Simultaneous nitrogen and phosphorus recovery from a electrochemical pH modulation

Separation and Purification Technology 250, 117166 DOI: 10.1016/j.seppur.2020.117166

Citation Report

#	Article	IF	CITATIONS
1	Overview of recent developments of resource recovery from wastewater via electrochemistry-based technologies. Science of the Total Environment, 2021, 757, 143901.	3.9	55
2	Enhanced removal of Mn2+ and NH4+-N in electrolytic manganese metal residue using washing and electrolytic oxidation. Separation and Purification Technology, 2021, 270, 118798.	3.9	16
3	Removal and recovery of nutrients and value-added products from wastewater: technological options and practical perspective. Systems Microbiology and Biomanufacturing, 2022, 2, 67-90.	1.5	2
4	Synchronous anodic oxidation-cathodic precipitation strategy for efficient phosphonate wastes mineralization and recovery of phosphorus in the form of hydroxyapatite. Separation and Purification Technology, 2021, 272, 118895.	3.9	15
5	Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives. Bioengineered, 2021, 12, 4697-4718.	1.4	43
6	Recent progress on the recovery of valuable resources from source-separated urine on-site using electrochemical technologies: A review. Chemical Engineering Journal, 2022, 442, 136200.	6.6	17
7	Multilayer Selfâ€Assemblies for Fabricating Grapheneâ€Supported Singleâ€Atomic Metal via Microwaveâ€Assisted Emulsion Micelle. Small, 2022, 18, e2201291.	5.2	5
8	Overview of Electrochemical Method in the Treatment of Municipal Sewage. International Journal of Electrochemical Science, 2022, 17, 220612.	0.5	4
9	Soft-sensing of effluent total phosphorus using adaptive recurrent fuzzy neural network with Gustafson-Kessel clustering. Expert Systems With Applications, 2022, 203, 117589.	4.4	16
10	Electrochemical Phosphorus Removal and Recovery from Cheese Wastewater: Function of Polarity Reversal. ACS ES&T Engineering, 2022, 2, 2187-2195.	3.7	9
11	Electrochemical phosphorus leaching from digested anaerobic sludge and subsequent nutrient recovery. Water Research, 2022, 223, 118996.	5.3	6
12	Valorization of wastewater to recover value-added products: A comprehensive insight and perspective on different technologies. Environmental Research, 2022, 214, 113957.	3.7	10
13	Concurrent Recovery of Ammonia and Phosphate from Aqueous Solution by Integrating Membrane Absorption and Hydroxyapatite Crystallization in an Electrochemical Nutrients Recovery System. SSRN Electronic Journal, 0, , .	0.4	0
14	Concurrent recovery of ammonia and phosphate by an electrochemical nutrients recovery system with authigenic acid and base. Chemical Engineering Journal, 2023, 454, 140169.	6.6	3
15	Perspective on the electrochemical recovery of phosphate from wastewater streams. Electrochemical Science Advances, 2024, 4, .	1.2	4
16	Basket anode filled with CaCO3 particles: A membrane-free electrochemical system for boosting phosphate recovery and product purity. Water Research, 2023, 231, 119604.	5.3	9
17	Coupled electrochemical methods for nitrogen and phosphorus recovery from wastewater: a review. Environmental Chemistry Letters, 2023, 21, 885-909.	8.3	29
18	Dynamic–staticâ€< model for monitoring wastewater treatment processes. Control Engineering Practice, 2023, 132, 105424.	3.2	3

CITATION REPORT

#	Article	IF	CITATIONS
19	Recovery of phosphorus from steelmaking slag and phosphate tailings by a collaborative processing method. Separation and Purification Technology, 2023, 313, 123499.	3.9	6
20	Electrochemical phosphorus release and recovery from wastewater sludge: A review. Critical Reviews in Environmental Science and Technology, 2023, 53, 1359-1377.	6.6	5
21	Technologies for Nutrient Recovery from Municipal Wastewater. Advances in Science, Technology and Innovation, 2023, , 155-166.	0.2	0
25	Insight into technologies for phosphorus recovery from municipal wastewater treatment plants. , 2023, , 107-126.		0
27	An Interval Type-2 Fuzzy Neural Network with Multi-Gradient Learning for Wastewater Treatment Process. , 2023, , .		0
28	Overview of a sustainable wastewater treatment technologies and recovery of resources to promote the circular economy of waste. AIP Conference Proceedings, 2023, , .	0.3	0
29	Introduction to electrochemical membrane technology. , 2024, , 1-47.		0
30	Electrochemical membrane bioreactors. , 2024, , 143-188.		0