Thymic development of unconventional T cells: how NE emerge

Nature Reviews Immunology 20, 756-770

DOI: 10.1038/s41577-020-0345-y

Citation Report

#	Article	IF	CITATIONS
1	MAIT Cell Development and Functions: the Microbial Connection. Immunity, 2020, 53, 710-723.	14.3	86
2	Human Thymic CD10+ PD-1+ Intraepithelial Lymphocyte Precursors Acquire Interleukin-15 Responsiveness at the CD1a– CD95+ CD28– CCR7– Developmental Stage. International Journal of Molecular Sciences, 2020, 21, 8785.	4.1	7
3	MicroRNA miR-181â€"A Rheostat for TCR Signaling in Thymic Selection and Peripheral T-Cell Function. International Journal of Molecular Sciences, 2020, 21, 6200.	4.1	15
4	Gut Î ³ δT cells as guardians, disruptors, and instigators of cancer. Immunological Reviews, 2020, 298, 198-217.	6.0	28
5	γδT cells and inflammatory skin diseases. Immunological Reviews, 2020, 298, 61-73.	6.0	23
6	Thymic iNKT single cell analyses unmask the common developmental program of mouse innate T cells. Nature Communications, 2020, 11, 6238.	12.8	47
7	Innate and adaptive $\hat{I}^{3}\hat{I}'$ T cells: How, when, and why. Immunological Reviews, 2020, 298, 99-116.	6.0	46
8	Diversity in recognition and function of human $\hat{I}^3\hat{I}^*T$ cells. Immunological Reviews, 2020, 298, 134-152.	6.0	27
9	Immunological mechanisms and therapeutic targets of fatty liver diseases. Cellular and Molecular Immunology, 2021, 18, 73-91.	10.5	98
10	Isolation and Characterization Methods of Human Invariant NKT Cells. Methods in Molecular Biology, 2021, 2388, 79-85.	0.9	O
11	Translating Unconventional T Cells and Their Roles in Leukemia Antitumor Immunity. Journal of Immunology Research, 2021, 2021, 1-15.	2.2	7
12	Heme Oxygenase-1-Modified Bone Marrow Mesenchymal Stem Cells Perfusion Using a Normothermic Machine Perfusion System Reduces the Acute Rejection of Liver Transplantation by Regulating Natural Killer T Cell Co-Inhibitory Receptors. SSRN Electronic Journal, 0, , .	0.4	O
13	Understanding the Host Innate Immune Responses against SARS-CoV-2 Infection and COVID-19 Pathogenesis. Immune Network, 2021, 21, e1.	3.6	9
14	Myron Gordon Award paper: Microbes, Tâ€cell diversity and pigmentation. Pigment Cell and Melanoma Research, 2021, 34, 244-255.	3.3	4
15	An Unconventional View of T Cell Reconstitution After Allogeneic Hematopoietic Cell Transplantation. Frontiers in Oncology, 2020, 10, 608923.	2.8	10
16	Diverse Functions of $\hat{I}^3\hat{I}$ T Cells in the Progression of Hepatitis B Virus and Hepatitis C Virus Infection. Frontiers in Immunology, 2020, 11, 619872.	4.8	6
17	T Cell Development: Old Tales Retold By Single-Cell RNA Sequencing. Trends in Immunology, 2021, 42, 165-175.	6.8	24
19	Does exercise attenuate age- and disease-associated dysfunction in unconventional T cells? Shining a light on overlooked cells in exercise immunology. European Journal of Applied Physiology, 2021, 121, 1815-1834.	2.5	8

#	Article	IF	CITATIONS
20	MicroRNA-155 Regulates MAIT1 and MAIT17 Cell Differentiation. Frontiers in Cell and Developmental Biology, 2021, 9, 670531.	3.7	8
21	The role of unconventional T cells in COVID-19. Irish Journal of Medical Science, 2022, 191, 519-528.	1.5	8
22	Developing the right tools for the job: Lin28 regulation of early life Tâ€cell development and function. FEBS Journal, 2021, , .	4.7	5
23	CD36 family members are TCR-independent ligands for CD1 antigen–presenting molecules. Science Immunology, 2021, 6, .	11.9	7
24	Harnessing Mechanisms of Immune Tolerance to Improve Outcomes in Solid Organ Transplantation: A Review. Frontiers in Immunology, 2021, 12, 688460.	4.8	11
25	ZBTB Transcription Factors: Key Regulators of the Development, Differentiation and Effector Function of T Cells. Frontiers in Immunology, 2021, 12, 713294.	4.8	48
26	Myeloid-Derived Suppressor Cells: Implications in the Resistance of Malignant Tumors to T Cell-Based Immunotherapy. Frontiers in Cell and Developmental Biology, 2021, 9, 707198.	3.7	17
27	Regulation and Functions of Protumoral Unconventional T Cells in Solid Tumors. Cancers, 2021, 13, 3578.	3.7	4
28	Lymphocytes in Dry Eye Disease. , 0, , .		0
29	Unconventional T cells and kidney disease. Nature Reviews Nephrology, 2021, 17, 795-813.	9.6	24
30	Hepatitis E Virus Infectionâ€"Immune Responses to an Underestimated Global Threat. Cells, 2021, 10, 2281.	4.1	12
31	SRSF1 plays a critical role in invariant natural killer T cell development and function. Cellular and Molecular Immunology, 2021, 18, 2502-2515.	10.5	12
32	Distal <i>Lck</i> Promoter–Driven Cre Shows Cell Type–Specific Function in Innate-like T Cells. ImmunoHorizons, 2021, 5, 772-781.	1.8	1
33	Î ³ δT Cells for Leukemia Immunotherapy: New and Expanding Trends. Frontiers in Immunology, 2021, 12, 729085.	4.8	18
34	Trust your gut: an early life lesson for T cells. Trends in Immunology, 2021, 42, 844-845.	6.8	1
35	Baby's skin bacteria: first impressions are long-lasting. Trends in Immunology, 2021, 42, 1088-1099.	6.8	15
36	Immune cell-mediated features of non-alcoholic steatohepatitis. Nature Reviews Immunology, 2022, 22, 429-443.	22.7	174
37	HO-1/BMMSC perfusion using a normothermic machine perfusion system reduces the acute rejection of DCD liver transplantation by regulating NKT cell co-inhibitory receptors in rats. Stem Cell Research and Therapy, 2021, 12, 587.	5.5	19

#	Article	IF	Citations
38	Imprint of unconventional Tâ€cell response in acute hepatitis C persists despite successful early antiviral treatment. European Journal of Immunology, 2022, 52, 472-483.	2.9	8
39	Swine unconventional T cells. Developmental and Comparative Immunology, 2022, 128, 104330.	2.3	3
40	Cholangiocarcinoma: what are the most valuable therapeutic targets – cancer-associated fibroblasts, immune cells, or beyond T cells?. Expert Opinion on Therapeutic Targets, 2021, 25, 835-845.	3.4	8
41	Mettl 14 -Dependent M <code>⁶A</code> Modification Controls iNKT Cell Development and Function. SSRN Electronic Journal, 0, , .	0.4	0
43	Hobit and Blimpâ€1 instruct the differentiation of iNKT cells into residentâ€phenotype lymphocytes after lineage commitment. European Journal of Immunology, 2022, 52, 389-403.	2.9	4
44	Immune cells in alcohol-related liver disease. Liver Research, 2022, 6, 1-9.	1.4	6
45	A Single Cell Analysis of Thymopoiesis and Thymic iNKT Cell Development in Pigs. SSRN Electronic Journal, 0, , .	0.4	0
46	The iNKT Cell–Macrophage Axis in Homeostasis and Disease. International Journal of Molecular Sciences, 2022, 23, 1640.	4.1	11
47	T Cell Responses to the Microbiota. Annual Review of Immunology, 2022, 40, 559-587.	21.8	42
48	Loss-of-function Mutations K11E or E271K Lead to Novel Tumor Suppression, Implicate Nucleolar Helicase DDX24 Oncogenicity. International Journal of Medical Sciences, 2022, 19, 596-608.	2.5	1
49	Emerging role of bystander T cell activation in autoimmune diseases. BMB Reports, 2022, 55, 57-64.	2.4	21
51	Upregulated of ANXA3, SORL1, and Neutrophils May Be Key Factors in the Progressionof Ankylosing Spondylitis. Frontiers in Immunology, 2022, 13, 861459.	4.8	20
52	Anti-prion activity of cellulose ether is impaired in mice lacking pre T-cell antigen receptor \hat{l}_{\pm} , T-cell receptor \hat{l}'_{γ} , or lytic granule function. International Immunopharmacology, 2022, 107, 108672.	3.8	3
53	Does CD1a Expression Influence T Cell Function in Patients With Langerhans Cell Histiocytosis?. Frontiers in Immunology, 2021, 12, 773598.	4.8	1
55	NK Cells and Innate-Like T Cells After Autologous Hematopoietic Stem Cell Transplantation in Multiple Sclerosis. Frontiers in Immunology, 2021, 12, 794077.	4.8	7
56	From inflammatory bowel disease to colorectal cancer: what's the role of miRNAs?. Cancer Cell International, 2022, 22, 146.	4.1	8
57	The duplexity of unconventional T cells in cancer. International Journal of Biochemistry and Cell Biology, 2022, 146, 106213.	2.8	6
58	Emerging role of bystander T cell activation in autoimmune diseases BMB Reports, 2022, , .	2.4	0

#	Article	IF	CITATIONS
60	Early life host-microbe interactions in skin. Cell Host and Microbe, 2022, 30, 684-695.	11.0	14
62	$\hat{I}^{\hat{I}}$ T Cells in Brain Homeostasis and Diseases. Frontiers in Immunology, 2022, 13 , .	4.8	8
63	Deconstructing iNKT cell development at single-cell resolution. Trends in Immunology, 2022, 43, 503-512.	6.8	13
64	Fecal Microbiota Transplantation Reshapes the Physiological Function of the Intestine in Antibiotic-Treated Specific Pathogen-Free Birds. Frontiers in Immunology, 0, 13, .	4.8	3
66	Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease – novel insights into cellular communication circuits. Journal of Hepatology, 2022, 77, 1136-1160.	3.7	136
67	Molecular Mechanisms of Epigenetic Regulation, Inflammation, and Cell Death in ADPKD. Frontiers in Molecular Biosciences, 0, 9, .	3.5	8
68	Early pregnancy human decidua gamma/delta T cells exhibit tissue resident and specific functional characteristics. Molecular Human Reproduction, 2022, 28, .	2.8	3
69	Innate and Adaptive Lymphocytes in Non-Tuberculous Mycobacteria Lung Disease: A Review. Frontiers in Immunology, $0,13,.$	4.8	5
70	Innate and Innate-like Effector Lymphocytes in Health and Disease. Journal of Immunology, 2022, 209, 199-207.	0.8	14
71	Life In-Between: Bridging Innate and Adaptive Immunity. Journal of Immunology, 2022, 209, 193-195.	0.8	1
72	$\hat{I}^3\hat{I}^*$ T Cells in the Tumor Microenvironment—Interactions With Other Immune Cells. Frontiers in Immunology, 0, 13, .	4.8	30
73	Distinct activities of Vδ1 ⁺ Tâ€cells upon different cytomegalovirus reactivation status after haematopoietic transplantation. Immunology, 2022, 167, 368-383.	4.4	5
74	Cell-Specific Immune Regulation by Glucocorticoids in Murine Models of Infection and Inflammation. Cells, 2022, 11, 2126.	4.1	3
75	T-Cell Progenitors As A New Immunotherapy to Bypass Hurdles of Allogeneic Hematopoietic Stem Cell Transplantation. Frontiers in Immunology, 0, 13 , .	4.8	0
76	A single-cell analysis of thymopoiesis and thymic iNKT cell development in pigs. Cell Reports, 2022, 40, 111050.	6.4	10
77	Gut Microbiota-Derived Unconventional T Cell Ligands: Contribution to Host Immune Modulation. ImmunoHorizons, 2022, 6, 476-487.	1.8	4
78	Transcriptional dynamics and epigenetic regulation of E and ID protein encoding genes during human T cell development. Frontiers in Immunology, 0, 13 , .	4.8	4
79	γδT cell exhaustion: Opportunities for intervention. Journal of Leukocyte Biology, 2022, 112, 1669-1676.	3.3	11

#	Article	IF	CITATIONS
80	Where do T cell subsets stand in SARS-CoV-2 infection: an update. Frontiers in Cellular and Infection Microbiology, 0, 12 , .	3.9	5
81	Lymphatic migration of unconventional TÂcells promotes site-specific immunity in distinct lymph nodes. Immunity, 2022, 55, 1813-1828.e9.	14.3	23
82	Current insights in mouse iNKT and MAIT cell development using single cell transcriptomics data. Seminars in Immunology, 2022, 60, 101658.	5.6	7
83	Immune status for monitoring and treatment of bladder cancer. Frontiers in Immunology, 0, 13, .	4.8	6
84	Cbf- \hat{l}^2 is required for the development, differentiation, and function of murine mucosal-associated invariant T cells. , 2022, 19, 1314-1316.		1
85	CD8+ and CD8- NKT Cells Exhibit Phenotypic Changes During Pregnancy. Immunological Investigations, 2023, 52, 35-51.	2.0	4
86	Identification of distinct functional thymic programming of fetal and pediatric human $\hat{l}^3\hat{l}$ thymocytes via single-cell analysis. Nature Communications, 2022, 13, .	12.8	18
87	PTENï»; directs developmental and metabolic signaling for innate-like T cell fate and tissue homeostasis. Nature Cell Biology, 2022, 24, 1642-1654.	10.3	3
88	PTEN checkMAITs type-17 innate-like T cells. Nature Cell Biology, 0, , .	10.3	0
89	A highâ€dimensional cytometry atlas of peripheral blood over the human life span. Immunology and Cell Biology, 2022, 100, 805-821.	2.3	16
90	Regulation of Progression and Resolution of Liver Fibrosis by Immune Cells. Seminars in Liver Disease, 2022, 42, 475-488.	3.6	6
92	Aging, inflammaging and immunosenescence as risk factors of severe COVID-19. Immunity and Ageing, 2022, 19, .	4.2	28
94	Pre-T cell receptor self-MHC sampling restricts thymocyte dedifferentiation. Nature, 2023, 613, 565-574.	27.8	10
95	Unique roles of co-receptor-bound LCK in helper and cytotoxic T cells. Nature Immunology, 2023, 24, 174-185.	14.5	11
96	CD1 and MR1: An update after a long-awaited reunion. Immunity, 2022, 55, 2211-2216.	14.3	1
97	Mucosal-associated invariant Tâcells for cancer immunotherapy. Molecular Therapy, 2023, 31, 631-646.	8.2	21
98	Current Developments in the Preclinical and Clinical use of Natural Killer T cells. BioDrugs, 2023, 37, 57-71.	4.6	4
99	CD8+ T cell–Dependent Remodeling of the Tumor Microenvironment Overcomes Chemoresistance. Cancer Immunology Research, 2023, 11, 320-338.	3.4	3

#	Article	IF	CITATIONS
100	CD8 and CD4 Positive NKT Subpopulations and Immune-Checkpoint Pathways in Early-Onset Preeclampsia and Healthy Pregnancy. International Journal of Molecular Sciences, 2023, 24, 1390.	4.1	0
101	Single-cell sequencing of PIT1-positive pituitary adenoma highlights the pro-tumour microenvironment mediated by IFN-γ-induced tumour-associated fibroblasts remodelling. British Journal of Cancer, 2023, 128, 1117-1133.	6.4	7
103	Identification of a unique subset of tissue-resident memory CD4 ⁺ T cells in Crohn's disease. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	8
104	The Role of Gamma Delta T Cells in Cancer. , 2023, , 1-27.		0
105	Decoding the role of immune T cells: A new territory for improvement of metabolicâ€associated fatty liver disease. , 0, , .		1
106	Identification of a novel role for the immunomodulator ILRUN in the development of several T cell subsets in mice. Immunobiology, 2023, 228, 152380.	1.9	0
107	Speed and navigation control of thymocyte development by the fetal Tâ€cell gene regulatory network. Immunological Reviews, 2023, 315, 171-196.	6.0	4
108	RIPK3 controls MAIT cell accumulation during development but not during infection. Cell Death and Disease, 2023, 14, .	6.3	3
109	Increased <scp>IFN</scp> â€Î³ ⁺ and <scp>TNF</scp> â€Î± ⁺ mucosalâ€associated invaria T cells in patients with aplastic anemia. Cytometry Part B - Clinical Cytometry, 2023, 104, 253-262.	ant 1.5	2
110	NKG2A Immune Checkpoint in \hat{V} 2 T Cells: Emerging Application in Cancer Immunotherapy. Cancers, 2023, 15, 1264.	3.7	3
111	NFATc1 induction by an intronic enhancer restricts NKT γδ cell formation. IScience, 2023, 26, 106234.	4.1	0
112	Mapping Resident Immune Cells in the Murine Ocular Surface and Lacrimal Gland by Flow Cytometry. Ocular Immunology and Inflammation, 2023, 31, 748-759.	1.8	2
113	Dysregulated Immune Response and Organ Dysfunction: Liver. Lessons From the ICU, 2023, , 213-231.	0.1	0
114	UcTCRdb: An unconventional T cell receptor sequence database with online analysis functions. Frontiers in Immunology, 0, 14 , .	4.8	1
115	酒精相关性è,ç— Chinese Science Bulletin, 2023, , .	0.7	0
116	A monoclonal Trd chain supports the development of the complete set of functional γδTÂcell lineages. Cell Reports, 2023, 42, 112253.	6.4	2
117	Studying T Cell Responses to Hepatotropic Viruses in the Liver Microenvironment. Vaccines, 2023, 11, 681.	4.4	1
118	Lymphoid cell development from fetal hematopoietic progenitors and human pluripotent stem cells. Immunological Reviews, 2023, 315, 154-170.	6.0	2

#	Article	IF	CITATIONS
119	Single-cell profiling identifies a novel human polyclonal unconventional T cell lineage. Journal of Experimental Medicine, 2023, 220, .	8.5	3
120	TAK1 is essential for MAIT cell development and the differentiation of MAIT1 and MAIT17., 0,,.		O
121	Changes of peripheral T cell subsets in melanoma patients with immune-related adverse events. Frontiers in Immunology, 0, 14, .	4.8	0
122	An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. Journal of Hepatology, 2023, 79, 552-566.	3.7	47
123	Antigen-specificity measurements are the key to understanding T cell responses. Frontiers in Immunology, 0, 14 , .	4.8	2
124	$\hat{V}^39\hat{V}^2$ T-cell immunotherapy in blood cancers: ready for prime time?. Frontiers in Immunology, 0, 14, .	4.8	1
125	Innate lymphoid cells and innate-like T cells in cancer $\hat{A}\hat{a}\in$ " at the crossroads of innate and adaptive immunity. Nature Reviews Cancer, 2023, 23, 351-371.	28.4	15
126	Expansion of MAIT cells in the combined absence of NKT and $\hat{I}^3\hat{I}$ -T cells. Mucosal Immunology, 2023, 16, 446-461.	6.0	4
127	Die KÃmpfe únd schláchten—the struggles and battles of innate-like effector T lymphocytes with microbes. Frontiers in Immunology, 0, 14, .	4.8	3
128	Delayed-onset adenosine deaminase deficiency with a novel synonymous mutation and a case series from China. World Journal of Pediatrics, 2023, 19, 687-700.	1.8	2
129	TGF- \hat{l}^2 controls development of TCR $\hat{l}^3\hat{l}'+CD8\hat{l}\pm\hat{l}\pm+$ intestinal intraepithelial lymphocytes. Cell Discovery, 2023, 9, .	6.7	2
130	MAITs and their mates: "Innate-like―behaviors in conventional and unconventional T cells. Clinical and Experimental Immunology, 0, , .	2.6	1
131	MR1 deficiency enhances IL-17-mediated allergic contact dermatitis. Frontiers in Immunology, 0, 14, .	4.8	0
132	Tnpo3 controls splicing of the pre-mRNA encoding the canonical TCR \hat{l}_{\pm} chain of iNKT cells. Nature Communications, 2023, 14, .	12.8	O
133	METTL3-mediated m6A methylation orchestrates mRNA stability and dsRNA contents to equilibrate $\hat{I}^3\hat{I}^*$ T1 and $\hat{I}^3\hat{I}^*$ T17 cells. Cell Reports, 2023, 42, 112684.	6.4	4
134	Steady-state memory-phenotype conventional CD4+ T cells exacerbate autoimmune neuroinflammation in a bystander manner via the Bhlhe40/GM-CSF axis. Experimental and Molecular Medicine, 2023, 55, 1033-1045.	7.7	2
135	Invariant natural killer T cells and iron metabolism orchestrate skin development and homeostasis. , 0 , , .		0
136	Hepatic inflammatory responses in liver fibrosis. Nature Reviews Gastroenterology and Hepatology, 2023, 20, 633-646.	17.8	36

#	Article	IF	CITATIONS
138	The role of CD8+ T cells in endometriosis: a systematic review. Frontiers in Immunology, 0, 14, .	4.8	1
139	A three-stage developmental pathway for human $\hat{V^3}9\hat{V^2}$ T cells within the postnatal thymus. Science Immunology, 2023, 8, .	11.9	5
140	The emerging paradigm of Unconventional T cells as a novel therapeutic target for celiac disease. International Immunopharmacology, 2023, 122, 110666.	3.8	0
141	Natural killer cells and innate lymphoid cells but not NKT cells are mature in their cytokine production at birth. Clinical and Experimental Immunology, 2024, 215, 1-14.	2.6	1
142	Potential of MAIT cells to modulate asthma. Allergology International, 2023, , .	3.3	0
143	Aging unconventionally: γδT cells, iNKT cells, and MAIT cells in aging. Seminars in Immunology, 2023, 69, 101816.	5.6	6
144	Autoimmune uveitis in Behçet's disease and Vogtâ€Koyanagiâ€Harada disease differ in tissue immune infiltration and T cell clonality. Clinical and Translational Immunology, 2023, 12, .	3.8	1
145	CD1b glycoprotein, a crucial marker of thymocyte development during T cell maturation in cynomolgus monkeys. Scientific Reports, 2023, 13, .	3.3	0
147	Gamma Delta T Cells: Role in Immunotherapy of Hepatocellular Carcinoma. Critical Reviews in Oncogenesis, 2023, , .	0.4	1
148	The $\hat{I}^3\hat{I}'T$ cells dual function and crosstalk with intestinal flora in treating colorectal cancer is a promising area of study. International Immunopharmacology, 2023, 123, 110733.	3.8	1
149	Anti-CD1d treatment suppresses immunogenic maturation of lung dendritic cells dependent on lung invariant natural killer T cells in asthmatic mice. International Immunopharmacology, 2023, 124, 110921.	3.8	1
150	Unconventional T cells in brain homeostasis, injury and neurodegeneration. Frontiers in Immunology, 0, 14, .	4.8	8
151	Single cell transcriptomics reveal the heterogeneities of TCR $\hat{Vl}\pm7.2+CD161+$ and TCR $\hat{Vl}\pm7.2+CD161\hat{a}$ T cells in human peripheral blood., 2023, 2, .		0
152	Regulation of ferroptosisâ€related genes in <scp>CD8</scp> + <scp>NKT</scp> cells and classical monocytes may affect the immunotherapy response after combined treatment in triple negative breast cancer. Thoracic Cancer, 2023, 14, 3369-3380.	1.9	0
153	Dysfunctional States of Unconventional T cell Subsets in Cancer. Journal of Leukocyte Biology, 0, , .	3.3	0
154	$\hat{I}^3\hat{I}^*$ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	7
155	Natural Killer T Cell Diversity and Immunotherapy. Cancers, 2023, 15, 5737.	3.7	0
156	Liver fibrosis in NAFLD/NASH: from pathophysiology towards diagnostic and therapeutic strategies. Molecular Aspects of Medicine, 2024, 95, 101231.	6.4	2

#	ARTICLE	IF	CITATIONS
158	Transcriptomes and metabolism define mouse and human MAIT cell populations. Science Immunology, 2023, 8 , .	11.9	2
159	Interleukin 35: New Target for Immunotherapy Targeting the Tumor Microenvironment. Molecular Cancer Therapeutics, 0, , .	4.1	O
160	STING Agonist‣oaded Nanoparticles Promotes Positive Regulation of Type I Interferonâ€Dependent Radioimmunotherapy in Rectal Cancer. Advanced Science, 2024, 11, .	11.2	0
161	Natural Killer T (NKT) Cells in Autoimmune Hepatitis: Current Evidence from Basic and Clinical Research Cells, 2023, 12, 2854.	4.1	0
162	Current annotation strategies for T cell phenotyping of single-cell RNA-seq data. Frontiers in Immunology, 0, 14 , .	4.8	1
163	Overcoming cancer risk in inflammatory bowel disease: new insights into preventive strategies and pathogenesis mechanisms including interactions of immune cells, cancer signaling pathways, and gut microbiota. Frontiers in Immunology, 0, 14 , .	4.8	0
164	Fc-fused IL-7 provides broad antiviral effects against respiratory virus infections through IL-17A-producing pulmonary innate-like TÂcells. Cell Reports Medicine, 2024, 5, 101362.	6.5	1
165	Role of innate T cells in necrotizing enterocolitis. Frontiers in Immunology, 0, 15, .	4.8	O
166	Advances in understanding immune homeostasis in latent tuberculosis infection. WIREs Mechanisms of Disease, 0 , , .	3.3	0
167	Mechanism study of ubiquitination in T cell development and autoimmune disease. Frontiers in Immunology, 0, 15 , .	4.8	0
168	CTLs heterogeneity and plasticity: implications for cancer immunotherapy. Molecular Cancer, 2024, 23,	19.2	0