposite photocatalyst for visible-light degradation of colored pollutant in water. Journal of Materials Science: Materials in Electronics, 2021, 32, 20184-20196.	1.1	3

#	Article	IF	CITATIONS
19	An investigation of transition metal doped TiO2 photocatalysts for the enhanced photocatalytic decoloration of methylene blue dye under visible light irradiation. Journal of Environmental Chemical Engineering, 2021, 9, 105254.	3.3	66
20	Study on the antibacterial properties of BiOIO3/graphene oxide (GO) modified fluorocarbon resin coating (PEVE) under UV light. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 579-589.	0.8	2
21	Robust self-cleaning effects of cotton fabrics coated with reduced graphene oxide (RGO)-titanium dioxide (TiO ₂) nanocomposites. Textile Reseach Journal, 2022, 92, 739-759.	1.1	3
22	Neural modeling and simulation of molecular separation using amino acid salt solutions. Journal of Molecular Liquids, 2021, 337, 116473.	2.3	1
23	Enhanced ultraviolet-visible photocatalysis of RGO/equaixial geometry TiO2 composites on degradation of organic dyes in water. Environmental Science and Pollution Research, 2022, 29, 12222-12236.	2.7	10
24	Acidity-regulated synthesis of a bifunctional mesoporous silica composite with simultaneously enhanced adsorption and catalytic performance. Chemical Physics Letters, 2021, 779, 138865.	1.2	0
25	Recent advancements in molecular separation of gases using microporous membrane systems: A comprehensive review on the applied liquid absorbents. Journal of Molecular Liquids, 2021, 337, 116439.	2.3	37
26	Adsorption of dyes on multifunctionalized nano-silica KCC-1. Journal of Molecular Liquids, 2021, 338, 116573.	2.3	30
27	Enhanced Visible/NIR driven catalytic activity in presence of neodymium (Nd3+), for Yb3+ and Tm3+ doped NaYF4 nanoparticles. Journal of Environmental Chemical Engineering, 2021, 9, 105813.	3.3	11
28	One-pot green fabrication of BiFeO3 nanoparticles via Abelmoschus esculentus L. leaves extracts for photocatalytic dye degradation. Applied Surface Science, 2021, 563, 150113.	3.1	46
29	GO-based antibacterial composites: Application and design strategies. Advanced Drug Delivery Reviews, 2021, 178, 113967.	6.6	41
30	Novel nanoporous membranes of bio-based cellulose acetate, poly(lactic acid) and biodegradable polyurethane in-situ impregnated with catalytic cobalt nanoparticles for the removal of Methylene Blue and Congo Red dyes from wastewater. Carbohydrate Polymer Technologies and Applications, 2021. 2. 100123.	1.6	13
31	Enhancement of photocatalytic activity of CuO-Cu2O heterostructures through the controlled content of Cu2O. Materials Research Bulletin, 2022, 145, 111561.	2.7	48
32	Technological solutions for long-term storage of partially used nuclear waste: A critical review. Annals of Nuclear Energy, 2022, 166, 108736.	0.9	65
33	Highly active Z-scheme heterojunction photocatalyst of anatase TiO2 octahedra covered with C-MoS2 nanosheets for efficient degradation of organic pollutants under solar light. Journal of Colloid and Interface Science, 2022, 606, 337-352.	5.0	40
34	Recent advances on nanocellulose biomaterials for environmental health photoremediation: An overview. Environmental Research, 2022, 204, 111964.	3.7	17
35	Dye Removal Ability of Pure and Doped Graphitic Carbon Nitride. Current Analytical Chemistry, 2021, 17,	0.6	2
36	Novel TiO2 Nanoparticles/Polysulfone Composite Hollow Microspheres for Photocatalytic Degradation. Polymers, 2021, 13, 336.	2.0	11

#	ARTICLE	IF	Citations
37	A review of nanotechnological applications to detect and control surface water pollution. Environmental Technology and Innovation, 2021, 24, 102032.	3.0	49
38	Mutually exclusive ytterbium and nitrogen co-doping of mesoporous titania-carbon for self-cleanable and sustainable triboelectric nanogenerators. Nano Energy, 2021, 90, 106615.	8.2	10
39	A magnetically recyclable dual step-scheme Bi2WO6/Fe2O3/WO3 heterojunction for photodegradation of bisphenol-A from aqueous solution. Journal of Environmental Chemical Engineering, 2021, 9, 106461.	3.3	39
40	Graphene quantum dot and iron co-doped TiO2 photocatalysts: Synthesis, performance evaluation and phytotoxicity studies. Ecotoxicology and Environmental Safety, 2021, 226, 112855.	2.9	22
41	Development of a novel photocatalyst: Titania nanostructure bunches decorated on graphene oxide for enhanced photocatalytic efficiency. Materials Research Bulletin, 2022, 146, 111601.	2.7	9
42	Correlation between the Properties of Sol-Gel Synthesized Graphene/Titania Hybrid Nanostructures and Their Catalytic Activity in Selective Aerobic Oxidation of Alcohols. ECS Journal of Solid State Science and Technology, 2020, 9, 123002.	0.9	1
43	Construction and photocatalytic performance of fluorinated ZnO–TiO ₂ heterostructure composites. RSC Advances, 2021, 11, 38654-38666.	1.7	9
44	Synthesis of Ag4Bi2O5 nanoparticles and evaluation of their photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 427, 113776.	2.0	2
45	Microâ€structural Analysis and Photocatalytic Properties of Green Synthesized tâ€ZrO 2 Nanoparticles. ChemistrySelect, 2022, 7, .	0.7	4
46	Construction of Z-scheme WO3-Cu2O nanorods array heterojunction for efficient photocatalytic degradation of methylene blue. Inorganic Chemistry Communication, 2022, 138, 109248.	1.8	11
47	Co-deposition of Ag and Co3O4 on black TiO2-x nanotubes with enhanced photocatalytic activity under visible light irradiation. Journal of Materials Science, 2022, 57, 2455-2466.	1.7	6
48	Effect of MXene Loaded on g-C3N4 Photocatalyst for the Photocatalytic Degradation of Methylene Blue. Energies, 2022, 15, 955.	1.6	29
49	Citrus sinensis and Musa acuminata Peel Waste Extract Mediated Synthesis of TiO2/rGO Nanocomposites for Photocatalytic Degradation of Methylene Blue under Visible Light Irradiation. Bioinorganic Chemistry and Applications, 2022, 2022, 1-20.	1.8	21
50	Graphene-based TiO2 composites for photocatalysis & Description and Progress. Environmental Science and Pollution Research, 2022, 29, 32305-32325.	2.7	45
51	Hydrothermal synthesis of titanium dioxide/graphene aerogel for photodegradation of methylene blue in aqueous solution. Journal of Science: Advanced Materials and Devices, 2022, 7, 100433.	1.5	8
52	Synthesis of Novel Cunb2o6/G-C3n4 Binary Photo-Catalyst Towards Efficient Visible Light Reduction of Cr (Vi) and Dyes Degradation for Environmental Remediation. SSRN Electronic Journal, 0, , .	0.4	0
53	Exceptional removal of methylene blue and p-aminophenol dye over novel TiO2/RGO nanocomposites by tandem adsorption-photocatalytic processes. Materials Science for Energy Technologies, 2022, 5, 217-231.	1.0	18
54	Rutile-TiO2: Post heat treatment and its influence on the photocatalytic degradation of MB dye. Ceramics International, 2022, 48, 16685-16694.	2.3	9

#	Article	IF	CITATIONS
55	Synthesis of chitosan/MnFe $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 4 $<$ /sub $>$ @ reduced graphene oxide aerogel with radial passageway and its application in removing methylene blue from water. Functional Materials Letters, 2022, 15, .	0.7	2
56	Synthesis of novel CuNb2O6/g-C3N4 binary photocatalyst towards efficient visible light reduction of Cr (VI) and dyes degradation for environmental remediation. Chemosphere, 2022, 298, 134153.	4.2	14
57	Green Biosynthesis of Tin Oxide Nanomaterials Mediated by Agro-Waste Cotton Boll Peel Extracts for the Remediation of Environmental Pollutant Dyes. ACS Omega, 2022, 7, 15423-15438.	1.6	14
58	Advances in BiOX-based ternary photocatalysts for water technology and energy storage applications: Research trends, challenges, solutions, and ways forward. Reviews in Environmental Science and Biotechnology, 2022, 21, 331-370.	3.9	39
59	Preparation and performance evaluation of chitosan/polyvinylpyrrolidone/polyvinyl alcohol electrospun nanofiber membrane for heavy metal ions and organic pollutants removal. International Journal of Biological Macromolecules, 2022, 210, 76-84.	3.6	42
60	Synthesis and characterization of a g-C ₃ N ₄ /TiO ₂ -ZnO nanostructure for photocatalytic degradation of methylene blue. Nano Futures, 2022, 6, 035001.	1.0	4
61	Photocatalytic Efficiency of Titanium Dioxide for Dyes and Heavy Metals Removal from Wastewater. Bulletin of Chemical Reaction Engineering and Catalysis, 2022, 17, 430-450.	0.5	19
62	Photoelectrochemical degradation of Methylene blue from solution using BiOBr/Bi2S3/TiO2/GO photoanode. Environmental Nanotechnology, Monitoring and Management, 2022, 18, 100713.	1.7	2
63	Facile synthesis of broom stick like FeOCl/g-C3N5 nanocomposite as novel Z-scheme photocatalysts for rapid degradation of pollutants. Chemosphere, 2022, 307, 135716.	4.2	18
64	Fabrication of high visible light active LaFeO3/Cl-g-C3N4/RGO heterojunction for solar assisted photo-degradation of aceclofenac. Journal of Environmental Chemical Engineering, 2022, 10, 108098.	3.3	23
65	Ultrasound-Assisted Hydrothermal Synthesis of SrSnO3/g-C3N4 Heterojunction with Enhanced Photocatalytic Performance for Ciprofloxacin under Visible Light. Crystals, 2022, 12, 1062.	1.0	3
66	Photocatalytic degradation of organic pollution by converter dust under visible light: optimization and mechanism. Journal of Material Cycles and Waste Management, 2022, 24, 1958-1970.	1.6	3
67	Enhancing both methylene blue photocatalytic degradation and ethanol sensing performances of ZnO/rGO nanocomposite through the variation of GO amount. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	11
68	TiO2/core-shell structured carbon support materials derived from hydrothermal carbonization of waste masks biomass: A green photocatalyst. Inorganic Chemistry Communication, 2022, 144, 109911.	1.8	7
70	Facile construction of Z-scheme AgBr/BiO(HCOO)0.7510.25 photocatalyst for visible-light-driven BPA degradation: Catalytic kinetics, selectivity and mechanism. Separation and Purification Technology, 2022, 302, 122087.	3.9	2
71	Fluoride Doped TiO2 Photocatalyst with Enhanced Activity for Stable Pollutants Degradation. SSRN Electronic Journal, 0, , .	0.4	1
72	Development of Highly-Efficient Od/1d/Od Dual Z-Scheme Cds/Znwo4/Zns Heterojunction Photocatalysts in Pollutant Removal and Involved Mechanism. SSRN Electronic Journal, 0, , .	0.4	0
73	Evaluation of structural, optical properties and photocatalytic activity of Ag2O coated ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 2022, 33, 23224-23235.	1.1	4

#	ARTICLE	IF	CITATIONS
74	Enhanced photocatalytic reactivity of nanojunction titania segregated by graphene oxide for decolorization of cationic pollutant and antibacterial applications. Biomass Conversion and Biorefinery, $0, , .$	2.9	2
75	GO-TiO2 as a Highly Performant Photocatalyst Maximized by Proper Parameters Selection. International Journal of Environmental Research and Public Health, 2022, 19, 11874.	1.2	5
76	Kinetic analysis of p-rGO/n-TiO2 nanocomposite generated by hydrothermal technique for simultaneous photocatalytic water splitting and degradation of methylene blue dye. Environmental Science and Pollution Research, 2023, 30, 18181-18198.	2.7	7
77	Enhanced photocatalytic performance of (N, F) co-doped TiO2 loaded on coal-based hierarchical porous carbon foam under simulated sunlight. Vacuum, 2023, 207, 111577.	1.6	8
78	An efficient time reductive photocatalytic degradation of carcinogenic dyes by TiO2-GO nanocomposite. Materials Research Bulletin, 2023, 158, 112043.	2.7	37
79	Fluoride-Doped TiO2 Photocatalyst with Enhanced Activity for Stable Pollutant Degradation. Catalysts, 2022, 12, 1190.	1.6	4
80	Construction of rutile/anatase TiO2 homojunction and metal-support interaction in Au/TiO2 for visible photocatalytic water splitting and degradation of methylene blue. International Journal of Hydrogen Energy, 2023, 48, 975-990.	3.8	13
81	Enhanced photocatalytic and settling performance of a mesoporous graphene/titanium oxide composite for wastewater treatment. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 3331-3342.	0.8	1
82	Chlorophyll sensitized and salicylic acid functionalized TiO2 nanoparticles as a stable and efficient catalyst for the photocatalytic degradation of ciprofloxacin with visible light. Environmental Research, 2023, 216, 114568.	3.7	12
83	Eco-Friendly Reduction of Graphene Oxide by Aqueous Extracts for Photocatalysis Applications. Nanomaterials, 2022, 12, 3882.	1.9	5
84	Development of highly-efficient OD/1D/OD dual Z-scheme CdS/ZnWO4/ZnS heterojunction photocatalysts in pollutant removal and involved mechanism. Applied Surface Science, 2023, 611, 155681.	3.1	46
85	Nanosecond pulsed plasma discharge for remediation of simulated wastewater containing thiazine and azo dyes as model pollutants. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2023, 41, .	0.9	5
86	Hydrothermal synthesis of MoS2-decorated silicon nanowires heterostructure with enhanced performance of photocatalytic activity under visible light. Inorganic Chemistry Communication, 2023, 147, 110270.	1.8	1
87	Facile synthesis route for visible active g-C3N5/MK30 nanocomposite and its computationally guided photocatalytic degradation of organic pollutants. Separation and Purification Technology, 2023, 307, 122865.	3.9	18
88	Emerging Technologies for Treatment of Wastewaters. , 2022, , 859-918.		0
89	Synthesis of TiO2Âgraphene oxide-based material for textile effluentÂdecontamination: characterization, kinetic, and mechanism studies. Environmental Science and Pollution Research, 2023, 30, 30358-30370.	2.7	2
90	Synthesis and enhanced visible-light photocatalytic activity of anatase TiO2/sludge-derived activated carbon composite for degradation of methylene blue. International Journal of Electrochemical Science, 2022, 17, 221242.	0.5	2
91	Multifunctional photocatalyst of graphitic carbon embedded with Fe ₂ O ₃ Fe _{>0₄ nanocrystals derived from lichen for efficient photodegradation of tetracycline and methyl blue. Environmental Technology (United) Tj ETQq1 1 0.78}	343 ¹ 4 rgB	T / O verlock 10

#	Article	IF	CITATIONS
92	Synthesis of visible-light driven CeO2/g-C3N5 heterojunction with enhanced photocatalytic performance for organic dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 660, 130846.	2.3	5
93	Preparation of novel (MgCoNiCuZn)O high-entropy ceramic membrane and its dye separation. Journal of the European Ceramic Society, 2023, 43, 3437-3446.	2.8	3
94	Green Synthesis and Characterizations of Cobalt Oxide Nanoparticles and Their Coherent Photocatalytic and Antibacterial Investigations. Water (Switzerland), 2023, 15, 910.	1.2	10
95	Structural design, biomimetic synthesis, and environmental sustainability of graphene-supported g-C ₃ N ₄ /TiO ₂ hetero-aerogels. Environmental Science: Nano, 2023, 10, 1257-1267.	2.2	4
102	Graphene–Based Photocatalysts. , 2023, , 1-49.		0
105	Graphene-Based Photocatalysts for the Elimination of Pollutants in Water. Springer Series in Materials Science, 2023, , 161-177.	0.4	0
111	Removal of orange G dye using prepared GO/ZnO nanocomposite as a photocatalyst under solar light irradiation. AIP Conference Proceedings, 2023, , .	0.3	0
120	Graphene and graphene oxide–based nanoadsorbents in wastewater treatment. , 2023, , 143-161.		0