Wideâ€Range Colorâ€Tunable Organic Phosphorescend Security Inks

Angewandte Chemie - International Edition 59, 16054-16060 DOI: 10.1002/anie.202003585

Citation Report

#	Article	IF	CITATIONS
1	Host–guest materials with room temperature phosphorescence: Tunable emission color and thermal printing patterns. SmartMat, 2020, 1, e1006.	6.4	112
2	Colorâ€Tunable, Excitationâ€Dependent, and Timeâ€Dependent Afterglows from Pure Organic Amorphous Polymers. Advanced Materials, 2020, 32, e2004768.	11.1	181
3	Tunable Phosphorescence/Fluorescence Dual Emissions of Organic Isoquinolineâ€Benzophenone Doped Systems by Alkoxy Engineering. Chemistry - A European Journal, 2020, 26, 17376-17380.	1.7	44
4	Room-Temperature Phosphorescence with Variable Lifetime of Halogen-Comprising Coordination Polymers. Inorganic Chemistry, 2020, 59, 17870-17874.	1.9	19
5	Achieving crystal-induced room temperature phosphorescence and reversible photochromic properties by strong intermolecular interactions. Journal of Materials Chemistry C, 2020, 8, 17410-17416.	2.7	25
6	Effective Internal and External Modulation of Nontraditional Intrinsic Luminescence. Small, 2020, 16, e2005035.	5.2	47
7	Roomâ€Temperature Phosphorescence Enabled through Nacreâ€Mimetic Nanocomposite Design. Advanced Materials, 2021, 33, e2005973.	11.1	87
8	Room-temperature white and color-tunable afterglow by manipulating multi-mode triplet emissions. Journal of Materials Chemistry C, 2021, 9, 3257-3263.	2.7	17
9	Luminescence anti ounterfeiting: From elementary to advanced. Aggregate, 2021, 2, 20-34.	5.2	224
10	A green-synthesized phosphorescent carbon dot composite for multilevel anti-counterfeiting. Nanoscale Advances, 2021, 3, 4536-4540.	2.2	18
11	Unexpected long room-temperature phosphorescence lifetimes of up to 1.0 s observed in iodinated molecular systems. Chemical Communications, 2021, 57, 8794-8797.	2.2	36
12	Boosting purely organic room-temperature phosphorescence performance through a host–guest strategy. Chemical Science, 2021, 12, 13580-13587.	3.7	27
13	Color-tunable ultralong room temperature phosphorescence from EDTA. Chemical Communications, 2021, 57, 3575-3578.	2.2	11
14	Structural Controls of Tetraphenylbenzene-based AlEgens for Non-doped Deep Blue Organic Light-emitting Diodes. Chemical Research in Chinese Universities, 2021, 37, 16-24.	1.3	10
15	Excitation-Dependent Triplet–Singlet Intensity from Organic Host–Guest Materials: Tunable Color, White-Light Emission, and Room-Temperature Phosphorescence. Journal of Physical Chemistry Letters, 2021, 12, 1814-1821.	2.1	81
16	Preparation and luminescence performance of thermochromic luminescent fiber based on reversible thermochromic red pigment. Journal of Materials Science: Materials in Electronics, 2021, 32, 9074-9086.	1.1	6
17	Ultralong organic room-temperature phosphorescence of electron-donating and commercially available host and guest molecules through efficient Förster resonance energy transfer. Science China Chemistry, 2021, 64, 739-744.	4.2	52
18	Supramolecular Pins with Ultralong Efficient Phosphorescence. Advanced Materials, 2021, 33, e2007476.	11.1	158

#	Article	IF	CITATIONS
19	Boosting Wideâ€Range Tunable Longâ€Afterglow in 1D Metal–Organic Halide Micro/Nanocrystals for Space/Timeâ€Resolved Information Photonics. Advanced Materials, 2021, 33, e2007571.	11.1	138
20	Timeâ€Dependent Phosphorescence Colors from Carbon Dots for Advanced Dynamic Information Encryption. Advanced Materials, 2021, 33, e2006781.	11.1	241
21	Recent Progress in Pure Organic Room Temperature Phosphorescence of Small Molecular Host–Guest Systems. , 2021, 3, 379-397.		155
22	Thermochromic luminescent fiber based on yellow thermochromic microcapsules: preparation, properties, and potential application areas. Cellulose, 2021, 28, 5005-5018.	2.4	12
23	Crystal-state quad-mode triplet emissions of D-A-A'-D type phosphors with AIEE and visible-light-excited persistent phosphorescence. Dyes and Pigments, 2021, 188, 109178.	2.0	1
24	Carbazole―and Fluoreneâ€Fused Azaâ€BODIPYs: NIR Fluorophores with High Brightness and Photostability. Chemistry - A European Journal, 2021, 27, 10685-10692.	1.7	19
25	Achieving Purely Organic Room-Temperature Phosphorescence Mediated by a Host–Guest Charge Transfer State. Journal of Physical Chemistry Letters, 2021, 12, 4600-4608.	2.1	47
26	Red-light excited efficient metal-free near-infrared room-temperature phosphorescent films. National Science Review, 2022, 9, nwab085.	4.6	63
27	Substituent Effects in Organic Luminogens with Room Temperature Phosphorescence. ChemPhotoChem, 2021, 5, 694-701.	1.5	19
28	Aggregation-induced emission and self-assembly of functional tetraphenylethene-based tetracationic dicyclophanes for selective detection of ATP in water. Chinese Chemical Letters, 2021, 32, 3531-3534.	4.8	28
29	Twoâ€Photon Ionization Induced Stable White Organic Long Persistent Luminescence. Angewandte Chemie - International Edition, 2021, 60, 16984-16988.	7.2	48
30	An Organic Host–Guest System Producing Roomâ€Temperature Phosphorescence at the Partsâ€Perâ€Billion Level. Angewandte Chemie, 2021, 133, 17107-17110.	1.6	22
31	An Organic Host–Guest System Producing Roomâ€Temperature Phosphorescence at the Partsâ€Perâ€Billion Level. Angewandte Chemie - International Edition, 2021, 60, 16970-16973.	7.2	122
32	Wide-range lifetime-tunable and responsive ultralong organic phosphorescent multi-host/guest system. Nature Communications, 2021, 12, 3522.	5.8	161
33	Nature-inspired robust hydrochromic film for dual anticounterfeiting. IScience, 2021, 24, 102652.	1.9	8
34	High Contrast and Bright Emission Piezochromic Fluorescence in Organic Crystals via Pressure Modulated Exciton Coupling Effect. Advanced Optical Materials, 2021, 9, 2100598.	3.6	19
35	Twoâ€Photon Ionization Induced Stable White Organic Long Persistent Luminescence. Angewandte Chemie, 2021, 133, 17121-17125.	1.6	30
36	Stimulus-Responsive Room Temperature Phosphorescence Materials: Internal Mechanism, Design Strategy, and Potential Application. Accounts of Materials Research, 2021, 2, 644-654.	5.9	131

_

#	Article	IF	CITATIONS
37	Influence of Guest/Host Morphology on Room Temperature Phosphorescence Properties of Pure Organic Doped Systems. Journal of Physical Chemistry Letters, 2021, 12, 7357-7364.	2.1	26
38	Controllable photoactivated organic persistent room-temperature phosphorescence for information encryption and visual temperature detection. Cell Reports Physical Science, 2021, 2, 100505.	2.8	16
39	Deepâ€Blue Ultralong Roomâ€Temperature Phosphorescence from Halogenâ€Free Organic Materials through Cage Effect for Various Applications. Advanced Optical Materials, 2021, 9, 2100959.	3.6	13
40	Reversible and color-variable afterglow luminescence of carbon dots triggered by water for multi-level encryption and decryption. Chemical Engineering Journal, 2021, 415, 128999.	6.6	48
41	Pyranone–Arylbenzene Molecules Controlled by the Competition of Local Excited State and Twisted Intramolecular Charge-Transfer State: Dual-State Emission, Polymorphism, and Mechanofluorochromism. Journal of Physical Chemistry C, 2021, 125, 16792-16802.	1.5	22
42	Rational design of pyrrole derivatives with aggregation-induced phosphorescence characteristics for time-resolved and two-photon luminescence imaging. Nature Communications, 2021, 12, 4883.	5.8	90
43	Organic Persistent Luminescent Materials: Ultralong Room-Temperature Phosphorescence and Multicolor-Tunable Afterglow. ACS Applied Materials & Interfaces, 2021, 13, 41131-41139.	4.0	35
44	Syntheses and Room Temperature Phosphorescence Properties of Dibenzobenzodithiophenes and Dibenzothiophenes. Bulletin of the Chemical Society of Japan, 2021, 94, 2498-2504.	2.0	5
45	Ultralong Polymeric Room Temperature Phosphorescence Materials Fabricated by Multiple Hydrogen Bondings Resistant to Temperature and Humidity. Advanced Optical Materials, 2021, 9, 2100782.	3.6	34
46	Polyacrylamideâ€Based Binary Luminescent Copolymer Materials Exhibit Colorâ€Tunable and Efficient Longâ€Lived Room Temperature Phosphorescence. Macromolecular Rapid Communications, 2021, 42, e2100544.	2.0	5
47	Longâ€Range Charge Transportation Induced Organic Host–Guest Dual Color Long Persistent Luminescence. Advanced Optical Materials, 2021, 9, 2101337.	3.6	17
48	Red-Emissive Organic Room-Temperature Phosphorescence Material for Time-Resolved Luminescence Bioimaging. CCS Chemistry, 2022, 4, 2550-2559.	4.6	39
49	Arsinoquinolines as a Novel Class of Luminophores. Asian Journal of Organic Chemistry, 2021, 10, 2618-2624.	1.3	6
50	Achieving Efficient Phosphorescence and Mechanoluminescence in Organic Host–Guest System by Energy Transfer. Advanced Functional Materials, 2021, 31, 2108072.	7.8	74
51	Color-Tunable Long-Lived Room-Temperature Phosphorescence in a Coordination Polymer Based on a Nonaromatic Ligand and Its Phosphor/Coordination Polymer-Doped Systems. Chemistry of Materials, 2021, 33, 7272-7282.	3.2	19
52	Application in Anticounterfeiting for Multistimuli Smart Luminescent Materials Based on MOF-on-MOF. Inorganic Chemistry, 2021, 60, 15001-15009.	1.9	28
53	The stacking induced organic room temperature phosphorescence: A compact weak interaction mechanism. Chemical Physics Letters, 2021, 780, 138904.	1.2	1
54	Achieving dual-responsive fluorescence switching towards mechanical force and volatile acid vapor based on D-A type diphenylamine functionalized quinoxaline derivatives. Dyes and Pigments, 2021, 196, 109763.	2.0	14

#	Article	IF	CITATIONS
55	Fluorene-based host-guest phosphorescence materials for information encryption. Chemical Engineering Journal, 2021, 426, 131607.	6.6	54
56	Recent progress in organic color-tunable phosphorescent materials. Journal of Materials Science and Technology, 2022, 101, 264-284.	5.6	38
57	Excitation-dependent organic phosphors exhibiting different luminescence colors for information anti-counterfeiting. Chemical Engineering Journal, 2022, 429, 132288.	6.6	37
58	Full-type photoluminescence from a single organic molecule for multi-signal temperature sensing. Materials Chemistry Frontiers, 2021, 5, 2261-2270.	3.2	22
59	Efficient and organic host–guest room-temperature phosphorescence: tunable triplet–singlet crossing and theoretical calculations for molecular packing. Chemical Science, 2021, 12, 6518-6525.	3.7	83
60	Pure room temperature phosphorescence emission of an organic host–guest doped system with a quantum efficiency of 64%. Journal of Materials Chemistry C, 2021, 9, 3391-3395.	2.7	52
61	Nonconventional luminophores: characteristics, advancements and perspectives. Chemical Society Reviews, 2021, 50, 12616-12655.	18.7	203
62	Circularly Polarized Organic Room Temperature Phosphorescence from Amorphous Copolymers. Journal of the American Chemical Society, 2021, 143, 18527-18535.	6.6	132
63	Waterâ€Induced Blueâ€Green Variable Nonconventional Ultralong Room Temperature Phosphorescence from Crossâ€Linked Copolymers via Click Chemistry. Advanced Optical Materials, 2021, 9, 2101284.	3.6	24
64	Tunable Linear and Nonlinear Optical Properties from Room Temperature Phosphorescent Cyclic Triimidazoleâ€Pyrene Bioâ€Probe. Chemistry - A European Journal, 2021, 27, 16690-16700.	1.7	13
65	Selective Ligand Sensitization of Lanthanide Nanoparticles for Multilevel Information Encryption with Excellent Durability. Analytical Chemistry, 2021, 93, 14317-14322.	3.2	6
66	Ultrahigh Supramolecular Cascaded Roomâ€Temperature Phosphorescence Capturing System. Angewandte Chemie, 2021, 133, 27377-27383.	1.6	13
67	Ultrahigh Supramolecular Cascaded Roomâ€Temperature Phosphorescence Capturing System. Angewandte Chemie - International Edition, 2021, 60, 27171-27177.	7.2	79
68	Recent Advances on Host–Guest Material Systems toward Organic Room Temperature Phosphorescence. Small, 2022, 18, e2104073.	5.2	170
69	Uncommon Supramolecular Phosphorescenceâ€Capturing Assembly Based on Cucurbit[8]urilâ€Mediated Molecular Folding for Nearâ€Infrared Lysosome Imaging. Small, 2022, 18, e2104514.	5.2	33
70	Colorâ€Tunable Dual Persistent Emission Via a Triplet Exciton Reservoir for Temperature Sensing and Anti ounterfeiting. Advanced Optical Materials, 2022, 10, 2101773.	3.6	34
71	Room-Temperature Phosphorescent Co-Crystal Showing Direct White Light and Photo-Electric Conversion. Frontiers in Chemistry, 2021, 9, 765374.	1.8	4
72	Highly Efficient Heavy Atom Free Room Temperature Phosphorescence by Host-Guest Doping. Frontiers in Chemistry, 2021, 9, 781294.	1.8	3

#	Article	IF	CITATIONS
73	Excited-State Modulation of Aggregation-Induced Emission Molecules for High-Efficiency Triplet Exciton Generation. , 2021, 3, 1767-1777.		26
74	A confined carbon dot-based self-calibrated fluorescence probe for visible and highly sensitive moisture readouts. Journal Physics D: Applied Physics, 2022, 55, 154001.	1.3	2
75	Tailored Fabrication of Carbon Dot Composites with Full olor Ultralong Roomâ€Temperature Phosphorescence for Multidimensional Encryption. Advanced Science, 2022, 9, e2103833.	5.6	100
76	Mono-, Di-, Tri-Pyrene Substituted Cyclic Triimidazole: A Family of Highly Emissive and RTP Chromophores. Photochem, 2021, 1, 477-487.	1.3	6
77	Gaining New Insights into Trace Guest Doping Role in Manipulating Organic Crystal Phosphorescence. Journal of Physical Chemistry Letters, 2021, 12, 11616-11621.	2.1	11
78	Two-Component Design Strategy: Achieving Intense Organic Afterglow and Diverse Functions in Coronene-Matrix Systems. Journal of Physical Chemistry C, 2021, 125, 26986-26998.	1.5	30
79	Protic acids as third components improve the phosphorescence properties of the guest-host system through hydrogen bonds. Chemical Engineering Journal, 2022, 433, 133530.	6.6	25
80	A Simple, Easy Preparation and Tunable Strategy for Preparing Organic Room-Temperature Phosphorescence. Langmuir, 2021, 37, 14229-14236.	1.6	12
81	Selenium atoms induce organic doped systems to produce pure phosphorescence emission. Chemical Communications, 2022, 58, 1179-1182.	2.2	17
82	Two-component design strategy: TADF-Type organic afterglow for time-gated chemodosimeters. Chemical Engineering Journal, 2022, 431, 134197.	6.6	25
83	Reversible, photoresponsive, dynamic wide-range emission color from polymer-matrixed naphthalene diimide single-luminogen. Chemical Engineering Journal, 2022, 432, 134411.	6.6	24
84	Vitrimer enhanced carbazole-based organic room-temperature phosphorescent materials. New Journal of Chemistry, 2021, 46, 276-281.	1.4	5
85	Organic Long-Persistent Luminescence from a Single-Component Aggregate. Journal of the American Chemical Society, 2022, 144, 3050-3062.	6.6	61
86	Rational Design of a Triplet Afterglow Sensitizer Allowing for Bright Long-Wavelength Afterglow Room-Temperature Emission. Chemistry of Materials, 2022, 34, 1627-1637.	3.2	16
87	Halogen Bonding: A New Platform for Achieving Multi‣timuliâ€Responsive Persistent Phosphorescence. Angewandte Chemie, 2022, 134, .	1.6	20
88	Unprecedented and Readily Tunable Photoluminescence from Aliphatic Quaternary Ammonium Salts**. Angewandte Chemie, 2022, 134, .	1.6	5
89	Boosting organic afterglow efficiency <i>via</i> triplet–triplet annihilation and thermally-activated delayed fluorescence. Journal of Materials Chemistry C, 2022, 10, 4795-4804.	2.7	7
90	Progress on Exploring the Luminescent Properties of Organic Molecular Aggregates by Multiscale Modeling. Frontiers in Chemistry, 2021, 9, 808957.	1.8	3

#	Article	IF	CITATIONS
91	Organic Supramolecular Zippers with Ultralong Organic Phosphorescence by a Dexter Energy Transfer Mechanism. Angewandte Chemie, 2022, 134, .	1.6	2
92	Guest-host doped strategy for constructing ultralong-lifetime near-infrared organic phosphorescence materials for bioimaging. Nature Communications, 2022, 13, 186.	5.8	175
93	Halogen Bonding: A New Platform for Achieving Multi‣timuliâ€Responsive Persistent Phosphorescence. Angewandte Chemie - International Edition, 2022, 61, .	7.2	111
94	Unprecedented and Readily Tunable Photoluminescence from Aliphatic Quaternary Ammonium Salts**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
95	Halide-containing organic persistent luminescent materials for environmental sensing applications. Chemical Science, 2022, 13, 2184-2201.	3.7	20
96	Organic Supramolecular Zippers with Ultralong Organic Phosphorescence by a Dexter Energy Transfer Mechanism. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
97	Room Temperature Phosphorescence Emission From Multi-States. Frontiers in Chemistry, 2021, 9, 810458.	1.8	6
98	Double Lock Label Based on Thermosensitive Polymer Hydrogels for Information Camouflage and Multilevel Encryption. Angewandte Chemie, 2022, 134, .	1.6	9
99	Double Lock Label Based on Thermosensitive Polymer Hydrogels for Information Camouflage and Multilevel Encryption. Angewandte Chemie - International Edition, 2022, 61, .	7.2	56
100	Molecular physics of persistent room temperature phosphorescence and long-lived triplet excitons. Applied Physics Reviews, 2022, 9, .	5.5	66
101	Manipulation of Triplet Excited States for Long‣ived and Efficient Organic Afterglow. Advanced Optical Materials, 2022, 10, .	3.6	34
102	Endowing matrix-free carbon dots with color-tunable ultralong phosphorescence by self-doping. Chemical Science, 2022, 13, 4406-4412.	3.7	51
103	Activating room-temperature phosphorescence of 1,8-naphthalimide by doping into aromatic dicarboxylic acids. Chemical Communications, 2022, 58, 3641-3644.	2.2	19
104	Cocrystallization tailoring radiative decay pathways for thermally activated delayed fluorescence and room-temperature phosphorescence emission. Nanoscale, 2022, 14, 6305-6311.	2.8	7
105	Wide-Range Time-Dependent Color-Tunable Light-Response Afterglow Materials <i>via</i> Absorption Compensation for Advanced Information Encryption. ACS Applied Materials & Interfaces, 2022, 14, 11681-11689.	4.0	13
106	Singleâ€Component Molecular Dual Persistent Room Temperature Phosphorescence from Low―and Highâ€Lying Triplet States. Advanced Optical Materials, 2022, 10, .	3.6	18
107	Strainâ€Responsive Persistent Roomâ€Temperature Phosphorescence from Halogenâ€Free Polymers for Early Damage Reporting through Phosphorescence Lifetime and Image Analysis. Advanced Optical Materials, 2022, 10, .	3.6	14
108	Irreversible Humidity-Responsive Phosphorescence Materials from Cellulose for Advanced Anti-Counterfeiting and Environmental Monitoring. ACS Applied Materials & Interfaces, 2022, 14, 16582-16591.	4.0	24

	CITATION R	EPORT	
#	Article	IF	CITATIONS
109	Achieving blue water-dispersed room-temperature phosphorescence of carbonized polymer dots through nano-compositing with mesoporous silica. Chinese Chemical Letters, 2022, 33, 4213-4218.	4.8	15
110	Exciplex-Forming Systems of Physically Mixed and Covalently Bonded Benzoyl-1 <i>H</i> -1,2,3-Triazole and Carbazole Moieties for Solution-Processed White OLEDs. Journal of Organic Chemistry, 2022, 87, 4040-4050.	1.7	13
111	Greatness in Simplicity: Efficient Red Room-Temperature Phosphorescence from Simple Halogenated Maleimides with a 2D Layered Structure. ACS Applied Materials & Interfaces, 2022, 14, 14703-14711.	4.0	15
112	Baseâ€īuning HOFâ€Based Host–Guest Ultralong Organic Phosphorescence Systems with Phosphorescent Thermochromism Using for Information Security and Thermometer. Advanced Optical Materials, 2022, 10, .	3.6	19
113	Surface ionization-induced tunable dynamic phosphorescence colors from carbon dots on paper for dynamic multimode encryption. Carbon, 2022, 195, 191-198.	5.4	46
114	Expounding the Relationship between Molecular Conformation and Room-Temperature Phosphorescence Property by Deviation Angle. Journal of Physical Chemistry Letters, 2022, 13, 3251-3260.	2.1	9
115	Temporal @ spatial anti-counterfeiting with Mn2+/Bi3+/Er3+ doped BaZnOS phosphors. Chemical Engineering Journal, 2022, 442, 136236.	6.6	20
116	A host-guest organic afterglow system with significant guest induced enhancement of phosphorescence. Dyes and Pigments, 2022, 201, 110196.	2.0	8
117	Tunable Secondâ€Level Roomâ€Temperature Phosphorescence of Solid Supramolecules between Acrylamide–Phenylpyridium Copolymers and Cucurbit[7]uril. Angewandte Chemie - International Edition, 2022, 61, .	7.2	57
118	Clusterization-Triggered Color-Tunable Room-Temperature Phosphorescence from 1,4-Dihydropyridine-Based Polymers. Journal of the American Chemical Society, 2022, 144, 1361-1369.	6.6	70
119	Tunable Secondâ€Level Roomâ€Temperature Phosphorescence of Solid Supramolecules between Acrylamide–Phenylpyridium Copolymers and Cucurbit[7]uril. Angewandte Chemie, 2022, 134, .	1.6	9
120	Highly Efficient TADFâ€Type Organic Afterglow of Long Emission Wavelengths. Advanced Functional Materials, 2022, 32, .	7.8	50
121	Intense Organic Afterglow Enabled by Molecular Engineering in Dopant-Matrix Systems. ACS Applied Materials & Interfaces, 2022, 14, 1587-1600.	4.0	26
122	Modulation of the intramolecular hydrogen bonding and push–pull electron effects toward realizing highly efficient organic room temperature phosphorescence. Journal of Materials Chemistry C, 2022, 10, 13797-13804.	2.7	19
123	Manipulation of Triplet Excited States in Two omponent Systems for Highâ€Performance Organic Afterglow Materials. Chemistry - A European Journal, 2022, 28, .	1.7	26
124	On-demand modulating afterglow color of water-soluble polymers through phosphorescence FRET for multicolor security printing. Science Advances, 2022, 8, eabk2925.	4.7	101
125	Cucurbit[<i>n</i>]uril-based host-guest interaction enhancing organic room-temperature phosphorescence of phthalic anhydride derivatives in aqueous solution. New Journal of Chemistry, 2022, 46, 11025-11029.	1.4	5
126	Amorphous pure organic phosphorescent host-guest complexes with ultralong phosphorescence lifetime and high-temperature tolerance. Dyes and Pigments, 2022, 204, 110368.	2.0	6

#	Article	IF	CITATIONS
127	Recent advances of room temperature phosphorescence and long persistent luminescence by doping system of purely organic molecules. Dyes and Pigments, 2022, 204, 110400.	2.0	12
128	Amphiphilic and Zwitterionic Multi Arylpyrroles with Nearâ€Infrared Aggregationâ€Induced Emission for Cell Membrane Imaging. ChemNanoMat, 2022, 8, .	1.5	1
129	Multimode stimuli responsive dual-state organic room temperature phosphorescence from a phenanthrene derivative. Chemical Engineering Journal, 2022, 444, 136629.	6.6	32
130	Excitation wavelength-dependent continuous color-tunable luminescence of fluorescent dyes encapsulated into lanthanide metal-organic framework for anti-counterfeiting. Dyes and Pigments, 2022, 204, 110438.	2.0	10
131	Recent progress of triplet state emission in organic-inorganic hybrid metal halides. Journal of Luminescence, 2022, 249, 119013.	1.5	11
132	Molecular Uniting Set Identified Characteristic (<scp>MUSIC</scp>) of Organic Optoelectronic Material. Chinese Journal of Chemistry, 2022, 40, 2356-2370.	2.6	42
133	Boosting Organic Afterglow Performance via a Two-Component Design Strategy Extracted from Macromolecular Self-Assembly. Journal of Physical Chemistry Letters, 2022, 13, 5030-5039.	2.1	8
134	Effect of Halogens in Bis(haloaryloxyl)pyrazine Host Crystals on the Room Temperature Phosphorescence Properties of Bisbenzofuropyrazine Guest Luminophores. Chemistry Letters, 2022, 51, 819-822.	0.7	2
135	Ester Matters? Promoting Photoisomerization of Donor-Acceptor Stenhouse Adducts in Solid and "Burn after Reading―Encryption. SSRN Electronic Journal, 0, , .	0.4	0
136	Enhancing room-temperature phosphorescence <i>via</i> intermolecular charge transfer in dopant-matrix systems. Chemical Communications, 2022, 58, 8137-8140.	2.2	9
137	A "Flexible―Purely Organic Molecule Exhibiting Strong Spin–Orbital Coupling: Toward Nondoped Room-Temperature Phosphorescence OLEDs. Journal of Physical Chemistry Letters, 2022, 13, 4971-4980.	2.1	14
138	Thermally Activated and Aggregationâ€Regulated Excitonic Coupling Enable Emissive High‣ying Triplet Excitons**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
139	Highly Efficient Artificial Light-Harvesting Systems Constructed in an Aqueous Solution Based on Twisted Cucurbit[14]Uril. ACS Applied Materials & Interfaces, 2022, 14, 29806-29812.	4.0	17
140	Thermally Activated and Aggregationâ€Regulated Excitonic Coupling Enable Emissive High‣ying Triplet Excitons**. Angewandte Chemie, 2022, 134, .	1.6	5
141	Dynamic room-temperature phosphorescence by reversible transformation of photo-induced free radicals. Science China Chemistry, 2022, 65, 1538-1543.	4.2	17
142	Multiple anti-counterfeiting strategy by integrating up-conversion, down-shifting luminescence, phosphorescence and photochromism into NaYTiO4: Bi/Er phosphors. Journal of Materials Science and Technology, 2022, 130, 219-226.	5.6	13
143	Achieving redox-responsive organic afterglow materials <i>via</i> a dopant–matrix design strategy. Journal of Materials Chemistry C, 2022, 10, 11634-11641.	2.7	8
144	Organic Hollow Microstructures with Room Temperature Phosphorescence. Advanced Optical Materials, 2022, 10, .	3.6	3

#	Article	IF	CITATIONS
145	Ester matters? Promoting photoisomerization of donor–acceptor Stenhouse adducts in the solid state and "burn after reading―encryption. Chemical Engineering Journal, 2022, 450, 138090.	6.6	10
146	Cascade Synthesis of Luminescent Difluoroboron Diketonate Compounds for <scp>Roomâ€Temperature</scp> Organic Afterglow Materials. Chinese Journal of Chemistry, 2022, 40, 2507-2515.	2.6	18
147	Enabling Dual Phosphorescence by Locating a Flexible Ligand in Zn-Based Hybrid Frameworks. Journal of Physical Chemistry Letters, 2022, 13, 6975-6980.	2.1	11
148	Molecular Thermal Motion Modulated Room-Temperature Phosphorescence for Multilevel Encryption. Research, 2022, 2022, .	2.8	8
149	An <i>in situ</i> DNA content detection enabled by organic long-persistent luminescence materials with tunable afterglow-time in water and air. Journal of Materials Chemistry C, 2022, 10, 12249-12256.	2.7	4
150	Highly efficient and persistent room temperature phosphorescence from cluster exciton enables ultrasensitive off-on VOC sensing. Matter, 2022, 5, 3499-3512.	5.0	62
151	Germanium silicon oxide achieves multi-coloured ultra-long phosphorescence and delayed fluorescence at high temperature. Nature Communications, 2022, 13, .	5.8	12
152	Singleâ€Fluorophoreâ€Based Organic Crystals with Distinct Conformers Enabling Wideâ€Range Excitationâ€Dependent Emissions. Angewandte Chemie, 0, , .	1.6	3
153	Singleâ€Fluorophoreâ€Based Organic Crystals with Distinct Conformers Enabling Wideâ€Range Excitationâ€Đependent Emissions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
154	Metal Ions as the Third Component Coordinate with the Guest to Stereoscopically Enhance the Phosphorescence Properties of Doped Materials. Journal of Physical Chemistry Letters, 2022, 13, 7607-7617.	2.1	13
155	Multimode Anticounterfeiting Labels Based on a Flexible and Water-Resistant NaGdF ₄ Yb ³⁺ ,Er ³⁺ @Carbon Dots Chiral Fluorescent Cellulose Film. ACS Applied Materials & Interfaces, 2022, 14, 40313-40321.	4.0	8
156	Purely Organic Blue Roomâ€Temperature Phosphorescence Activated by Acrylamide In Situ Photopolymerization. Advanced Optical Materials, 0, , 2201330.	3.6	6
157	Enhanced Red Persistent Room-Temperature Phosphorescence Induced by Orthogonal Structure Disruption during Electronic Relaxation. Journal of Physical Chemistry Letters, 2022, 13, 7788-7796.	2.1	10
158	Dual Guests Synergistically Tune the Phosphorescence Properties of Doped Systems through Chemical Interactions with Bases. , 2022, 4, 1764-1773.		19
159	Ultralong organic phosphorescence from isolated molecules with repulsive interactions for multifunctional applications. Nature Communications, 2022, 13, .	5.8	61
160	Host to regulate the T ₁ –S ₁ and T ₁ –S ₀ processes of guest excitons in doped systems to control the TADF and RTP emissions. Journal of Materials Chemistry C, 2022, 10, 11607-11613.	2.7	13
161	Electrospinning enables flexibility of organic long-persistent luminescence crystals. Dyes and Pigments, 2022, 207, 110734.	2.0	3
162	Guest-activated quaternary ammonium salt hosts emit room temperature phosphorescence. Chemical Communications, 2022, 58, 11143-11146.	2.2	7

#	ARTICLE	IF	CITATIONS
163	Merging photoinitiated bulk polymerization and the dopant-matrix design strategy for polymer-based organic afterglow materials. Polymer Chemistry, 2022, 13, 4641-4649.	1.9	5
164	Multichannel Control of PersL/Upconversion/Down-Shifting Luminescence in a Single Core–Shell Nanoparticle for Information Encryption. Journal of Physical Chemistry Letters, 2022, 13, 9007-9013.	2.1	14
165	Direct Observation of Increased Free Carrier Generation Owing to Reduced Exciton Binding Energies in Polymerized Small-Molecule Acceptors. Journal of Physical Chemistry Letters, 2022, 13, 8816-8824.	2.1	13
166	Synthesis and emission enhancement of intrinsic green-emitting materials for versatile applications. Ceramics International, 2023, 49, 2689-2697.	2.3	3
167	Kilogram‣cale Fabricated Organic Longâ€Persistent Luminescence Materials with Multi‣evel Temperature Response. Advanced Optical Materials, 2022, 10, .	3.6	6
168	Organic Afterglow Emulsions Exhibiting 2.4 s Phosphorescence Lifetimes and Specific Protein Binding Property. Advanced Optical Materials, 2022, 10, .	3.6	18
169	Achieving low driving voltage and high-efficiency afterglow organic light-emitting diodes through host–guest doping. Applied Physics Reviews, 2022, 9, .	5.5	11
170	High-contrast reversible multiple color-tunable solid luminescent ionic polymers for dynamic multilevel anti-counterfeiting. Materials Horizons, 2023, 10, 107-121.	6.4	5
171	Dynamic B/N Lewis Pairs: Insights into the Structural Variations and Photochromism via Lightâ€Induced Fluorescence to Phosphorescence Switching. Angewandte Chemie, 2022, 134, .	1.6	0
172	Achieving Colorâ€Tunable and Timeâ€Dependent Organic Long Persistent Luminescence via Phosphorescence Energy Transfer for Advanced Antiâ€Counterfeiting. Advanced Functional Materials, 2023, 33, .	7.8	58
173	Intrinsic persistent room temperature phosphorescence derived from 1H-benzo[f]indole itself as a guest. Chinese Chemical Letters, 2023, 34, 107882.	4.8	8
174	Pr ³⁺ –Gd ³⁺ co-doped Ba ₂ SiO ₄ for multilevel anti-counterfeiting encryption. Journal of Applied Physics, 2022, 132, 153104.	1.1	0
175	Dynamic B/N Lewis Pairs: Insights into the Structural Variations and Photochromism via Lightâ€Induced Fluorescence to Phosphorescence Switching. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
176	Long-Range Rigidity Induced Ultralong Cluster-Centered Phosphorescence. Chemistry of Materials, 2022, 34, 9182-9189.	3.2	7
177	Synthesis of 1â€Aminoisoquinolines and Their Application in a Hostâ€Guest Doped Strategy To Construct Ultralong Roomâ€Temperature Phosphorescence Materials for Bioimaging. Chemistry - A European Journal, 2023, 29, .	1.7	3
178	Controllable Modulation of Efficient Phosphorescence Through Dynamic Metalâ€Ligand Coordination for Reversible Antiâ€Counterfeiting Printing of Thermal Development. Advanced Functional Materials, 2023, 33, .	7.8	21
179	Anti-counterfeiting system based on luminescent varnish enriched by NIR- excited nanoparticles for paper security. Scientific Reports, 2022, 12, .	1.6	9
180	Recent Advances in Organic Room Temperature Phosphorescence of Triphenylamineâ€Based Doping Systems. ChemPhotoChem, 2023, 7, .	1.5	4

#	Article	IF	CITATIONS
181	Recent advances in room temperature phosphorescence materials: design strategies, internal mechanisms and intelligent optical applications. Physical Chemistry Chemical Physics, 2023, 25, 1457-1475.	1.3	9
182	Achieving long-lived room-temperature phosphorescence via charge transfer technology and dopant-matrix design strategy. Dyes and Pigments, 2023, 210, 110984.	2.0	4
183	Multicolor fluorescent/room temperature phosphorescent carbon dot composites for information encryption and anti-counterfeiting. Applied Surface Science, 2023, 613, 155945.	3.1	15
184	Polymer-Based TADF-Type Organic Afterglow. Journal of Physical Chemistry C, 2022, 126, 20728-20738.	1.5	5
185	Diboraanthraceneâ€Doped Polymer Systems for Colourâ€Tuneable Roomâ€Temperature Organic Afterglow. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
186	Colorâ€Tunable Dualâ€Mode Organic Afterglow from Classical Aggregationâ€Caused Quenching Compounds for White‣ightâ€Manipulated Antiâ€Counterfeiting. Angewandte Chemie, 2023, 135, .	1.6	3
187	Switchable and Highly Robust Ultralong Roomâ€Temperature Phosphorescence from Polymerâ€Based Transparent Films with Threeâ€Dimensional Covalent Networks for Erasable Light Printing. Angewandte Chemie, 2023, 135, .	1.6	4
188	The Effect of Molecular Conformations and Simulated "Selfâ€Doping―in Phenothiazine Derivatives on Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
189	Regulating Phosphorescence Lifetime of Organic Cocrystals by Alkyl Engineering. Crystal Growth and Design, 2023, 23, 31-36.	1.4	4
190	Timeâ€Dependent Polychrome Stereoscopic Luminescence Triggered by Resonance Energy Transfer between Carbon Dotsâ€inâ€Zeolite Composites and Fluorescence Quantum Dots. Advanced Materials, 2023, 35, .	11.1	18
191	Colorâ€Tunable Dualâ€Mode Organic Afterglow from Classical Aggregationâ€Caused Quenching Compounds for Whiteâ€Lightâ€Manipulated Antiâ€Counterfeiting. Angewandte Chemie - International Edition, 2023, 62, .	7.2	24
192	Crystallization-Enhanced Emission and Room-Temperature Phosphorescence of Cyclic Triimidazole-Monohexyl Thiophene Derivatives. Molecules, 2023, 28, 140.	1.7	1
193	Dual Promotion of Phosphorus Groups for Ultralong Room Temperature Phosphorescence with High Efficiency. Advanced Optical Materials, 2023, 11, .	3.6	8
194	A Twisted Phosphor: Breaking T ₁ Energy Conservation in Dopantâ€Matrix Organic Phosphorescence Systems. Advanced Optical Materials, 2023, 11, .	3.6	4
195	Host-guest doping induced excited state energy transfer for efficient room temperature phosphorescence emission. Journal of Industrial and Engineering Chemistry, 2023, 120, 140-146.	2.9	4
196	The Effect of Molecular Conformations and Simulated "Selfâ€Doping―in Phenothiazine Derivatives on Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2023, 135, .	1.6	5
197	Tunable Fullâ€Color Room Temperature Phosphorescence of Two Single omponent Zinc(II)â€Based Coordination Polymers. Advanced Optical Materials, 2023, 11, .	3.6	8
198	Diboraanthraceneâ€Doped Polymer Systems for Colourâ€Tuneable Roomâ€Temperature Organic Afterglow. Angewandte Chemie, 0, , .	1.6	1

#	Article	IF	CITATIONS
199	Switchable and Highly Robust Ultralong Roomâ€Temperature Phosphorescence from Polymerâ€Based Transparent Films with Threeâ€Dimensional Covalent Networks for Erasable Light Printing. Angewandte Chemie - International Edition, 2023, 62, .	7.2	29
200	Ultralong room temperature phosphorescence via the charge transfer-separation-recombination mechanism based on organic small molecule doping strategy. Chinese Chemical Letters, 2023, 34, 108062.	4.8	3
201	Recent advances in room-temperature phosphorescent materials by manipulating intermolecular interactions. Science China Chemistry, 2023, 66, 304-314.	4.2	42
202	Advanced charge transfer technology for highly efficient and long-lived TADF-type organic afterglow with near-infrared light-excitable property. Science China Chemistry, 2023, 66, 1120-1131.	4.2	18
203	Longâ€Lived Charge Separation Induced Organic Longâ€Persistent Luminescence with Circularly Polarized Characteristic. Advanced Optical Materials, 0, , 2202613.	3.6	6
204	Wideâ€range colorâ€tunable afterglow emission by the modulation of triplet exciton transition processes based on buckybowl structure. Aggregate, 2023, 4, .	5.2	7
205	Benzophenone-containing phosphors with an unprecedented long lifetime of 1.8 s under ambient conditions. Chemical Communications, 2023, 59, 1525-1528.	2.2	10
206	Cellulose-Based Ultralong Room-Temperature Phosphorescence Nanomaterials with Tunable Color and High Quantum Yield via Nano-Surface Confining Effect. Research, 2023, 6, .	2.8	6
207	Photoreaction Boosting Phosphorescence Cascade Energy Transfer Based on Cucurbit[8]Uril Biaxial Polypseudorotaxane. Advanced Optical Materials, 2023, 11, .	3.6	10
208	Deep-blue thermally activated delayed fluorescence carbon dots with ultralong lifetime. Nanoscale, 2023, 15, 3337-3344.	2.8	13
209	Manipulation of Organic Afterglow in Fluoranthene ontaining Dopantâ€Matrix Systems: From Conventional Roomâ€Temperature Phosphorescence to Efficient Red TADFâ€Type Organic Afterglow. Chemistry - A European Journal, 2023, 29, .	1.7	7
210	Manipulating D–A interaction to achieve stable photoinduced organic radicals in triphenylphosphine crystals. Chemical Science, 2023, 14, 1871-1877.	3.7	3
211	Luminescence lifetime tuning of non-conjugated organic clusters through external heavy-atom effect for smartphone-based time-resolved imaging. Chemical Engineering Journal, 2023, 460, 141452.	6.6	10
212	Tri-channel tubular lanthanide nanocomposites for multimodal anti-counterfeiting. Journal of Luminescence, 2023, 256, 119647.	1.5	6
213	Selective Triplet–Singlet Försterâ€Resonance Energy Transfer for Bright Red Afterglow Emission. Advanced Functional Materials, 2023, 33, .	7.8	13
214	Room temperature phosphorescence in longer-wavelength red light region found in benzothiadiazole-based dyes. Journal of Materials Chemistry C, 2023, 11, 3003-3009.	2.7	3
215	Macrocyclization-induced phosphorescence enhancement of pyridinium-based macrocycles. Journal of Materials Chemistry A, 2023, 11, 4957-4962.	5.2	4
216	Boosting the Phosphorescence Efficiency in Doped Organic Crystals: Critical Role of Hydrogen Bonding. Journal of Physical Chemistry Letters, 2023, 14, 2187-2192.	2.1	4

#	Article	IF	CITATIONS
217	Thermally Enhanced and Long Lifetime Red TADF Carbon Dots via Multi onfinement and Phosphorescence Assisted Energy Transfer. Advanced Materials, 2023, 35, .	11.1	41
218	Humidity-resistant organic room-temperature phosphorescence materials synthesized using catalyst-free click reaction. Chemical Engineering Journal, 2023, 462, 142198.	6.6	4
219	Organic <scp>Hostâ€Guest</scp> Materials with Bright Red <scp>Roomâ€Temperature</scp> Phosphorescence for Persistent Bioimaging ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1575-1582.	2.6	9
220	Five-in-one: Dual-mode ultralong persistent luminescence with multiple responses from amorphous polymer films. Chemical Engineering Journal, 2023, 463, 142506.	6.6	16
221	Dual fluorescence and RTP features of carbazole-cyclic triimidazole derivatives: The fluorophores' connectivity does matter. Dyes and Pigments, 2023, 215, 111274.	2.0	2
222	Stimulus-Responsive Organic Phosphorescence Materials Based on Small Molecular Host–Guest Doped Systems. Journal of Physical Chemistry Letters, 2023, 14, 1794-1807.	2.1	17
223	Respirationâ€Responsive Colorful Roomâ€Temperature Phosphorescent Materials and Assemblyâ€Induced Phosphorescence Enhancement Strategies. Small, 2023, 19, .	5.2	19
224	Merging thermally activated delayed fluorescence and two-photon ionization mechanisms for highly efficient and ultralong-lived organic afterglow. Chemical Engineering Journal, 2023, 460, 141916.	6.6	7
225	A silane-based host material with improved electron transport properties for phosphorescent OLEDs with high efficiency and low efficiency roll-off. Science China Materials, 2023, 66, 1997-2003.	3.5	3
226	Propeller Ultralong Room Temperature Phosphorescence: New Aspect of Triphenylphosphine Derivatives. Advanced Optical Materials, 2023, 11, .	3.6	5
227	Microfluidic-based modulation of triplet exciton decay in organic phosphorescent nanoparticles for size-assisted photodynamic antibacterial therapy. Journal of Materials Chemistry B, 2023, 11, 3106-3112.	2.9	0
228	Recent advances in room temperature phosphorescence of chiral organic materials. Chirality, 2023, 35, 390-410.	1.3	7
229	Observation of Chiral-selective room-temperature phosphorescence enhancement via chirality-dependent energy transfer. Nature Communications, 2023, 14, .	5.8	10
230	Phosphineâ€Manipulated <i>p</i> â€i€ and ï€ <i>â€</i> ï€ Synergy Enables Efficient Ultralong Organic Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2023, 135, .	1.6	1
231	Phosphineâ€Manipulated <i>p</i> â€i€ and Ï€ <i>â€</i> Ï€ Synergy Enables Efficient Ultralong Organic Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2023, 62, .	7.2	20
232	Necessary and Sufficient Condition for Organic Roomâ€Temperature Phosphorescence from Host–Guest Doped Crystalline Systems. Advanced Optical Materials, 2023, 11, .	3.6	5
233	Recent advances in long-persistent luminescence materials based on host–guest architecture. Chinese Chemical Letters, 2024, 35, 108385.	4.8	2
234	Solidâ€State Luminescence Stimulusâ€Responsive Property and Doped RTP Emission of Novel 7a,8,10,11â€Tetrahydroâ€9 <i>H</i> ―pyrido[2′,1′:2,3][1,3]oxazino[6,5,4― <i>ij</i>]isoquinoline Deriv Chemistry - an Asian Journal, 0, , .	at i∿e.	0

#	Article	IF	CITATIONS
235	Organic room-temperature phosphorescence materials for bioimaging. Chemical Communications, 2023, 59, 5329-5342.	2.2	17
236	Synthesis of Nanocelluloseâ€Based Nitrogenâ€Doped Carbon Quantum Dots with High Fluorescence Quantum Yields for Multifunctional Applications. Starch/Staerke, 0, , .	1.1	0
237	Visible security ink blended by Prussian blue analogues encapsulated gold (Au@PBA) nanoparticles for information hiding. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 669, 131454.	2.3	1
238	Unveiling Oneâ€toâ€One Correspondence Between Excited Triplet States and Determinate Interactions by Temperatureâ€Controllable Blueâ€Greenâ€Yellow Afterglow. Angewandte Chemie, 2023, 135, .	1.6	0
239	A light-fueled dissipative aggregation-induced emission system for time-dependent information encryption. Chemical Communications, 2023, 59, 5910-5913.	2.2	8
240	Unveiling Oneâ€toâ€One Correspondence Between Excited Triplet States and Determinate Interactions by Temperatureâ€Controllable Blueâ€Green‥ellow Afterglow. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
241	Stimuli Responsive Features of Organic RTP Materials: An Intriguing Carbazole yclic Triimidazole Derivative. Chemistry - A European Journal, 2023, 29, .	1.7	2
265	Visible-light-excitable aqueous afterglow exhibiting long emission wavelength and ultralong afterglow lifetime of 7.64 s. Chemical Communications, 2023, 59, 10500-10503.	2.2	6
266	Phosphorescence Enhancement of Pyridinium Macrocycles by Poly(vinylalcohol). Chemical Communications, 0, , .	2.2	0
269	Variable halide perovskites: diversification of anti-counterfeiting applications. Materials Chemistry Frontiers, 2023, 7, 6085-6106.	3.2	5
273	A narrow-band deep-blue MRTADF-type organic afterglow emitter. Chemical Communications, 2023, 59, 12302-12305.	2.2	1
274	Room-temperature phosphorescent materials derived from natural resources. Nature Reviews Chemistry, 2023, 7, 800-812.	13.8	10
297	Excitation wavelength-dependent multi-coloured and white-light emissive pyrene-based hydrazones: suppression of Kasha's rule. Chemical Communications, 2023, 59, 14122-14125.	2.2	0
314	Stimuli-fluorochromic smart organic materials. Chemical Society Reviews, 2024, 53, 1090-1166.	18.7	0