Flexoelectronics of centrosymmetric semiconductors

Nature Nanotechnology 15, 661-667

DOI: 10.1038/s41565-020-0700-y

Citation Report

#	Article	IF	Citations
1	Enhanced Spin–Orbit Coupled Photoluminescence of Perovskite CsPbBr ₃ Quantum Dots by Piezo-Phototronic Effect. Nano Letters, 2020, 20, 8298-8304.	9.1	19
2	Flexoelectricity in thin films and membranes of complex oxides. APL Materials, 2020, 8, .	5.1	14
3	The impact of flexoelectricity on materials, devices, and physics. Journal of Applied Physics, 2020, 128, .	2.5	50
4	Nanogenerators facilitated piezoelectric and flexoelectric characterizations for bioinspired energy harvesting materials. Nano Energy, 2021, 81, 105607.	16.0	18
5	Inverse Flexoelectret Effect: Bending Dielectrics by a Uniform Electric Field. Physical Review Applied, 2021, 15, .	3.8	13
6	Improved anisotropy and piezoelectricity by applying in-plane deformation in monolayer WS ₂ . Journal of Materials Chemistry C, 2021, 9, 1396-1400.	5. 5	8
7	Torsion of a flexoelectric semiconductor rod with a rectangular cross section. Archive of Applied Mechanics, 2021, 91, 2027-2038.	2.2	28
8	High-Performance Phototransistors Based on MnPSe ₃ and Its Hybrid Structures with Au Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2021, 13, 2836-2844.	8.0	24
9	Statistical Piezotronic Effect in Nanocrystal Bulk by Anisotropic Geometry Control. Advanced Functional Materials, 2021, 31, 2010339.	14.9	4
10	Magnetically induced charge redistribution in the bending of a composite beam with flexoelectric semiconductor and piezomagnetic dielectric layers. Journal of Applied Physics, 2021, 129, .	2.5	32
11	Large Magnetic Moment in Flexoelectronic Silicon at Room Temperature. Nano Letters, 2021, 21, 2939-2945.	9.1	8
12	A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part I – reconsideration of curvature-based flexoelectricity theory. Mathematics and Mechanics of Solids, 2021, 26, 1647-1659.	2.4	30
13	Advances in piezotronic transistors and piezotronics. Nano Today, 2021, 37, 101108.	11.9	48
14	Modulating the Electrical Transport Characteristics of a Metal-Semiconductor-Metal Structure by Local Strain Gradient., 2021, , .		O
15	Oxygen vacancy and photoelectron enhanced flexoelectricity in perovskite SrTiO3 crystal. Applied Physics Letters, 2021, 118, .	3.3	10
16	Buckling of flexoelectric semiconductor beams. Acta Mechanica, 2021, 232, 2623-2633.	2.1	15
17	Domain patterns and super-elasticity of freestanding BiFeO3 membranes via phase-field simulations. Acta Materialia, 2021, 208, 116689.	7.9	18
18	Mechanical Manipulation of Silicon-based Schottky Diodes via Flexoelectricity. Nano Energy, 2021, 83, 105855.	16.0	41

#	ARTICLE	IF	CITATIONS
19	Local structural heterogeneity induced large flexoelectricity in Sm-doped PMN–PT ceramics. Journal of Applied Physics, 2021, 129, .	2.5	11
20	Controllable, Selfâ€Powered, and Highâ€Performance Shortâ€Wavelength Infrared Photodetector Driven by Coupled Flexoelectricity and Strain Effect. Small Methods, 2021, 5, e2100342.	8.6	16
21	Controllable Photoelectric Properties in Double-Wall MoS ₂ Nanotubes by the Flexoelectric Effect. Journal of Physical Chemistry C, 2021, 125, 11318-11324.	3.1	7
22	Semiconductor-based dynamic heterojunctions as an emerging strategy for high direct-current mechanical energy harvesting. Nano Energy, 2021, 83, 105849.	16.0	56
23	Piezophototronic Effect in Nanosensors. Small Science, 2021, 1, 2000060.	9.9	28
24	Effect of flexoelectricity on piezotronic responses of a piezoelectric semiconductor bilayer. Journal of Applied Physics, 2021, 129, .	2.5	27
25	Analysis of static extension of piezoelectric semiconductor nanowires considering non-uniform strain and flexoelectric effects. Europhysics Letters, 2021, 134, 57002.	2.0	3
26	Advances in Smart Sensing and Medical Electronics by Self-Powered Sensors Based on Triboelectric Nanogenerators. Micromachines, 2021, 12, 698.	2.9	33
27	Investigating the Electrical Properties of Monolayer and Bilayer hâ€BNs via Atomic Force Microscopy. Advanced Materials Interfaces, 2021, 8, 2100447.	3.7	5
28	Controlling Strain Relaxation by Interface Design in Highly Lattice-Mismatched Heterostructure. Nano Letters, 2021, 21, 6867-6874.	9.1	6
29	Mixed Triboelectric and Flexoelectric Charge Transfer at the Nanoscale. Advanced Science, 2021, 8, e2101793.	11,2	18
30	Magnetically induced electric potential in first-order composite beams incorporating couple stress and its flexoelectric effects. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 1509-1519.	3.4	8
31	An Artificial Mechanoâ€Nociceptor with Mott Transition. Small Methods, 2021, 5, e2100566.	8.6	8
32	An analysis of flexoelectric coupling associated electroelastic fields in functionally graded semiconductor nanobeams. Journal of Applied Physics, 2021, 130, .	2.5	15
33	Flexoelectric effect driven colossal triboelectricity with multilayer graphene. Current Applied Physics, 2021, 32, 59-65.	2.4	4
34	Mechanical tunability of flexoelectricity in elastomers. Applied Physics Letters, 2021, 119, .	3.3	5
35	Flexoelectricity-induced enhancement in carrier separation and photocatalytic activity of a photocatalyst. Applied Surface Science, 2021, 566, 150669.	6.1	98
36	Flexo-photoelectronic effect in n-type/p-type two-dimensional semiconductors and a deriving light-stimulated artificial synapse. Materials Horizons, 2021, 8, 1985-1997.	12.2	16

#	Article	IF	CITATIONS
37	Revisiting the switching characteristics and electroresistance effect in ferroelectric thin film towards an optimized hybrid switching strategy. Journal of Applied Physics, 2020, 128, .	2.5	7
38	Categorizing wearable batteries: Unidirectional and omnidirectional deformable batteries. Matter, 2021, 4, 3146-3160.	10.0	44
39	On the Bending and Vibration Analysis of Functionally Graded Magneto-Electro-Elastic Timoshenko Microbeams. Crystals, 2021, 11, 1206.	2.2	14
40	Breaking the Fundamental Limitations of Nanoscale Ferroelectric Characterization: Non ontact Heterodyne Electrostrain Force Microscopy. Small Methods, 2021, 5, e2100639.	8.6	2
41	Flexoelectric-induced photovoltaic effects and tunable photocurrents in flexible LaFeO3 epitaxial heterostructures. Journal of Materiomics, 2022, 8, 281-287.	5.7	7
42	A convenient approach to tuning the local piezopotential of an extensional piezoelectric semiconductor fiber via composite structure design. Nano Energy, 2021, 90, 106626.	16.0	6
43	Flexoelectric and Piezoelectric Coupling in a Bended MoS2 Monolayer. Symmetry, 2021, 13, 2086.	2.2	4
44	Stress induced potential barriers in composite piezoelectric semiconductor fibers in extension. Ferroelectrics, Letters Section, 2021, 48, 72-82.	1.0	6
45	Giant flexoelectric response via mechanical and material design in elastomers. Mechanics of Materials, 2022, 165, 104186.	3.2	8
46	Methods for correctly characterizing the output performance of nanogenerators. Nano Energy, 2022, 93, 106884.	16.0	15
47	Enhanced Upconversion Photoluminescence Assisted by Flexoelectric Field in Oxide Nanomembranes. Laser and Photonics Reviews, 2022, 16, .	8.7	12
48	Band gaps in a periodic electro-elastic composite beam structure incorporating microstructure and flexoelectric effects. Archive of Applied Mechanics, 2023, 93, 245-260.	2.2	15
49	Ferroelectric domain modulated AlGaN/GaN field effect transistor. Applied Physics Letters, 2022, 120, 033503.	3.3	2
50	Enhanced Spin Lifetime with Elliot–Yafet Model-Like Temperature Dependence of Spin-Polarized Holes in p-Si Using Co ₂ MnSi Tunnel Contact. ACS Applied Electronic Materials, 2022, 4, 672-677.	4.3	1
51	Manipulation of current rectification in van der Waals ferroionic CulnP2S6. Nature Communications, 2022, 13, 574.	12.8	60
52	Mechanical Stress Modulation of Resistance in MoS ₂ Junctions. Nano Letters, 2022, 22, 1047-1052.	9.1	14
53	Bending of a Flexoelectric Semiconductor Plate. Acta Mechanica Solida Sinica, 2022, 35, 434-445.	1.9	8
54	Anti-Defect engineering toward high luminescent efficiency in whitlockite phosphors. Chemical Engineering Journal, 2022, 434, 134652.	12.7	24

#	Article	IF	CITATIONS
55	Lattice-mediated bulk flexoelectricity from first principles. Physical Review B, 2022, 105, .	3.2	6
56	Non-homogeneous cross section variation enhanced flexoelectric coupling in semiconductor beams and its application in charge carrier redistribution. Journal of Applied Physics, 2022, 131, 065701.	2.5	1
57	A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part II - variational formulations and applications in plates. Mathematics and Mechanics of Solids, 2022, 27, 2567-2587.	2.4	8
58	Electrosound and asymmetry of the l‒V characteristic induced by ultrasound in the RexMn1â^'xS (Re =â€%	‰Tm.) Tj E 2.6	TQ ₄ 1 1 0.78
59	Boosting Selfâ€Powered Ultraviolet Photoresponse of TiO ₂ â€Based Heterostructure by Flexoâ€Phototronic Effects. Advanced Optical Materials, 2022, 10, .	7.3	4
60	Chemical control of polarization in thin strained films of a multiaxial ferroelectric: Phase diagrams and polarization rotation. Physical Review B, 2022, 105, .	3.2	2
61	Improving the photoresponse performance of monolayer MoS ₂ photodetector via local flexoelectric effect. Nanotechnology, 2022, 33, 255204.	2.6	2
62	Piezoelectricity in Monolayer and Multilayer Ti ₃ C ₂ Tx MXenes: Implications for Piezoelectric Devices. ACS Applied Nano Materials, 2022, 5, 1034-1046.	5.0	19
63	Synergetic Piezoâ€Photocatalytic Hydrogen Evolution on Cd _x Zn _{1â€x} S Solidâ€Solution 1D Nanorods. Small, 2022, 18, e2106420.	10.0	26
64	Flexoelectric control of physical properties by atomic force microscopy. Applied Physics Reviews, 2021, 8, .	11.3	19
65	A new model for thermal buckling of an anisotropic elastic composite beam incorporating piezoelectric, flexoelectric and semiconducting effects. Acta Mechanica, 2022, 233, 1719-1738.	2.1	15
66	A new model for thermally induced redistributions of free carriers in centrosymmetric flexoelectric semiconductor beams. Mechanics of Materials, 2022, 171, 104328.	3.2	24
67	Electron transfer driven by tip-induced flexoelectricity in contact electrification. Journal Physics D: Applied Physics, 2022, 55, 315502.	2.8	5
68	Band Bending and Ratcheting Explain Triboelectricity in a Flexoelectric Contact Diode. Nano Letters, 2022, 22, 3914-3921.	9.1	16
69	Effects of mechanical loadings on the performance of a piezoelectric hetero-junction. Applied Mathematics and Mechanics (English Edition), 2022, 43, 615-626.	3.6	2
70	Global and local flexotronic effects induced by external magnetic fields in warping of a semiconducting composite fiber. Composite Structures, 2022, 295, 115711.	5.8	9
71	Utilizing sugarcane as green transpiration-driven generator for efficient electricity harvesting from seawater. Nano Energy, 2022, 99, 107378.	16.0	12
72	2D Transition Metal Dichalcogenide with Increased Entropy for Piezoelectric Electronics. Advanced Materials, 2022, 34, e2201630.	21.0	15

#	Article	IF	Citations
73	Bending and Wave Propagation Analysis of Magneto-Electro-Elastic Functionally Graded Porous Microbeams. Crystals, 2022, 12, 732.	2.2	11
74	Robust Flexo atalysis in Centrosymmetric Nanoparticles. Advanced Materials Technologies, 2022, 7, .	5.8	6
75	Highly heterogeneous epitaxy of flexoelectric BaTiO3-δ membrane on Ge. Nature Communications, 2022, 13, .	12.8	22
76	Flexoelectricity in periodically poled lithium niobate by PFM. Journal Physics D: Applied Physics, 2022, 55, 335303.	2.8	6
77	Mechanical Modulation of 2D Electronic Devices at Attoâ€Joule Energy via Flexotronic Effect. Advanced Functional Materials, 2022, 32, .	14.9	12
78	Flexoelectronic doping of degenerate silicon and correlated electron behavior. Physical Review B, 2022, 105, .	3.2	2
79	Macroscopic flexotronics enhanced controllable piezotronic-like response by flexual semiconductor devices. Nano Energy, 2022, 100, 107508.	16.0	3
80	Electrochemical Redox In-Situ Welding of Silver Nanowire Films with High Transparency and Conductivity. Inorganics, 2022, 10, 92.	2.7	1
81	Structural and electronic transitions in thulium-substituted manganese selenide. Ceramics International, 2022, 48, 29822-29828.	4.8	2
82	Magnetically tunable bandgaps in phononic crystal nanobeams incorporating microstructure and flexoelectric effects. Applied Mathematical Modelling, 2022, 111, 554-566.	4.2	16
83	Magnetically induced electromechanical fields in a flexoelectric composite microplate. Mathematics and Mechanics of Solids, 2023, 28, 1091-1110.	2.4	1
84	Intrinsic flexoelectricity of van der Waals epitaxial thin films. Physical Review B, 2022, 106, .	3.2	12
85	Magneticallyâ€induced electromechanical fields in a flexoelectric semiconductor layer between two piezomagnetic dielectric layers. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2022, 102, .	1.6	0
86	Flexoelectricity in wrinkled thin films. International Journal of Mechanical Sciences, 2022, 234, 107685.	6.7	13
87	Flexoelectric engineering of van der Waals ferroelectric CuInP ₂ S ₆ . Science Advances, 2022, 8, .	10.3	38
88	Effect of flexoelectricity on a bilayer molybdenum disulfide Schottky contact. Nano Energy, 2022, 102, 107701.	16.0	7
89	A New Model for Circular Cylindrical Kirchhoff–Love Shells Incorporating Microstructure and Flexoelectric Effects. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	2.2	9
90	Vibration modes of flexoelectric circular plate. Acta Mechanica Sinica/Lixue Xuebao, 2022, 38, .	3.4	4

#	Article	IF	CITATIONS
91	Study on PN heterojunctions associated bending coupling in flexoelectric semiconductor composites considering the effects of size-dependent and symmetry-breaking. Journal of Applied Physics, 2022, 132, .	2.5	8
92	Nonlinear magneto-mechanical-thermo coupling characteristic analysis for transport behaviors of carriers in composite multiferroic piezoelectric semiconductor nanoplates with surface effect. Applied Mathematics and Mechanics (English Edition), 2022, 43, 1323-1338.	3.6	2
93	Flexoelectricity-Driven Mechanical Switching of Polarization in Metastable Ferroelectrics. Physical Review Letters, 2022, 129, .	7.8	2
94	Origin of defects induced large flexoelectricity in ferroelectric ceramics. Physical Review Materials, 2022, 6, .	2.4	6
95	Coupling Enhancement of a Flexible BiFeO3 Film-Based Nanogenerator for Simultaneously Scavenging Light and Vibration Energies. Nano-Micro Letters, 2022, 14, .	27.0	8
96	High-Performance Schottky Junction for Self-Powered, Ultrafast, Broadband Alternating Current Photodetector. Korean Journal of Materials Research, 2022, 32, 333-338.	0.2	0
97	Controllably grown single-crystal films as flexoelectric nanogenerators for continuous direct current output. Npj Flexible Electronics, 2022, 6, .	10.7	10
98	Tuning the light emission of a Si micropillar quantum dot light-emitting device array with the strain coupling effect. NPG Asia Materials, 2022, 14, .	7.9	3
99	Roadmap on nanogenerators and piezotronics. APL Materials, 2022, 10, .	5.1	22
100	Polarization due to emergent polarity in elemental semiconductor thinfilms under bending. Journal of Physics Condensed Matter, 2023, 35, 015501.	1.8	1
101	Quadrant-electroded nanogenerators for decoupling piezoelectricity and flexoelectricity in the electromechanical outputs in flexible devices. Nano Energy, 2022, 104, 107909.	16.0	6
102	Strain related new sciences and devices in low-dimensional binary oxides. Nano Energy, 2022, 104, 107917.	16.0	4
103	Modeling thermoelectric effects in piezoelectric semiconductors: New fully coupled mechanisms for mechanically manipulated heat flux and refrigeration. International Journal of Engineering Science, 2023, 182, 103775.	5.0	23
104	Effects of flexoelectric polarization on surface potential of dielectric thin-film heterostructures: A comparative study. Applied Physics Letters, 2022, 121, .	3.3	3
105	Highly Efficient Flexocatalysis of Twoâ€Dimensional Semiconductors. Advanced Materials, 2023, 35, .	21.0	13
106	The adjustment of electro-elastic properties in non-uniform flexoelectric semiconductor nanofibers. Acta Mechanica, 2023, 234, 975-990.	2.1	4
107	Millimeterâ€range Induced Flexoâ€Pyrophotronic Effect in Centrosymmetric Heterojunction for Ultrafast Nightâ€Photomonitoring. Advanced Functional Materials, 2023, 33, .	14.9	2
108	Double-armed cone-shaped flexoelectric transducer. Frontiers in Physics, 0, 10, .	2.1	0

#	Article	IF	CITATIONS
109	Pyro-Phototronic Effect Enhanced Pyramid Structured p-Si/n-ZnO Nanowires Heterojunction Photodetector. ACS Applied Materials & Samp; Interfaces, 2023, 15, 4677-4689.	8.0	5
110	A flexoelectricity-enabled ultrahigh piezoelectric effect of a polymeric composite foam as a strain-gradient electric generator. Science Advances, 2023, 9, .	10.3	29
111	Directly Observing the Evolution of Flexoelectricity at the Tip of Nanocracks. Nano Letters, 2023, 23, 66-72.	9.1	8
112	Enhanced photovoltaic effect in graphene–silicon Schottky junction under mechanical manipulation. Applied Physics Letters, 2023, 122, .	3.3	2
113	Analysis of wave-particle drag effect in flexoelectric semiconductor plates via Mindlin method. Applied Mathematical Modelling, 2023, 118, 541-555.	4.2	8
114	Analysis of electromechanical couplings and nonlinear carrier transport in flexoelectric semiconductors. Journal Physics D: Applied Physics, 2023, 56, 325102.	2.8	2
115	Achieving Ferroelectricity in a Centrosymmetric Highâ€Performance Semiconductor by Strain Engineering. Advanced Materials, 2023, 35, .	21.0	4
116	Roadmap on energy harvesting materials. JPhys Materials, 2023, 6, 042501.	4.2	19
117	Flexoelectricity in self-rolling freestanding heterogeneous films. International Journal of Solids and Structures, 2023, 271-272, 112223.	2.7	1
118	Silicon flexoelectronic transistors. Science Advances, 2023, 9, .	10.3	11
119	Evidence of magnetoelectronic electromagnon-mediated transport in flexoelectronic heterostructures. Physical Review B, 2023, 107, .	3.2	1
120	Pyro-Phototronic Effect for Advanced Photodetectors and Novel Light Energy Harvesting. Nanomaterials, 2023, 13, 1336.	4.1	4
121	Polar Perturbations in Functional Oxide Heterostructures. Advanced Functional Materials, 2023, 33, .	14.9	1
122	Flexible BaTiO ₃ Thin Film-Based Coupled Nanogenerator for Simultaneously Scavenging Light and Vibration Energies. ACS Applied Materials & Samp; Interfaces, 2023, 15, 23226-23235.	8.0	3
123	Strong Piezoelectricity and Improved Rectifier Properties in Mono―and Multilayered CuInP ₂ S ₆ . Advanced Functional Materials, 2023, 33, .	14.9	2
124	The influence of the flexoelectric effect on materials properties with the emphasis on photovoltaic and related applications: A review. Materials Today, 2023, 67, 256-298.	14.2	4
125	Single-atom molybdenum array bound to distorted 1ÂT′ ReS2 quantum dots triggers highly intrinsic piezoelectricity for hierarchical porous electret piezo-catalysis. Nano Energy, 2023, 114, 108641.	16.0	3
126	Control of Halogen Atom in Inorganic Metalâ€Halide Perovskites Enables Large Piezoelectricity for Electromechanical Energy Generation. Small, 2023, 19, .	10.0	2

#	ARTICLE	IF	CITATIONS
127	Flexoelectric Effect. Microtechnology and MEMS, 2023, , 529-550.	0.2	1
128	Curvature-based flexoelectric nanobeams: Analytical and numerical isogeometric analyses. Applied Mathematical Modelling, 2023, 124, 840-859.	4.2	3
129	Constitutive matrices for 32 typical classes of crystalline solids with couple stress, quadrupole, and curvature-based flexoelectric effects. Acta Mechanica, 0 , , .	2.1	0
130	Thickness-dependent flexoresistance in SrTiO3 thin films. Applied Physics Letters, 2023, 122, .	3.3	1
131	Flexoelectric Catalysts Based on Hierarchical Wrinkling Surface of Centrosymmetric High-Entropy Oxide. ACS Nano, 2023, 17, 17417-17426.	14.6	4
132	Mechanically Gated Transistor. Advanced Materials, 2023, 35, .	21.0	2
133	Bending of PN junctions in flexoelectric semiconductors. Engineering Research Express, 0, , .	1.6	0
134	Reconfigurable Polarized Photodetector with Centrosymmetric Silicon Enabled by Flexoelectric Effect for Encrypted Communication. Advanced Optical Materials, 2023, 11, .	7.3	1
135	Flexo-photocatalysis in centrosymmetric semiconductors. Nano Research, 2024, 17, 1173-1181.	10.4	2
136	A Piezotronic and Magnetic Dualâ€Gated Ferroelectric Semiconductor Transistor. Advanced Functional Materials, 2023, 33, .	14.9	1
137	Theory of high performance piezotronic quantum harmonic oscillator under nonuniform strain. Nano Energy, 2023, 118, 108954.	16.0	0
138	Ultrasound-assisted piezoelectric photocatalysis: An effective strategy for enhancing hydrogen evolution from water splitting. Nano Energy, 2023, 118, 108993.	16.0	9
139	Piezoelectric and flexoelectric effects of DNA adsorbed films on microcantilevers. Applied Mathematics and Mechanics (English Edition), 2023, 44, 1547-1562.	3.6	1
140	Layer engineering piezotronic effect in two-dimensional homojunction transistors. Nano Energy, 2023, 117, 108880.	16.0	1
141	Size-dependent buckling in freestanding films driven by flexoelectricity. International Journal of Solids and Structures, 2023, 283, 112491.	2.7	0
142	Modeling the flexoelectric effect in semiconductors via a second-order collocation MFEM. International Journal of Mechanical Sciences, 2024, 264, 108837.	6.7	0
143	Electromechanical analysis of a piezoelectric semiconductor bilayer system with imperfect interface. European Journal of Mechanics, A/Solids, 2024, 103, 105173.	3.7	0
144	Flexo-/Piezoelectric Polarization Boosting Exciton Dissociation in Curved Two-Dimensional Carbon Nitride Photocatalyst. Nano Letters, 2023, 23, 10571-10578.	9.1	5

#	Article	IF	CITATIONS
145	A high performance piezoelectric hetero-junction based on the configuration reform on interfacial potential barrier. Composite Structures, 2024, 328, 117723.	5.8	0
146	High-efficiency piezo-phototronic solar cells by strain-induced polarization. MRS Bulletin, 2024, 49, 91-99.	3.5	0
147	Flexoelectricity in oxide thin films. Journal of Advanced Dielectrics, 2024, 14, .	2.4	0
148	Size-dependent effect of the flexoelectronics in a composite beam. Acta Mechanica, 2024, 235, 925-939.	2.1	O
149	Manipulating Surface Band Bending of Illâ€Nitride Nanowires with Ambipolar Chargeâ€Transfer Characteristics: A Pathway Toward Advanced Photoswitching Logic Gates and Encrypted Optical Communication. Advanced Materials, 0, , .	21.0	0
151	A Biomimetic Nociceptor Using Centrosymmetric Crystals for Machine Intelligence. Advanced Materials, 2024, 36, .	21.0	0
152	Bandgap and its defect band analysis of flexoelectric effect in phononic crystal plates. European Journal of Mechanics, A/Solids, 2023, , 105192.	3.7	1
153	Micro-patterned BaTiO ₃ @Ecoflex nanocomposite-assisted self-powered and wearable triboelectric nanogenerator with improved charge retention by 2D MoTe ₂ /PVDF nanofibrous layer. Journal of Materials Chemistry C, 2024, 12, 984-1001.	5.5	0
154	Analytical and isogeometric solutions of flexoelectric microbeams based on a layerwise beam theory. Mechanics Research Communications, 2024, 135, 104235.	1.8	0
156	Giant Flexoelectricity in Bent Semiconductor Thinfilm. Nano Letters, 0, , .	9.1	0
157	Electroactive Biomaterials Regulate the Electrophysiological Microenvironment to Promote Bone and Cartilage Tissue Regeneration. Advanced Functional Materials, 0, , .	14.9	0
158	Electrically and mechanically driven rotation of polar spirals in a relaxor ferroelectric polymer. Nature Communications, 2024, 15, .	12.8	O
159	Flexoelectric effect: ambiguities, controversies, and applications. , 2024, , 355-396.		0
160	Switchable tribology of ferroelectrics. Nature Communications, 2024, 15, .	12.8	1
161	Flexoelectric polarizing and control of a ferromagnetic metal. Nature Physics, 2024, 20, 450-455.	16.7	1
162	Proton doping enhanced flexoelectricity and photocurrent in hydrogen-charged TiO2. Applied Physics Letters, 2024, 124, .	3.3	0
163	A freestanding ferroelectric thin film-based soft strain sensor. Journal of Materiomics, 2024, , .	5.7	0
164	Advancements in Modeling the Space Charge Induced Flexoelectric Effect. , 2023, , .		0

#	ARTICLE	IF	CITATIONS
165	Locally Strained 2D Materials: Preparation, Properties, and Applications. Advanced Materials, 0, , .	21.0	0
166	Advancements and Prospects of Flexoelectricity. ACS Applied Materials & Samp; Interfaces, 2024, 16, 9597-9613.	8.0	O
167	Flexophotovoltaic Effect and Above-Band-Gap Photovoltage Induced by Strain Gradients in Halide Perovskites. Physical Review Letters, 2024, 132, .	7.8	0
168	Isogeometric analysis of magneto-electro-elastic functionally graded Mindlin microplates. Thin-Walled Structures, 2024, 198, 111740.	5.3	0
169	Interfacial Polarization Control Engineering and Ferroelectric PZT/Graphene Heterostructure Integrated Application. Nanomaterials, 2024, 14, 432.	4.1	0
170	A new size-dependent nonlinear model for piezoelectric semiconductor nanofibers by considering the effects of strain gradient and flexoelectricity. European Journal of Mechanics, A/Solids, 2024, 106, 105279.	3.7	0
171	Manipulation of bilayer MoS2-based MESFET with flexoelectric polarization field. Nano Energy, 2024, 123, 109415.	16.0	0
172	Flexoelectricityâ€Enhanced Selfâ€Powered Photodetection in 2D van der Waals Heterojunctions With Large Curvatures. Advanced Functional Materials, 0, , .	14.9	0
173	Defect Engineering Centrosymmetric 2D Material Flexocatalysts. Small, 0, , .	10.0	0
174	Static and free vibration responses of nanobeams considering flexoelectricity and surface effect. AIP Advances, 2024, 14, .	1.3	0
175	Fracture Analysis of Planar Cracks in 3D Thermal Piezoelectric Semiconductors. International Journal of Mechanical Sciences, 2024, 273, 109212.	6.7	0