Isolation of potent SARS-CoV-2 neutralizing antibodies small animal model

Science 369, 956-963 DOI: 10.1126/science.abc7520

Citation Report

#	Article	IF	CITATIONS
1	SARS-CoV-2 antibodies, serum inflammatory biomarkers and clinical severity of hospitalized COVID-19 patients. Journal of Clinical Virology, 2020, 131, 104611.	1.6	61
2	<p>Immunoglobulin G2 Antibody as a Potential Target for COVID-19 Vaccine</p> . ImmunoTargets and Therapy, 2020, Volume 9, 143-149.	2.7	7
3	Toward Understanding Molecular Bases for Biological Diversification of Human Coronaviruses: Present Status and Future Perspectives. Frontiers in Microbiology, 2020, 11, 2016.	1.5	11
4	SARS-CoV-2 Treatment Approaches: Numerous Options, No Certainty for a Versatile Virus. Frontiers in Pharmacology, 2020, 11, 1224.	1.6	30
5	Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell, 2020, 183, 1024-1042.e21.	13.5	1,195
6	Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. Science, 2020, 370, 1089-1094.	6.0	290
7	A Therapeutic Non-self-reactive SARS-CoV-2 Antibody Protects from Lung Pathology in a COVID-19 Hamster Model. Cell, 2020, 183, 1058-1069.e19.	13.5	305
8	Beyond bulk single-chain sequencing: Getting at the whole receptor. Current Opinion in Systems Biology, 2020, 24, 93-99.	1.3	10
10	Structure-Based Design with Tag-Based Purification and In-Process Biotinylation Enable Streamlined Development of SARS-CoV-2 Spike Molecular Probes. Cell Reports, 2020, 33, 108322.	2.9	59
11	An Alternative Binding Mode of IGHV3-53 Antibodies to the SARS-CoV-2 Receptor Binding Domain. Cell Reports, 2020, 33, 108274.	2.9	152
12	REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science, 2020, 370, 1110-1115.	6.0	476
13	Preparedness needs research: How fundamental science and international collaboration accelerated the response to COVID-19. PLoS Pathogens, 2020, 16, e1008902.	2.1	28
14	Structural Basis of SARS-CoV-2 and SARS-CoV Antibody Interactions. Trends in Immunology, 2020, 41, 1006-1022.	2.9	79
15	A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduction and Targeted Therapy, 2020, 5, 237.	7.1	427
16	Animal models for COVID-19. Nature, 2020, 586, 509-515.	13.7	705
17	Convalescent Blood Products in COVID-19: A Narrative Review. Therapeutic Advances in Infectious Disease, 2020, 7, 204993612096064.	1.1	3
18	Durability of neutralizing antibodies and T-cell response post SARS-CoV-2 infection. Frontiers of Medicine, 2020, 14, 746-751.	1.5	57
19	Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell, 2020, 183, 996-1012.e19.	13.5	1,494

#	Article	IF	CITATIONS
20	Implications of Sex Differences in Immunity for SARS-CoV-2 Pathogenesis and Design of Therapeutic Interventions. Immunity, 2020, 53, 487-495.	6.6	127
21	Principles Learned from the International Race to Develop a Safe and Effective COVID-19 Vaccine. ACS Central Science, 2020, 6, 1341-1347.	5.3	11
22	Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19. Nature Medicine, 2020, 26, 1428-1434.	15.2	400
23	Structural basis of a shared antibody response to SARS-CoV-2. Science, 2020, 369, 1119-1123.	6.0	536
24	Longitudinal Isolation of Potent Near-Germline SARS-CoV-2-Neutralizing Antibodies from COVID-19 Patients. Cell, 2020, 182, 843-854.e12.	13.5	310
25	Severe Acute Respiratory Syndrome Coronavirus 2 Antibody Testing: Important but Imperfect. Clinical Infectious Diseases, 2020, 73, e3074-e3076.	2.9	4
26	Severe acute respiratory syndrome coronavirusâ€⊋ natural animal reservoirs and experimental models: systematic review. Reviews in Medical Virology, 2021, 31, e2196.	3.9	24
27	Quantum leap of monoclonal antibody (mAb) discovery and development in the COVID-19 era. Seminars in Immunology, 2020, 50, 101427.	2.7	31
28	The immunology of SARS-CoV-2 infections and vaccines. Seminars in Immunology, 2020, 50, 101422.	2.7	85
29	Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host and Microbe, 2020, 28, 867-879.e5.	5.1	316
30	Immunopathology, host-virus genome interactions, and effective vaccine development in SARS-CoV-2. Computational and Structural Biotechnology Journal, 2020, 18, 3774-3787.	1.9	12
31	Nanoparticle Vaccines Based on the Receptor Binding Domain (RBD) and Heptad Repeat (HR) of SARS-CoV-2 Elicit Robust Protective Immune Responses. Immunity, 2020, 53, 1315-1330.e9.	6.6	215
32	Cross-Neutralization of a SARS-CoV-2 Antibody to a Functionally Conserved Site Is Mediated by Avidity. Immunity, 2020, 53, 1272-1280.e5.	6.6	185
33	Development of Patient-Derived Human Monoclonal Antibodies Against Nucleocapsid Protein of Severe Acute Respiratory Syndrome Coronavirus 2 for Coronavirus Disease 2019 Diagnosis. Frontiers in Immunology, 2020, 11, 595970.	2.2	12
34	Dynamics of CD4 T Cell and Antibody Responses in COVID-19 Patients With Different Disease Severity. Frontiers in Medicine, 2020, 7, 592629.	1.2	54
35	SARS-CoV-2 Epitopes Are Recognized by a Public and Diverse Repertoire of Human T Cell Receptors. Immunity, 2020, 53, 1245-1257.e5.	6.6	194
36	SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature, 2020, 588, 682-687.	13.7	1,346
37	Of Cross-immunity, Herd Immunity and Country-specific Plans: Experiences from COVID-19 in India. , 2020, 11, 1339.		20

#	Article	IF	CITATIONS
38	Asynchronous actions of immune responses in COVID-19 patients. Signal Transduction and Targeted Therapy, 2020, 5, 284.	7.1	4
39	Development of a multi-antigenic SARS-CoV-2 vaccine candidate using a synthetic poxvirus platform. Nature Communications, 2020, 11, 6121.	5.8	71
40	Recent advances in therapeutic applications of neutralizing antibodies for virus infections: an overview. Immunologic Research, 2020, 68, 325-339.	1.3	39
41	Approaches and Challenges in SARS-CoV-2 Vaccine Development. Cell Host and Microbe, 2020, 28, 364-370.	5.1	98
42	The role of IgG Fc receptors in antibody-dependent enhancement. Nature Reviews Immunology, 2020, 20, 633-643.	10.6	340
43	A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature, 2020, 584, 353-363.	13.7	413
44	Substance Use Disorder in the COVID-19 Pandemic: A Systematic Review of Vulnerabilities and Complications. Pharmaceuticals, 2020, 13, 155.	1.7	88
45	Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. New England Journal of Medicine, 2020, 383, 1544-1555.	13.9	936
46	Fruitful Neutralizing Antibody Pipeline Brings Hope To Defeat SARS-Cov-2. Trends in Pharmacological Sciences, 2020, 41, 815-829.	4.0	108
47	The Effects of Chloroquine and Hydroxychloroquine on ACE2-Related Coronavirus Pathology and the Cardiovascular System: An Evidence-Based Review. Function, 2020, 1, .	1.1	12
48	Replication-Competent Vesicular Stomatitis Virus Vaccine Vector Protects against SARS-CoV-2-Mediated Pathogenesis in Mice. Cell Host and Microbe, 2020, 28, 465-474.e4.	5.1	156
49	Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science, 2020, 369, 1261-1265.	6.0	520
50	Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell, 2020, 182, 1295-1310.e20.	13.5	1,726
51	Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature, 2020, 584, 450-456.	13.7	1,337
52	Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 2020, 584, 443-449.	13.7	956
53	Virus isolation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for diagnostic and research purposes. Pathology, 2020, 52, 760-763.	0.3	21
54	Rapid identification of a human antibody with high prophylactic and therapeutic efficacy in three animal models of SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29832-29838.	3.3	81
55	Molecular Architecture of Early Dissemination and Massive Second Wave of the SARS-CoV-2 Virus in a Major Metropolitan Area. MBio, 2020, 11, .	1.8	99

#	Article	IF	CITATIONS
56	Progress and Pitfalls in the Quest for Effective SARS-CoV-2 (COVID-19) Vaccines. Frontiers in Immunology, 2020, 11, 579250.	2.2	72
57	Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nature Microbiology, 2020, 5, 1598-1607.	5.9	1,115
58	Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. Journal of Experimental Medicine, 2020, 217, .	4.2	503
59	Immunoinformatic Analysis of SARS-CoV-2 Nucleocapsid Protein and Identification of COVID-19 Vaccine Targets. Frontiers in Immunology, 2020, 11, 587615.	2.2	94
60	Deep mutagenesis in the study of COVID-19: a technical overview for the proteomics community. Expert Review of Proteomics, 2020, 17, 633-638.	1.3	10
61	Neutralizing Antibodies Correlate with Protection from SARS-CoV-2 in Humans during a Fishery Vessel Outbreak with a High Attack Rate. Journal of Clinical Microbiology, 2020, 58, .	1.8	494
62	Disease severity dictates SARS-CoV-2-specific neutralizing antibody responses in COVID-19. Signal Transduction and Targeted Therapy, 2020, 5, 180.	7.1	222
63	An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nature Communications, 2020, 11, 4420.	5.8	261
64	Cell and animal models of SARS-CoV-2 pathogenesis and immunity. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	46
65	Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science, 2020, 370, 950-957.	6.0	504
66	Receptor-binding domain-specific human neutralizing monoclonal antibodies against SARS-CoV and SARS-CoV-2. Signal Transduction and Targeted Therapy, 2020, 5, 212.	7.1	104
67	Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy. Cell, 2020, 183, 1013-1023.e13.	13.5	227
68	Molecular features of IGHV3-53-encoded antibodies elicited by SARS-CoV-2. Signal Transduction and Targeted Therapy, 2020, 5, 170.	7.1	14
69	Therapeutic antibodies and fusion inhibitors targeting the spike protein of SARS-CoV-2. Expert Opinion on Therapeutic Targets, 2021, 25, 415-421.	1.5	52
70	Clinical sensitivity and interpretation of PCR and serological COVIDâ€19 diagnostics for patients presenting to the hospital. FASEB Journal, 2020, 34, 13877-13884.	0.2	117
71	Coronavirus Antiviral Research Database (CoV-RDB): An Online Database Designed to Facilitate Comparisons between Candidate Anti-Coronavirus Compounds. Viruses, 2020, 12, 1006.	1.5	60
72	Harnessing Recent Advances in Synthetic DNA and Electroporation Technologies for Rapid Vaccine Development Against COVID-19 and Other Emerging Infectious Diseases. Frontiers in Medical Technology, 2020, 2, 571030.	1.3	29
73	Disruption of Adaptive Immunity Enhances Disease in SARS-CoV-2-Infected Syrian Hamsters. Journal of Virology, 2020, 94, .	1.5	58

#	Article	IF	CITATIONS
74	Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nature Microbiology, 2020, 5, 1185-1191.	5.9	553
75	Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunology, 2020, 13, 877-891.	2.7	155
76	Establishment of Murine Hybridoma Cells Producing Antibodies against Spike Protein of SARS-CoV-2. International Journal of Molecular Sciences, 2020, 21, 9167.	1.8	6
77	Emerging antibody-based therapeutics against SARS-CoV-2 during the global pandemic. Antibody Therapeutics, 2020, 3, 246-256.	1.2	34
78	A Potent SARS-CoV-2 Neutralizing Human Monoclonal Antibody That Reduces Viral Burden and Disease Severity in Syrian Hamsters. Frontiers in Immunology, 2020, 11, 614256.	2.2	32
79	Rapid generation of durable B cell memory to SARS-CoV-2 spike and nucleocapsid proteins in COVID-19 and convalescence. Science Immunology, 2020, 5, .	5.6	244
80	Development of a Rapid Focus Reduction Neutralization Test Assay for Measuring SARSâ€CoVâ€⊋ Neutralizing Antibodies. Current Protocols in Immunology, 2020, 131, e116.	3.6	111
81	Neutralizing antibodies for the treatment of COVID-19. Nature Biomedical Engineering, 2020, 4, 1134-1139.	11.6	98
82	Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome. Science Immunology, 2020, 5, .	5.6	404
83	Mechanisms of Dysregulated Humoral and Cellular Immunity by SARS-CoV-2. Pathogens, 2020, 9, 1027.	1.2	20
84	Current Prevention of COVID-19: Natural Products and Herbal Medicine. Frontiers in Pharmacology, 2020, 11, 588508.	1.6	99
85	<i>In Silico</i> Antibody Mutagenesis for Optimizing Its Binding to Spike Protein of Severe Acute Respiratory Syndrome Coronavirus 2. Journal of Physical Chemistry Letters, 2020, 11, 9781-9787.	2.1	22
86	An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science, 2020, 370, 1473-1479.	6.0	336
87	Antibody Binding to SARS-CoV-2 S Glycoprotein Correlates with but Does Not Predict Neutralization. Viruses, 2020, 12, 1214.	1.5	26
88	Quick COVID-19 Healers Sustain Anti-SARS-CoV-2 Antibody Production. Cell, 2020, 183, 1496-1507.e16.	13.5	182
89	Germline immunoglobulin genes: Disease susceptibility genes hidden in plain sight?. Current Opinion in Systems Biology, 2020, 24, 100-108.	1.3	31
90	Pandemic Preparedness: Developing Vaccines and Therapeutic Antibodies For COVID-19. Cell, 2020, 181, 1458-1463.	13.5	92
91	Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science, 2020, 369, 643-650.	6.0	1,104

#	Article	IF	CITATIONS
92	Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies. Cell, 2020, 182, 828-842.e16.	13.5	724
93	Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science, 2020, 369, 1010-1014.	6.0	1,140
94	COVID-19 Vaccines: "Warp Speed―Needs Mind Melds, Not Warped Minds. Journal of Virology, 2020, 94, .	1.5	79
95	An insight into the epitope-based peptide vaccine design strategy and studies against COVID-19. Turkish Journal of Biology, 2020, 44, 215-227.	2.1	24
96	Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nature Medicine, 2020, 26, 1422-1427.	15.2	450
97	A Replication-Competent Vesicular Stomatitis Virus for Studies of SARS-CoV-2 Spike-Mediated Cell Entry and Its Inhibition. Cell Host and Microbe, 2020, 28, 486-496.e6.	5.1	178
98	Design of a highly thermotolerant, immunogenic SARS-CoV-2 spike fragment. Journal of Biological Chemistry, 2021, 296, 100025.	1.6	43
99	Commercial Serology Assays Predict Neutralization Activity against SARS-CoV-2. Clinical Chemistry, 2021, 67, 404-414.	1.5	58
100	COVID-19: Discovery, diagnostics and drug development. Journal of Hepatology, 2021, 74, 168-184.	1.8	302
101	Recognition of the SARS-CoV-2 receptor binding domain by neutralizing antibodies. Biochemical and Biophysical Research Communications, 2021, 538, 192-203.	1.0	165
102	Review of COVID-19 Antibody Therapies. Annual Review of Biophysics, 2021, 50, 1-30.	4.5	34
103	Antibodies at work in the time of severe acute respiratory syndrome coronavirus 2. Cytotherapy, 2021, 23, 101-110.	0.3	14
104	Dynamics of Neutralizing Antibody Titers in the Months After Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Journal of Infectious Diseases, 2021, 223, 197-205.	1.9	216
105	Suitability of two rapid lateral flow immunochromatographic assays for predicting SARS oVâ€2 neutralizing activity of sera. Journal of Medical Virology, 2021, 93, 2301-2306.	2.5	12
106	Dosing Considerations for Antibodies Against COVID-19. Drugs in R and D, 2021, 21, 1-8.	1.1	5
107	Neutralizing monoclonal antibodies for COVID-19 treatment and prevention. Biomedical Journal, 2021, 44, 7-17.	1.4	38
108	Rational development of a human antibody cocktail that deploys multiple functions to confer Pan-SARS-CoVs protection. Cell Research, 2021, 31, 25-36.	5.7	76
109	Humoral immune responses and neutralizing antibodies against SARS-CoV-2; implications in pathogenesis and protective immunity. Biochemical and Biophysical Research Communications, 2021, 538, 187-191.	1.0	86

#	Article	IF	CITATIONS
110	Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host and Microbe, 2021, 29, 44-57.e9.	5.1	937
111	Challenges and opportunities for antiviral monoclonal antibodies as COVID-19 therapy. Advanced Drug Delivery Reviews, 2021, 169, 100-117.	6.6	63
112	COVID-19 antibody development fueled by HIV-1 broadly neutralizing antibody research. Current Opinion in HIV and AIDS, 2021, 16, 25-35.	1.5	7
113	Enhanced SARS-CoV-2 neutralization by dimeric IgA. Science Translational Medicine, 2021, 13, .	5.8	379
114	Therapeutic and Vaccine Options for COVID-19: Status after Six Months of the Disease Outbreak. SLAS Discovery, 2021, 26, 311-329.	1.4	4
115	Viral targets for vaccines against COVID-19. Nature Reviews Immunology, 2021, 21, 73-82.	10.6	832
116	Neutralizing antibodies targeting SARS-CoV-2 spike protein. Stem Cell Research, 2021, 50, 102125.	0.3	89
117	Spike Glycoprotein and Host Cell Determinants of SARS-CoV-2 Entry and Cytopathic Effects. Journal of Virology, 2021, 95, .	1.5	70
118	Identifying and repurposing antiviral drugs against severe acute respiratory syndrome coronavirus 2 with in silico and inÂvitro approaches. Biochemical and Biophysical Research Communications, 2021, 538, 137-144.	1.0	12
119	The scientific and ethical feasibility of immunity passports. Lancet Infectious Diseases, The, 2021, 21, e58-e63.	4.6	82
120	Antibody Responses and Clinical Outcomes in Adults Hospitalized With Severe Coronavirus Disease 2019 (COVID-19): A Post hoc Analysis of LOTUS China Trial. Clinical Infectious Diseases, 2021, 72, e545-e551.	2.9	34
121	Tissue Distribution of ACE2 Protein in Syrian Golden Hamster (Mesocricetus auratus) and Its Possible Implications in SARS-CoV-2 Related Studies. Frontiers in Pharmacology, 2020, 11, 579330.	1.6	30
122	COVID-19-neutralizing antibodies predict disease severity and survival. Cell, 2021, 184, 476-488.e11.	13.5	586
123	The role and uses of antibodies in COVID-19 infections: a living review. Oxford Open Immunology, 2021, 2, iqab003.	1.2	17
125	Versatile and rapid microfluidics-assisted antibody discovery. MAbs, 2021, 13, 1978130.	2.6	16
126	Long-term humoral immunogenicity, safety and protective efficacy of inactivated vaccine against COVID-19 (CoviVac) in preclinical studies. Emerging Microbes and Infections, 2021, 10, 1790-1806.	3.0	58
127	Potent SARS-CoV-2 binding and neutralization through maturation of iconic SARS-CoV-1 antibodies. MAbs, 2021, 13, 1922134.	2.6	22
128	Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-2 escape. Nature Communications, 2021, 12, 469.	5.8	148

#	Article	IF	CITATIONS
129	Quasispecies of SARS-CoV-2 revealed by single nucleotide polymorphisms (SNPs) analysis. Virulence, 2021, 12, 1209-1226.	1.8	16
130	COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 905-919.	1.3	445
131	Distinct Features and Functions of Systemic and Mucosal Humoral Immunity Among SARS-CoV-2 Convalescent Individuals. Frontiers in Immunology, 2020, 11, 618685.	2.2	87
132	A Single Immunization with Spike-Functionalized Ferritin Vaccines Elicits Neutralizing Antibody Responses against SARS-CoV-2 in Mice. ACS Central Science, 2021, 7, 183-199.	5.3	134
134	Pattern of circulating SARSâ€CoVâ€2â€specific antibodyâ€secreting and memory Bâ€cell generation in patients with acute COVIDâ€19. Clinical and Translational Immunology, 2021, 10, e1245.	1.7	41
136	Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. Journal of Biomedical Science, 2021, 28, 9.	2.6	167
138	Passive Immunity Should and Will Work for COVID-19 for Some Patients. Clinical Hematology International, 2021, 3, 47.	0.7	4
139	SARS-CoV-2 infection elicits a rapid neutralizing antibody response that correlates with disease severity. Scientific Reports, 2021, 11, 2608.	1.6	86
140	Mesenchymal Stem Cells for the Compassionate Treatment of Severe Acute Respiratory Distress Syndrome Due to COVID 19. , 2021, 12, 360.		33
142	Computational optimization of angiotensin-converting enzyme 2 for SARS-CoV-2 Spike molecular recognition. Computational and Structural Biotechnology Journal, 2021, 19, 3006-3014.	1.9	9
143	A human cell-based SARS-CoV-2 vaccine elicits potent neutralizing antibody responses and protects mice from SARS-CoV-2 challenge. Emerging Microbes and Infections, 2021, 10, 1555-1573.	3.0	6
144	Inference of SARS-CoV-2 spike-binding neutralizing antibody titers in sera from hospitalized COVID-19 patients by using commercial enzyme and chemiluminescent immunoassays. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 485-494.	1.3	37
145	SARS-CoV-2 specific antibody and neutralization assays reveal the wide range of the humoral immune response to virus. Communications Biology, 2021, 4, 129.	2.0	95
146	A COVID-19 vaccine candidate using SpyCatcher multimerization of the SARS-CoV-2 spike protein receptor-binding domain induces potent neutralising antibody responses. Nature Communications, 2021, 12, 542.	5.8	200
147	Structural Analysis of Neutralizing Epitopes of the SARS-CoV-2 Spike to Guide Therapy and Vaccine Design Strategies. Viruses, 2021, 13, 134.	1.5	56
149	Specific epitopes form extensive hydrogen-bonding networks to ensure efficient antibody binding of SARS-CoV-2: Implications for advanced antibody design. Computational and Structural Biotechnology Journal, 2021, 19, 1661-1671.	1.9	7
150	Dual-Antigen System Allows Elimination of False Positive Results in COVID-19 Serological Testing. Diagnostics, 2021, 11, 102.	1.3	8
151	Bispecific VH/Fab antibodies targeting neutralizing and non-neutralizing Spike epitopes demonstrate enhanced potency against SARS-CoV-2. MAbs, 2021, 13, 1893426.	2.6	22

#	Article	IF	CITATIONS
152	Standardized Two-Step Testing of Antibody Activity in COVID-19 Convalescent Plasma. SSRN Electronic Journal, 0, , .	0.4	2
153	Germline IGHV3-53-encoded RBD-targeting neutralizing antibodies are commonly present in the antibody repertoires of COVID-19 patients. Emerging Microbes and Infections, 2021, 10, 1097-1111.	3.0	25
154	Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19. AAPS Journal, 2021, 23, 14.	2.2	291
155	SARS-CoV-2: vaccines in the pandemic era. Military Medical Research, 2021, 8, 1.	1.9	104
157	Stereotypic neutralizing V _H antibodies against SARS-CoV-2 spike protein receptor binding domain in patients with COVID-19 and healthy individuals. Science Translational Medicine, 2021, 13, .	5.8	72
162	Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science, 2021, 371, .	6.0	2,268
163	Modalities and Mechanisms of Treatment for Coronavirus Disease 2019. Frontiers in Pharmacology, 2020, 11, 583914.	1.6	8
166	Neutralizing antibodies targeting the SARSâ€CoVâ€2 receptor binding domain isolated from a naÃ⁻ve human antibody library. Protein Science, 2021, 30, 716-727.	3.1	16
169	Insights into neutralizing antibody responses in individuals exposed to SARS-CoV-2 in Chile. Science Advances, 2021, 7, .	4.7	29
170	Phylodynamic analysis in the understanding of the current COVID-19 pandemic and its utility in vaccine and antiviral design and assessment. Human Vaccines and Immunotherapeutics, 2021, 17, 2437-2444.	1.4	7
172	Breadth and function of antibody response to acute SARS-CoV-2 infection in humans. PLoS Pathogens, 2021, 17, e1009352.	2.1	56
173	Graphene Sheets with Defined Dual Functionalities for the Strong SARSâ€CoVâ€2 Interactions. Small, 2021, 17, e2007091.	5.2	42
174	Experimental Models of SARS-CoV-2 Infection: Possible Platforms to Study COVID-19 Pathogenesis and Potential Treatments. Annual Review of Pharmacology and Toxicology, 2022, 62, 25-53.	4.2	20
176	The COVID-19 Treatment Landscape: A South African Perspective on a Race Against Time. Frontiers in Medicine, 2021, 8, 604087.	1.2	1
178	Multi-clonal SARS-CoV-2 neutralization by antibodies isolated from severe COVID-19 convalescent donors. PLoS Pathogens, 2021, 17, e1009165.	2.1	40
179	Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science, 2021, 371, 735-741.	6.0	305
180	Post-exposure protection of SARS-CoV-2 lethal infected K18-hACE2 transgenic mice by neutralizing human monoclonal antibody. Nature Communications, 2021, 12, 944.	5.8	53
181	COVID-19 vaccines for patients with cancer: benefits likely outweigh risks. Journal of Hematology and Oncology, 2021, 14, 38.	6.9	87

#	Article	IF	CITATIONS
182	Highâ€throughput detection of antibodies targeting the <scp>SARSâ€CoV</scp> â€2 <scp>Spike</scp> in longitudinal convalescent plasma samples. Transfusion, 2021, 61, 1377-1382.	0.8	17
184	In silico analysis suggests less effective MHC-II presentation of SARS-CoV-2 RBM peptides: Implication for neutralizing antibody responses. PLoS ONE, 2021, 16, e0246731.	1.1	7
185	Enhancement versus neutralization by SARS-CoV-2 antibodies from a convalescent donor associates with distinct epitopes on the RBD. Cell Reports, 2021, 34, 108699.	2.9	110
186	Persistence of Antibodies to Severe Acute Respiratory Syndrome Coronavirus 2 in Relation to Symptoms in a Nationwide Prospective Study. Clinical Infectious Diseases, 2021, 73, 2155-2162.	2.9	75
187	Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science, 2021, 371, 823-829.	6.0	285
188	mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature, 2021, 592, 616-622.	13.7	1,232
189	Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. Science, 2021, 371, .	6.0	304
194	Antibody titers against SARS-CoV-2 decline, but do not disappear for several months. EClinicalMedicine, 2021, 32, 100734.	3.2	134
196	Prolonged evolution of the human B cell response to SARS-CoV-2 infection. Science Immunology, 2021, 6, .	5.6	153
197	Neutralizing Human Antibodies against Severe Acute Respiratory Syndrome Coronavirus 2 Isolated from a Human Synthetic Fab Phage Display Library. International Journal of Molecular Sciences, 2021, 22, 1913.	1.8	11
198	SARS-CoV-2 persistence is associated with antigen-specific CD8 T-cell responses. EBioMedicine, 2021, 64, 103230.	2.7	113
202	Lasting antibody and T cell responses to SARS-CoV-2 in COVID-19 patients three months after infection. Nature Communications, 2021, 12, 897.	5.8	69
203	Immunogenicity and protective efficacy of BBV152, whole virion inactivated SARS- CoV-2 vaccine candidates in the Syrian hamster model. IScience, 2021, 24, 102054.	1.9	70
204	Development and deployment of COVID-19 vaccines for those most vulnerable. Science Translational Medicine, 2021, 13, .	5.8	60
205	Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a Standardized Virus Neutralization Assay Allows for Cross-Cohort Comparisons of COVID-19 Sera. MBio, 2021, 12, .	1.8	64
206	A longitudinal study of convalescent plasma (<scp>CCP</scp>) donors and correlation of <scp>ABO</scp> group, initial neutralizing antibodies (<scp>nAb</scp>), and body mass index (<scp>BMI</scp>) with <scp>nAb</scp> and antiâ€nucleocapsid (<scp>NP</scp>) <scp>SARSâ€CoV</scp> â€2 antibody kinetics: Proposals for better quality of <scp>CCP</scp> collections. Transfusion, 2021, 61,	0.8	22
208	Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nature Biotechnology, 2021, 39, 717-726.	9.4	130
209	Adaptive immunity to SARS-CoV-2 and COVID-19. Cell, 2021, 184, 861-880.	13.5	1,364

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
210	Insights into biological therapeutic strategies for COVID-19. Fundamental Research, 2021, 1, 166-178.	1.6	2
211	Potent Neutralization of SARS-CoV-2 by Hetero-Bivalent Alpaca Nanobodies Targeting the Spike Receptor-Binding Domain. Journal of Virology, 2021, 95, .	1.5	46
217	Comparison of Antibody Class-Specific SARS-CoV-2 Serologies for the Diagnosis of Acute COVID-19. Journal of Clinical Microbiology, 2021, 59, .	1.8	23
218	Durability of Viral Neutralization in Asymptomatic Coronavirus Disease 2019 for at Least 60 Days. Journal of Infectious Diseases, 2021, 223, 1677-1680.	1.9	4
219	Allâ€Atom Simulations and Freeâ€Energy Calculations of Antibodies Bound to the Spike Protein of SARSâ€CoVâ€2: The Binding Strength and Multivalent Hydrogenâ€Bond Interactions. Advanced Theory and Simulations, 2021, 4, 2100012.	1.3	2
222	Single-component, self-assembling, protein nanoparticles presenting the receptor binding domain and stabilized spike as SARS-CoV-2 vaccine candidates. Science Advances, 2021, 7, .	4.7	80
223	Nicotinic cholinergic system and COVID-19: In silico identification of interactions between α7 nicotinic acetylcholine receptor and the cryptic epitopes of SARS-Co-V and SARS-CoV-2 Spike glycoproteins. Food and Chemical Toxicology, 2021, 149, 112009.	1.8	46
224	Differential Effects of Antiseptic Mouth Rinses on SARS-CoV-2 Infectivity In Vitro. Pathogens, 2021, 10, 272.	1.2	43
225	A high-affinity RBD-targeting nanobody improves fusion partner's potency against SARS-CoV-2. PLoS Pathogens, 2021, 17, e1009328.	2.1	37
227	Protein N-myristoylation: functions and mechanisms in control of innate immunity. Cellular and Molecular Immunology, 2021, 18, 878-888.	4.8	53
230	Establishment of a well-characterized SARS-CoV-2 lentiviral pseudovirus neutralization assay using 293T cells with stable expression of ACE2 and TMPRSS2. PLoS ONE, 2021, 16, e0248348.	1.1	102
231	Immunity to SARS-CoV-2: Lessons Learned. Frontiers in Immunology, 2021, 12, 654165.	2.2	33
232	Persistence of SARS-CoV-2-specific B and TÂcell responses in convalescent COVID-19 patients 6–8Âmonths after the infection. Med, 2021, 2, 281-295.e4.	2.2	153
233	The Importance and Challenges of Identifying SARS-CoV-2 Reinfections. Journal of Clinical Microbiology, 2021, 59, .	1.8	73
235	The Characterization of Disease Severity Associated IgG Subclasses Response in COVID-19 Patients. Frontiers in Immunology, 2021, 12, 632814.	2.2	62
236	mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science, 2021, 372, 1413-1418.	6.0	468
237	Neutralizing Monoclonal Anti-SARS-CoV-2 Antibodies Isolated from Immunized Rabbits Define Novel Vulnerable Spike-Protein Epitope. Viruses, 2021, 13, 566.	1.5	23
239	Monoclonal antibodies capable of binding SARS-CoV-2 spike protein receptor-binding motif specifically prevent GM-CSF induction. Journal of Leukocyte Biology, 2021, 111, 261-267.	1.5	13

#	Article	IF	CITATIONS
240	SARS-CoV-2 neutralizing human recombinant antibodies selected from pre-pandemic healthy donors binding at RBD-ACE2 interface. Nature Communications, 2021, 12, 1577.	5.8	73
241	SARS-CoV-2 Antigens Expressed in Plants Detect Antibody Responses in COVID-19 Patients. Frontiers in Plant Science, 2021, 12, 589940.	1.7	31
242	Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection. Cell, 2021, 184, 1188-1200.e19.	13.5	154
243	Correlates of Vaccine-Induced Protection against SARS-CoV-2. Vaccines, 2021, 9, 238.	2.1	49
244	Gender associates with both susceptibility to infection and pathogenesis of SARS-CoV-2 in Syrian hamster. Signal Transduction and Targeted Therapy, 2021, 6, 136.	7.1	57
246	Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host and Microbe, 2021, 29, 477-488.e4.	5.1	700
247	Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell, 2021, 184, 1171-1187.e20.	13.5	541
248	Two-tiered SARS-CoV-2 seroconversion screening in the Netherlands and stability of nucleocapsid, spike protein domain 1 and neutralizing antibodies. Infectious Diseases, 2021, 53, 498-512.	1.4	12
249	Lasting memories of SARS-CoV-2 infection. Journal of Experimental Medicine, 2021, 218, .	4.2	2
251	Dromedary camels as a natural source of neutralizing nanobodies against SARS-CoV-2. JCI Insight, 2021, 6, .	2.3	9
252	Antibody display technologies: selecting the cream of the crop. Biological Chemistry, 2022, 403, 455-477.	1.2	71
253	Broad-Spectrum Anti-coronavirus Vaccines and Therapeutics to Combat the Current COVID-19 Pandemic and Future Coronavirus Disease Outbreaks. Stem Cell Reports, 2021, 16, 398-411.	2.3	18
254	Engineering luminescent biosensors for point-of-care SARS-CoV-2 antibody detection. Nature Biotechnology, 2021, 39, 928-935.	9.4	106
255	Technology and Entrepreneurial Marketing Decisions During COVID-19. Global Journal of Flexible Systems Management, 2021, 22, 95-112.	3.4	39
257	A conserved immunogenic and vulnerable site on the coronavirus spike protein delineated by cross-reactive monoclonal antibodies. Nature Communications, 2021, 12, 1715.	5.8	138
258	COVID-19 vaccines: The status and perspectives in delivery points of view. Advanced Drug Delivery Reviews, 2021, 170, 1-25.	6.6	262
261	Drug discovery and development targeting the life cycle of SARS-CoV-2. Fundamental Research, 2021, 1, 151-165.	1.6	9
262	Immunogenicity of prime-boost protein subunit vaccine strategies against SARS-CoV-2 in mice and macaques. Nature Communications, 2021, 12, 1403.	5.8	65

	Сіта	tion Report	
#	Article	IF	CITATIONS
263	The effect of spike mutations on SARS-CoV-2 neutralization. Cell Reports, 2021, 34, 108890.	2.9	200
264	S-Trimer, a COVID-19 subunit vaccine candidate, induces protective immunity in nonhuman primates. Nature Communications, 2021, 12, 1346.	5.8	133
266	Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Based Novel Epitopes Induce Potent Immune Responses in vivo and Inhibit Viral Replication in vitro. Frontiers in Immunology, 2021, 12, 613045.	2.2	14
268	Single-Dilution COVID-19 Antibody Test with Qualitative and Quantitative Readouts. MSphere, 2021, 6,	. 1.3	11
269	Nanobody cocktails potently neutralize SARS-CoV-2 D614G N501Y variant and protect mice. Proceeding of the National Academy of Sciences of the United States of America, 2021, 118, .	gs 3.3	109
270	Shared B cell memory to coronaviruses and other pathogens varies in human age groups and tissues. Science, 2021, 372, 738-741.	6.0	47
271	Vitamin D and immuno-pathology of COVID-19: many interactions but uncertain therapeutic benefits. Expert Review of Anti-Infective Therapy, 2021, 19, 1245-1258.	2.0	8
272	Prophylaxis for COVID-19: a systematic review. Clinical Microbiology and Infection, 2021, 27, 532-537.	2.8	21
274	Novel ELISA Protocol Links Pre-Existing SARS-CoV-2 Reactive Antibodies With Endemic Coronavirus Immunity and Age and Reveals Improved Serologic Identification of Acute COVID-19 via Multi-Parameter Detection. Frontiers in Immunology, 2021, 12, 614676.	2.2	13
275	Modular basis for potent SARS-CoV-2 neutralization by a prevalent VH1-2-derived antibody class. Cell Reports, 2021, 35, 108950.	2.9	54
276	Coronavirus disease 2019 and the revival of passive immunization: Antibody therapy for inhibiting severe acute respiratory syndrome coronavirus 2 and preventing host cell infection: IUPHAR review 31. British Journal of Pharmacology, 2021, 178, 3359-3372.	2.7	10
277	No Evidence for Human Monocyte-Derived Macrophage Infection and Antibody-Mediated Enhancement of SARS-CoV-2 Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 644574.	1.8	35
278	Robust SARS-CoV-2 infection in nasal turbinates after treatment with systemic neutralizing antibodies. Cell Host and Microbe, 2021, 29, 551-563.e5.	5.1	87
279	NeutrobodyPlex—monitoring SARS oVâ€⊋ neutralizing immune responses using nanobodies. EMBC Reports, 2021, 22, e52325.) 2.0	43
280	The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Science Translational Medicine, 2021, 13, .	5.8	347
281	Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell, 2021, 184, 1821-1835.e16.	13.5	180
282	SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity. Science Advances, 2021, 7, .	4.7	107
283	Mefloquine, a Potent Anti-severe Acute Respiratory Syndrome-Related Coronavirus 2 (SARS-CoV-2) Drug as an Entry Inhibitor in vitro. Frontiers in Microbiology, 2021, 12, 651403.	1.5	25

#	Article	IF	CITATIONS
284	Neutralizing Antibody Therapeutics for COVID-19. Viruses, 2021, 13, 628.	1.5	99
286	Mutations derived from horseshoe bat ACE2 orthologs enhance ACE2-Fc neutralization of SARS-CoV-2. PLoS Pathogens, 2021, 17, e1009501.	2.1	97
289	A novel linker-immunodominant site (LIS) vaccine targeting the SARS-CoV-2 spike protein protects against severe COVID-19 in Syrian hamsters. Emerging Microbes and Infections, 2021, 10, 874-884.	3.0	11
292	Bridging animal and clinical research during SARS-CoV-2 pandemic: A new-old challenge. EBioMedicine, 2021, 66, 103291.	2.7	15
293	Evaluation of a commercially-available surrogate virus neutralization test for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Diagnostic Microbiology and Infectious Disease, 2021, 99, 115294.	0.8	80
294	Animal Models of COVID-19 II. Comparative Immunology. ILAR Journal, 2021, 62, 17-34.	1.8	20
297	Potent germline-like monoclonal antibodies: rapid identification of promising candidates for antibody-based antiviral therapy. Antibody Therapeutics, 2021, 4, 89-98.	1.2	0
299	Antibody Affinity Governs the Inhibition of SARS-CoV-2 Spike/ACE2 Binding in Patient Serum. ACS Infectious Diseases, 2021, 7, 2362-2369.	1.8	32
301	SARS-CoV-2 protein subunit vaccination of mice and rhesus macaques elicits potent and durable neutralizing antibody responses. Cell Reports Medicine, 2021, 2, 100252.	3.3	33
302	Antibodies and Vaccines Target RBD of SARS-CoV-2. Frontiers in Molecular Biosciences, 2021, 8, 671633.	1.6	108
303	N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell, 2021, 184, 2332-2347.e16.	13.5	784
304	Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell, 2021, 184, 2316-2331.e15.	13.5	321
305	Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell, 2021, 184, 1804-1820.e16.	13.5	297
307	Intranasal administration of a recombinant RBD vaccine induced protective immunity against SARS-CoV-2 in mouse. Vaccine, 2021, 39, 2280-2287.	1.7	47
309	Integrative overview of antibodies against SARS-CoV-2 and their possible applications in COVID-19 prophylaxis and treatment. Microbial Cell Factories, 2021, 20, 88.	1.9	37
310	Selection, identification, and characterization of SARS-CoV-2 monoclonal antibody resistant mutants. Journal of Virological Methods, 2021, 290, 114084.	1.0	1
311	Durable SARS-CoV-2 B cell immunity after mild or severe disease. Journal of Clinical Investigation, 2021, 131, .	3.9	76
312	A human coronavirus evolves antigenically to escape antibody immunity. PLoS Pathogens, 2021, 17, e1009453.	2.1	183

#	Article	IF	CITATIONS
314	Ageâ€dependent and genderâ€dependent antibody responses against <scp>SARSâ€CoV</scp> â€2 in health workers and octogenarians after vaccination with the <scp>BNT162b2 mRNA</scp> vaccine. American Journal of Hematology, 2021, 96, E257-E259.	2.0	138
315	Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. Cell Reports Medicine, 2021, 2, 100255.	3.3	402
319	SARS-CoV-2 spike variants exhibit differential infectivity and neutralization resistance to convalescent or post-vaccination sera. Cell Host and Microbe, 2021, 29, 522-528.e2.	5.1	173
322	The Mechanisms and Animal Models of SARS-CoV-2 Infection. Frontiers in Cell and Developmental Biology, 2021, 9, 578825.	1.8	20
324	Intermolecular Interaction Analyses on SARS-CoV-2 Spike Protein Receptor Binding Domain and Human Angiotensin-Converting Enzyme 2 Receptor-Blocking Antibody/Peptide Using Fragment Molecular Orbital Calculation. Journal of Physical Chemistry Letters, 2021, 12, 4059-4066.	2.1	22
326	Scrutinizing Coronaviruses Using Publicly Available Bioinformatic Tools: The Viral Structural Proteins as a Case Study. Frontiers in Molecular Biosciences, 2021, 8, 671923.	1.6	0
327	<scp>ACE2â€based</scp> decoy receptors for <scp>SARS</scp> coronavirus 2. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1065-1078.	1.5	23
329	SARS-CoV-2 evolution in an immunocompromised host reveals shared neutralization escape mechanisms. Cell, 2021, 184, 2605-2617.e18.	13.5	151
330	Dynamics of B cell repertoires and emergence of cross-reactive responses in patients with different severities of COVID-19. Cell Reports, 2021, 35, 109173.	2.9	46
331	Possible inhibition of GM-CSF production by SARS-CoV-2 spike-based vaccines. Molecular Medicine, 2021, 27, 49.	1.9	7
332	Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Science Advances, 2021, 7, .	4.7	113
333	Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes. Science, 2021, 372, 1108-1112.	6.0	210
334	Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature, 2021, 594, 553-559.	13.7	199
335	Cross-reactive serum and memory B-cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection. Nature Communications, 2021, 12, 2938.	5.8	219
336	IgV somatic mutation of human anti–SARS-CoV-2 monoclonal antibodies governs neutralization and breadth of reactivity. JCl Insight, 2021, 6, .	2.3	13
337	Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants. Science, 2021, 373, 818-823.	6.0	309
339	High-resolution profiling of pathways of escape for SARS-CoV-2 spike-binding antibodies. Cell, 2021, 184, 2927-2938.e11.	13.5	35
340	SARS-CoV-2 cell entry and targeted antiviral development. Acta Pharmaceutica Sinica B, 2021, 11, 3879-3888.	5.7	21

		CITATION R	EPORT	
#	Article		IF	CITATIONS
341	Adaptive immune responses to SARS-CoV-2. Advanced Drug Delivery Reviews, 2021, 172,	1-8.	6.6	6
342	A combination of cross-neutralizing antibodies synergizes to prevent SARS-CoV-2 and SAI pseudovirus infection. Cell Host and Microbe, 2021, 29, 806-818.e6.	RS-CoV	5.1	49
343	Therapeutic Potential of Exploiting Autophagy Cascade Against Coronavirus Infection. Fro Microbiology, 2021, 12, 675419.	ntiers in	1.5	25
344	Validation of a commercially available indirect assay for SARS-CoV-2 neutralising antibodic pseudotyped virus assay. Journal of Infection, 2021, 82, 170-177.	es using a	1.7	27
345	Outpatient Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 Infection to F Coronavirus Disease 2019 Progression. Clinical Infectious Diseases, 2021, 73, 1717-1721		2.9	16
346	Effective high-throughput isolation of fully human antibodies targeting infectious pathog Protocols, 2021, 16, 3639-3671.	ens. Nature	5.5	29
349	Coronavirus Disease 19 and Future Ecological Crises: Hopes from Epigenomics and Unrav Regulation in Humans and Infectious Agents. OMICS A Journal of Integrative Biology, 202		1.0	1
350	Potent Molecular Feature-based Neutralizing Monoclonal Antibodies as Promising Therap Against SARS-CoV-2 Infection. Frontiers in Molecular Biosciences, 2021, 8, 670815.	eutics	1.6	17
352	Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II cells. Cell Reports, 2021, 35, 109179.	on dendritic	2.9	63
353	A SARS-CoV-2 neutralizing antibody with extensive Spike binding coverage and modified therapeutic outcomes. Nature Communications, 2021, 12, 2623.	or optimal	5.8	64
354	Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain targ supersite. Cell Host and Microbe, 2021, 29, 819-833.e7.	et a single	5.1	444
356	An Engineered Receptor-Binding Domain Improves the Immunogenicity of Multivalent SA Vaccines. MBio, 2021, 12, .	RS-CoV-2	1.8	20
358	Longitudinal analysis of humoral immunity against SARS-CoV-2 Spike in convalescent indi 8Âmonths post-symptom onset. Cell Reports Medicine, 2021, 2, 100290.	viduals up to	3.3	145
359	Sequence-Signature Optimization Enables Improved Identification of Human HV6-1-Deriv Antibodies That Neutralize Diverse Influenza A Viruses. Frontiers in Immunology, 2021, 12		2.2	0
360	Evaluation of Cellular and Serological Responses to Acute SARS-CoV-2 Infection Demonst Functional Importance of the Receptor-Binding Domain. Journal of Immunology, 2021, 20	rates the 6, 2605-2613.	0.4	7
362	Computational <i>Ab Initio</i> Interaction Analyses between Neutralizing Antibody and S Variant Spike Proteins Using the Fragment Molecular Orbital Method. Bulletin of the Cher Society of Japan, 2021, 94, 1794-1798.		2.0	4
363	Cross-reactive coronavirus antibodies with diverse epitope specificities and Fc effector fu Cell Reports Medicine, 2021, 2, 100313.	nctions.	3.3	56
365	Implementing a method for engineering multivalency to substantially enhance binding of anti-SARS-CoV-2 antibodies to wildtype spike and variants of concern proteins. Scientific 11, 10475.	clinical trial Reports, 2021,	1.6	6

ARTICLE IF CITATIONS # Structural basis for broad coronavirus neutralization. Nature Structural and Molecular Biology, 3.6 152 366 2021, 28, 478-486. Current Overviews on COVID-19 Management Strategies. Current Pharmaceutical Biotechnology, 2021, 367 9 22, . Short-term antibody response after 1 dose of BNT162b2 vaccine in patients receiving hemodialysis. 368 0.9 40 Cmaj, 2021, 193, E793-E800. SARS-CoV-2-neutralising monoclonal antibodies to prevent COVID-19. The Cochrane Library, 0, , . 371 Human Immunodeficiency Viruses Pseudotyped with SARS-CoV-2 Spike Proteins Infect a Broad Spectrum 372 1.5 17 of Human Cell Lines through Multiple Entry Mechanisms. Viruses, 2021, 13, 953. Asymptomatic and symptomatic SARS-CoV-2 infections elicit polyfunctional antibodies. Cell Reports 374 3.3 64 Médicine, 2021, 2, 100275. Diverse immunoglobulin gene usage and convergent epitope targeting in neutralizing antibody 375 2.9 21 responses to SARS-CoV-2. Cell Reports, 2021, 35, 109109. Prospects of Neutralizing Nanobodies Against SARS-CoV-2. Frontiers in Immunology, 2021, 12, 690742. 2.2 376 Structural basis for SARS-CoV-2 neutralizing antibodies with novel binding epitopes. PLoS Biology, 377 2.6 31 2021, 19, e3001209. 378 On the road to ending the COVID-19 pandemic: Are we there yet?. Virology, 2021, 557, 70-85. 1.1 38 Rotavirus as an Expression Platform of Domains of the SARS-CoV-2 Spike Protein. Vaccines, 2021, 9, 449. 379 2.1 17 Self-Assembling Nanoparticle Vaccines Displaying the Receptor Binding Domain of SARS-CoV-2 Elicit 380 1.8 Robust Protective Immune Responses in Rhesus Monkeys. Bioconjugate Chemistry, 2021, 32, 1034-1046. Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human 381 4.7 42 monoclonal antibody 47D11. Science Advances, 2021, 7, . COVID-19 one year into the pandemic: from genetics and genomics to therapy, vaccination, and policy. 1.4 39 Human Genomics, 2021, 15, 27. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 383 15.2 3,133 infection. Nature Medicine, 2021, 27, 1205-1211. A review of monoclonal antibodies in COVID-19: Role in immunotherapy, vaccine development and viral 384 detection. Human Antibodies, 2021, 29, 1-13. Sequence signatures of two public antibody clonotypes that bind SARS-CoV-2 receptor binding domain. 388 5.844 Nature Communications, 2021, 12, 3815. 389 Human Defensins Inhibit SARS-CoV-2 Infection by Blocking Viral Entry. Viruses, 2021, 13, 1246. 1.5

#	Article	IF	CITATIONS
390	Early and High SARS-CoV-2 Neutralizing Antibodies Are Associated with Severity in COVID-19 Patients from India. American Journal of Tropical Medicine and Hygiene, 2021, , .	0.6	9
391	An mRNA SARS-CoV-2 Vaccine Employing Charge-Altering Releasable Transporters with a TLR-9 Agonist Induces Neutralizing Antibodies and T Cell Memory. ACS Central Science, 2021, 7, 1191-1204.	5.3	34
392	Multivalency transforms SARS-CoV-2 antibodies into ultrapotent neutralizers. Nature Communications, 2021, 12, 3661.	5.8	48
394	Homologous and heterologous serological response to the Nâ€ŧerminal domain of SARSâ€CoVâ€2 in humans and mice. European Journal of Immunology, 2021, 51, 2296-2305.	1.6	7
395	SARS-CoV-2 Neutralizing Human Antibodies Protect Against Lower Respiratory Tract Disease in a Hamster Model. Journal of Infectious Diseases, 2021, 223, 2020-2028.	1.9	28
396	Decay of Fc-dependent antibody functions after mild to moderate COVID-19. Cell Reports Medicine, 2021, 2, 100296.	3.3	56
397	Structure-based Design of a Specific, Homogeneous Luminescence Enzyme Reporter Assay for SARS-CoV-2. Journal of Molecular Biology, 2021, 433, 166983.	2.0	1
398	The Fc-mediated effector functions of a potent SARS-CoV-2 neutralizing antibody, SC31, isolated from an early convalescent COVID-19 patient, are essential for the optimal therapeutic efficacy of the antibody. PLoS ONE, 2021, 16, e0253487.	1.1	76
399	Extracellular vesicles carry SARS oVâ€2 spike protein and serve as decoys for neutralizing antibodies. Journal of Extracellular Vesicles, 2021, 10, e12112.	5.5	44
400	In Search of the SARS-CoV-2 Protection Correlate: Head-to-Head Comparison of Two Quantitative S1 Assays in Pre-characterized Oligo-/Asymptomatic Patients. Infectious Diseases and Therapy, 2021, 10, 1505-1518.	1.8	53
401	Unleashing the potential of cell membrane-based nanoparticles for COVID-19 treatment and vaccination. Expert Opinion on Drug Delivery, 2021, 18, 1395-1414.	2.4	14
402	Potent neutralizing RBDâ€specific antibody cocktail against SARS oVâ€2 and its mutant. MedComm, 2021, 2, 442-452.	3.1	8
404	Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant. Immunity, 2021, 54, 1276-1289.e6.	6.6	112
405	Single-Dose Immunization With a Chimpanzee Adenovirus-Based Vaccine Induces Sustained and Protective Immunity Against SARS-CoV-2 Infection. Frontiers in Immunology, 2021, 12, 697074.	2.2	18
406	Cross-Reactive SARS-CoV-2 Neutralizing Antibodies From Deep Mining of Early Patient Responses. Frontiers in Immunology, 2021, 12, 678570.	2.2	16
408	Rapid, simplified whole blood-based multiparameter assay to quantify and phenotype SARS-CoV-2-specific T-cells. European Respiratory Journal, 2022, 59, 2100285.	3.1	14
410	A Rapid Assay for SARS-CoV-2 Neutralizing Antibodies That Is Insensitive to Antiretroviral Drugs. Journal of Immunology, 2021, 207, 344-351.	0.4	5
411	Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduction and Targeted Therapy, 2021, 6, 233.	7.1	203

ARTICLE IF CITATIONS # Epitope Classification and RBD Binding Properties of Neutralizing Antibodies Against SARS-CoV-2 412 2.2 76 Variants of Concern. Frontiers in Immunology, 2021, 12, 691715. Animal models for SARS-CoV-2. Current Opinion in Virology, 2021, 48, 73-81. 2.6 Experimental Models for SARS-CoV-2 Infection. Molecules and Cells, 2021, 44, 377-383. 1.0 414 6 Nanotraps for the containment and clearance of SARS-CoV-2. Matter, 2021, 4, 2059-2082. Multiplexed, quantitative serological profiling of COVID-19 from blood by a point-of-care test. Science 416 4.7 42 Advances, 2021, 7, . Structural insight into SARS-CoV-2 neutralizing antibodies and modulation of syncytia. Cell, 2021, 184, 13.5 3192-3204.e16. A single dose of self-transcribing and replicating RNA-based SARS-CoV-2 vaccine produces protective 418 3.7 111 adaptive immunity in mice. Molecular Therapy, 2021, 29, 1970-1983. Recent advances in antibodyâ€based immunotherapy strategies for COVIDâ€19. Journal of Cellular 419 1.2 26 Biochemistry, 2021, 122, 1389-1412. 421 Tackling COVID-19 with neutralizing monoclonal antibodies. Cell, 2021, 184, 3086-3108. 13.5 309 Kinetics and correlates of the neutralizing antibody response to SARS-CoV-2 infection in humans. Cell 5.1 132 Host and Microbe, 2021, 29, 917-929.e4 Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature, 2021, 423 13.7 610 595, 426-431. Al-guided discovery of the invariant host response to viral pandemics. EBioMedicine, 2021, 68, 103390. 424 Detection and Neutralization of SARS-CoV-2 Using Non-conventional Variable Lymphocyte Receptor 426 2.2 2 Antibodies of the Evolutionarily Distant Sea Lamprey. Frontiers in Immunology, 2021, 12, 659071. A SARS-CoV-2 Label-Free Surrogate Virus Neutralization Test and a Longitudinal Study of Antibody 1.8 Characteristics in COVID-19 Patients. Journal of Clinical Microbiology, 2021, 59, e0019321. The total number and mass of SARS-CoV-2 virions. Proceedings of the National Academy of Sciences of 429 3.3 187 the United States of America, 2021, 118, . Comprehensive Deep Mutational Scanning Reveals the Immune-Escaping Hotspots of SARS-CoV-2 Receptor-Binding Domain Targeting Neutralizing Antibodies. Frontiers in Microbiology, 2021, 12, 698365. Adaptation of the MTT assay for detection of neutralizing antibodies against the SARS-CoV-2 virus. 432 0.3 10 Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2021, 98, 253-265. Diagnostic accuracy of three SARS-CoV2 antibody detection assays, neutralizing effect and longevity of serum antibodies. Journal of Virological Methods, 2021, 293, 114173.

#	Article	IF	CITATIONS
436	Screening of potent neutralizing antibodies against SARS-CoV-2 using convalescent patients-derived phage-display libraries. Cell Discovery, 2021, 7, 57.	3.1	28
437	Long-Term Persistence of Spike Protein Antibody and Predictive Modeling of Antibody Dynamics After Infection With Severe Acute Respiratory Syndrome Coronavirus 2. Clinical Infectious Diseases, 2022, 74, 1220-1229.	2.9	45
438	Antibodies Responses to SARS-CoV-2 in a Large Cohort of Vaccinated Subjects and Seropositive Patients. Vaccines, 2021, 9, 714.	2.1	25
440	Neutralizing Antibody Responses After SARS-CoV-2 Infection in End-Stage Kidney Disease and Protection Against Reinfection. Kidney International Reports, 2021, 6, 1799-1809.	0.4	13
441	Early treatment with a combination of two potent neutralizing antibodies improves clinical outcomes and reduces virus replication and lung inflammation in SARS-CoV-2 infected macaques. PLoS Pathogens, 2021, 17, e1009688.	2.1	16
442	Validation of a combined ELISA to detect IgG, IgA and IgM antibody responses to SARS-CoV-2 in mild or moderate non-hospitalised patients. Journal of Immunological Methods, 2021, 494, 113046.	0.6	40
445	Reshaping cell line development and <scp>CMC</scp> strategy for fast responses to pandemic outbreak. Biotechnology Progress, 2021, 37, e3186.	1.3	20
446	SARS-CoV-2 neutralizing antibodies: Longevity, breadth, and evasion by emerging viral variants. PLoS Medicine, 2021, 18, e1003656.	3.9	109
448	Antibody and B cell responses to SARS-CoV-2 infection and vaccination. Cell Host and Microbe, 2021, 29, 1063-1075.	5.1	99
449	Identification of Human SARS-CoV-2 Monoclonal Antibodies from Convalescent Patients Using EBV Immortalization. Antibodies, 2021, 10, 26.	1.2	1
450	SARS-CoV-2 RBD-Tetanus Toxoid Conjugate Vaccine Induces a Strong Neutralizing Immunity in Preclinical Studies. ACS Chemical Biology, 2021, 16, 1223-1233.	1.6	57
454	Identification of Novel Neutralizing Monoclonal Antibodies against SARS-CoV-2 Spike Glycoprotein. ACS Pharmacology and Translational Science, 2021, 4, 1349-1361.	2.5	3
455	Cross-reactive antibodies against human coronaviruses and the animal coronavirome suggest diagnostics for future zoonotic spillovers. Science Immunology, 2021, 6, .	5.6	26
456	Neutralising SARS-CoV-2 RBD-specific antibodies persist for at least six months independently of symptoms in adults. Communications Medicine, 2021, 1, .	1.9	19
457	Isolation and characterization of cross-neutralizing coronavirus antibodies from COVID-19+ subjects. Cell Reports, 2021, 36, 109353.	2.9	95
458	Protective antibodies elicited by SARS-CoV-2 spike protein vaccination are boosted in the lung after challenge in nonhuman primates. Science Translational Medicine, 2021, 13, .	5.8	56
459	Immunogenicity and Protective Efficacy of a Highly Thermotolerant, Trimeric SARS-CoV-2 Receptor Binding Domain Derivative. ACS Infectious Diseases, 2021, 7, 2546-2564.	1.8	34
460	Recent progress of surface plasmon resonance in the development of coronavirus disease-2019 drug candidates. European Journal of Medicinal Chemistry Reports, 2021, 1, 100003.	0.6	8

		CITATION REPORT		
#	Article		IF	Citations
463	Prevention and therapy of SARS-CoV-2 and the B.1.351 variant in mice. Cell Reports, 20)21, 36, 109450.	2.9	38
464	SARS-CoV-2 neutralising antibody testing in Europe: towards harmonisation of neutralistitres for better use of convalescent plasma and comparability of trial data. Eurosurveill 26, .		3.9	31
465	Neutralizing Antibodies Against Severe Acute Respiratory Syndrome Coronavirus 2 (SA Variants Induced by Natural Infection or Vaccination: A Systematic Review and Pooled A Clinical Infectious Diseases, 2022, 74, 734-742.		2.9	88
466	Subacute SARS-CoV-2 replication can be controlled in the absence of CD8+ÂT cells inÂcynomolgusÂmacaques. PLoS Pathogens, 2021, 17, e1009668.		2.1	9
467	Potent and protective IGHV3-53/3-66 public antibodies and their shared escape mutant SARS-CoV-2. Nature Communications, 2021, 12, 4210.	on the spike of	5.8	82
469	A Single-Cell Atlas of Lymphocyte Adaptive Immune Repertoires and Transcriptomes Re Differences in Convalescent COVID-19 Patients. Frontiers in Immunology, 2021, 12, 70	veals Age-Related 1085.	2.2	33
470	A synthetic nanobody targeting RBD protects hamsters from SARS-CoV-2 infection. Nat Communications, 2021, 12, 4635.	ture	5.8	72
471	Patient-blood management for COVID19 convalescent plasma therapy: relevance of aff donor–recipient differences in concentration of neutralizing antibodies. Clinical Micro Infection, 2021, 27, 987-992.		2.8	6
472	Immunological mechanisms of vaccine-induced protection against COVID-19 in human Immunology, 2021, 21, 475-484.	s. Nature Reviews	10.6	434
473	Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antige and modes of action. Npj Vaccines, 2021, 6, 104.	n presentation	2.9	241
474	Sex Disparities and Neutralizing-Antibody Durability to SARS-CoV-2 Infection in Convale Individuals. MSphere, 2021, 6, e0027521.	scent	1.3	36
475	Salicylanilides Reduce SARS-CoV-2 Replication and Suppress Induction of Inflammatory Rodent Model. ACS Infectious Diseases, 2021, 7, 2229-2237.	Cytokines in a	1.8	12
477	Convergent antibody responses to the SARS-CoV-2 spike protein in convalescent and v individuals. Cell Reports, 2021, 36, 109604.	accinated	2.9	67
478	Deep geometric representations for modeling effects of mutations on protein-protein b PLoS Computational Biology, 2021, 17, e1009284.	inding affinity.	1.5	45
479	Robust and low-cost ELISA based on IgG-Fc tagged recombinant proteins to screen for a antibodies. Journal of Immunological Methods, 2021, 495, 113082.	anti-SARS-CoV-2	0.6	6
480	Adult stem cell-derived complete lung organoid models emulate lung disease in COVID- 10, .	19. ELife, 2021,	2.8	64
481	InÂvitro and inÂvivo functions of SARS-CoV-2 infection-enhancing and neutralizing anti 2021, 184, 4203-4219.e32.	bodies. Cell,	13.5	228
483	SARS-CoV-2 Neutralizing Antibodies for COVID-19 Prevention and Treatment. Annual R Medicine, 2022, 73, 1-16.	eview of	5.0	91

#	Article	IF	CITATIONS
487	Identification of potent human neutralizing antibodies against SARS-CoV-2 implications for development of therapeutics and prophylactics. Nature Communications, 2021, 12, 4887.	5.8	14
488	Pressing Questions and Challenges in the HIV-1 and SARS-CoV-2 Syndemic. AIDS Research and Human Retroviruses, 2021, 37, 589-600.	0.5	5
489	The impact of high-resolution structural data on stemming the COVID-19 pandemic. Current Opinion in Virology, 2021, 49, 127-138.	2.6	2
492	One-shot identification of SARS-CoV-2ÂS RBD escape mutants using yeast screening. Cell Reports, 2021, 36, 109627.	2.9	35
493	Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. ELife, 2021, 10, .	2.8	267
494	Affinity maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth, and resilience to viral escape mutations. Immunity, 2021, 54, 1853-1868.e7.	6.6	230
496	Opportunities and challenges to the use of neutralizing monoclonal antibody therapies for COVID-19. BioScience Trends, 2021, 15, 205-210.	1.1	8
498	Modelling conformational state dynamics and its role on infection for SARS-CoV-2 Spike protein variants. PLoS Computational Biology, 2021, 17, e1009286.	1.5	79
499	A SARS-CoV-2 antibody broadly neutralizes SARS-related coronaviruses and variants by coordinated recognition of a virus-vulnerable site. Immunity, 2021, 54, 2385-2398.e10.	6.6	46
500	Integrated single-cell analysis revealed immune dynamics during Ad5-nCoV immunization. Cell Discovery, 2021, 7, 64.	3.1	22
501	Animal Models for COVID-19: Hamsters, Mouse, Ferret, Mink, Tree Shrew, and Non-human Primates. Frontiers in Microbiology, 2021, 12, 626553.	1.5	90
502	An Overview of the Pathogenesis, Transmission, Diagnosis, and Management of Endemic Human Coronaviruses: A Reflection on the Past and Present Episodes and Possible Future Outbreaks. Pathogens, 2021, 10, 1108.	1.2	14
503	Understanding neutralising antibodies against SARS-CoV-2 and their implications in clinical practice. Military Medical Research, 2021, 8, 47.	1.9	88
504	SARS-CoV-2 Serology Status Detected by Commercialized Platforms Distinguishes Previous Infection and Vaccination Adaptive Immune Responses. journal of applied laboratory medicine, The, 2021, 6, 1109-1122.	0.6	24
505	SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	251
506	Temporal maturation of neutralizing antibodies in COVID-19 convalescent individuals improves potency and breadth to circulating SARS-CoV-2 variants. Immunity, 2021, 54, 1841-1852.e4.	6.6	114
507	Comparative kinetics of SARS-CoV-2 anti-spike protein RBD IgGs and neutralizing antibodies in convalescent and naìve recipients of the BNT162b2 mRNA vaccine versus COVID-19 patients. BMC Medicine, 2021, 19, 208.	2.3	52
508	A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope. Immunity, 2021, 54, 2399-2416.e6.	6.6	79

#	Article	IF	CITATIONS
509	Endogenous Regulation and Pharmacological Modulation of Sepsis-Induced HMGB1 Release and Action: An Updated Review. Cells, 2021, 10, 2220.	1.8	14
510	Correlation between a quantitative antiâ€SARSâ€CoVâ€2 IgG ELISA and neutralization activity. Journal of Medical Virology, 2022, 94, 388-392.	2.5	89
511	Diversity of ACE2 and its interaction with SARS-CoV-2 receptor binding domain. Biochemical Journal, 2021, 478, 3671-3684.	1.7	12
513	A cell-free nanobody engineering platform rapidly generates SARS-CoV-2 neutralizing nanobodies. Nature Communications, 2021, 12, 5506.	5.8	38
514	A vaccine-induced public antibody protects against SARS-CoV-2 and emerging variants. Immunity, 2021, 54, 2159-2166.e6.	6.6	52
515	Broad cross-reactivity across sarbecoviruses exhibited by a subset of COVID-19 donor-derived neutralizing antibodies. Cell Reports, 2021, 36, 109760.	2.9	80
516	IgG Antibodies Develop to Spike but Not to the Nucleocapsid Viral Protein in Many Asymptomatic and Light COVID-19 Cases. Viruses, 2021, 13, 1945.	1.5	16
517	Evaluation of Cell-Based and Surrogate SARS-CoV-2 Neutralization Assays. Journal of Clinical Microbiology, 2021, 59, e0052721.	1.8	71
518	Differential Antibody Response to SARS-CoV-2 Antigens in Recovered and Deceased Iranian COVID-19 Patients. Viral Immunology, 2021, 34, 708-713.	0.6	2
519	Bispecific antibodies targeting distinct regions of the spike protein potently neutralize SARS-CoV-2 variants of concern. Science Translational Medicine, 2021, 13, eabj5413.	5.8	79
520	An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope. Protein and Cell, 2022, 13, 655-675.	4.8	25
521	What we know and still ignore on COVIDâ€19 immune pathogenesis and a proposal based on the experience of allergic disorders. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1114-1128.	2.7	6
522	Potent neutralization of SARS-CoV-2 variants of concern by an antibody with an uncommon genetic signature and structural mode of spike recognition. Cell Reports, 2021, 37, 109784.	2.9	20
524	Immunogenicity of Pfizer-BioNTech COVID-19 vaccine in patients with inborn errors of immunity. Journal of Allergy and Clinical Immunology, 2021, 148, 739-749.	1.5	151
525	Live imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy. Immunity, 2021, 54, 2143-2158.e15.	6.6	155
526	Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in people living with and without HIV in South Africa: an interim analysis of a randomised, double-blind, placebo-controlled, phase 1B/2A trial. Lancet HIV,the, 2021, 8, e568-e580.	2.1	124
527	Antibody screening at reduced <scp>pH</scp> enables preferential selection of potently neutralizing antibodies targeting <scp>SARSâ€CoV</scp> â€2. AICHE Journal, 2021, 67, e17440.	1.8	4
530	Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nature Microbiology, 2021, 6, 1233-1244.	5.9	237

#	Article	IF	CITATIONS
531	An outlook on antigen-specific adoptive immunotherapy for viral infections with a focus on COVID-19. Cellular Immunology, 2021, 367, 104398.	1.4	5
533	Neutralizing antibodies for the prevention and treatment of COVID-19. Cellular and Molecular Immunology, 2021, 18, 2293-2306.	4.8	91
535	Longitudinal observation of antibody responses for 14Âmonths after SARS-CoV-2 infection. Clinical Immunology, 2021, 230, 108814.	1.4	26
536	Detection of SARS-CoV-2 antibodies formed in response to the BNT162b2 and mRNA-1237 mRNA vaccine by commercial antibody tests. Vaccine, 2021, 39, 5563-5570.	1.7	14
537	Review of Early Immune Response to SARS-CoV-2 Vaccination Among Patients With CKD. Kidney International Reports, 2021, 6, 2292-2304.	0.4	96
538	SCIGA: Software for large-scale, single-cell immunoglobulin repertoire analysis. GigaScience, 2021, 10, ·	3.3	0
540	Receptor binding, immune escape, and protein stability direct the natural selection of SARS-CoV-2 variants. Journal of Biological Chemistry, 2021, 297, 101208.	1.6	37
541	Memory B cell repertoire for recognition of evolving SARS-CoV-2 spike. Cell, 2021, 184, 4969-4980.e15.	13.5	94
543	Structural biology of SARS-CoV-2 and implications for therapeutic development. Nature Reviews Microbiology, 2021, 19, 685-700.	13.6	259
544	Tetravalent SARS-CoV-2 Neutralizing Antibodies Show Enhanced Potency and Resistance to Escape Mutations. Journal of Molecular Biology, 2021, 433, 167177.	2.0	31
545	Adaptive immune responses to SARS-CoV-2 in recovered severe COVID-19 patients. Journal of Clinical Virology, 2021, 142, 104943.	1.6	9
546	Vaccinia virus-based vaccines confer protective immunity against SARS-CoV-2 virus in Syrian hamsters. PLoS ONE, 2021, 16, e0257191.	1.1	19
547	Cross-neutralization of SARS-CoV-2 by HIV-1 specific broadly neutralizing antibodies and polyclonal plasma. PLoS Pathogens, 2021, 17, e1009958.	2.1	20
548	Landscape of human antibody recognition of the SARS-CoV-2 receptor binding domain. Cell Reports, 2021, 37, 109822.	2.9	35
549	A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19. Nature Communications, 2021, 12, 5469.	5.8	102
550	Development of a Recombinant RBD Subunit Vaccine for SARS-CoV-2. Viruses, 2021, 13, 1936.	1.5	9
551	Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell, 2021, 184, 5432-5447.e16.	13.5	131
552	Paired heavy- and light-chain signatures contribute to potent SARS-CoV-2 neutralization in public antibody responses. Cell Reports, 2021, 37, 109771.	2.9	38

#	Article	IF	CITATIONS
553	Prevalence of SARS-CoV-2 IgG antibodies and their association with clinical symptoms of COVID-19 in Estonia (KoroSero-EST-1 study). Vaccine, 2021, 39, 5376-5384.	1.7	9
555	Durable Antibody Responses in Staff at Two Long-Term Care Facilities, during and Post SARS-CoV-2 Outbreaks. Microbiology Spectrum, 2021, 9, e0022421.	1.2	8
556	Antibody Response against SARS-CoV-2 Infection: Implications for Diagnosis, Treatment and Vaccine Development. International Reviews of Immunology, 2022, 41, 393-413.	1.5	13
557	High genetic barrier to SARS-CoV-2 polyclonal neutralizing antibody escape. Nature, 2021, 600, 512-516.	13.7	174
558	Kinetics of SARS-CoV-2 Specific and Neutralizing Antibodies over Seven Months after Symptom Onset in COVID-19 Patients. Microbiology Spectrum, 2021, 9, e0059021.	1.2	27
559	SARS-CoV-2 S2P spike ages through distinct states with altered immunogenicity. Journal of Biological Chemistry, 2021, 297, 101127.	1.6	9
560	CD38 in the age of COVID-19: a medical perspective. Physiological Reviews, 2021, 101, 1457-1486.	13.1	32
561	Animal models of SARS-CoV-2 transmission. Current Opinion in Virology, 2021, 50, 8-16.	2.6	21
562	Anti-SARS-CoV-2 and anti-cytokine storm neutralizing antibody therapies against COVID-19: Update, challenges, and perspectives. International Immunopharmacology, 2021, 99, 108036.	1.7	10
563	Neutralizing antibody response to SARS-CoV-2 persists 9 months post symptom onset in mild and asymptomatic patients. International Journal of Infectious Diseases, 2021, 112, 8-12.	1.5	5
564	Adenovirus transduction to express human ACE2 causes obesity-specific morbidity in mice, impeding studies on the effect of host nutritional status on SARS-CoV-2 pathogenesis. Virology, 2021, 563, 98-106.	1.1	6
565	Animal models of SARS-CoV-2 and COVID-19 for the development of prophylactic and therapeutic interventions. , 2021, 228, 107931.		18
568	SARS-CoV-2 Cellular Infection and Therapeutic Opportunities: Lessons Learned from Ebola Virus. Membranes, 2021, 11, 64.	1.4	0
571	Convalescent plasma-mediated resolution of COVID-19 in a patient with humoral immunodeficiency. Cell Reports Medicine, 2021, 2, 100164.	3.3	26
572	Adjuvanted SARS-CoV-2 spike protein elicits neutralizing antibodies and CD4 T cell responses after a single immunization in mice. EBioMedicine, 2021, 63, 103197.	2.7	31
575	Pharmacotherapeutics of SARS-CoV-2 Infections. Journal of NeuroImmune Pharmacology, 2021, 16, 12-37.	2.1	4
576	Delivery of mRNA Vaccine against SARS-CoV-2 Using a Polyglucin:Spermidine Conjugate. Vaccines, 2021, 9, 76.	2.1	28
580	Development and application of therapeutic antibodies against COVID-19. International Journal of Biological Sciences, 2021, 17, 1486-1496.	2.6	47

#	Article	IF	CITATIONS
583	Potent mouse monoclonal antibodies that block SARS-CoV-2 infection. Journal of Biological Chemistry, 2021, 296, 100346.	1.6	15
585	SARS-CoV-2-Associated T-Cell Responses in the Presence of Humoral Immunodeficiency. International Archives of Allergy and Immunology, 2021, 182, 195-209.	0.9	39
586	Potent RBD-specific neutralizing rabbit monoclonal antibodies recognize emerging SARS-CoV-2 variants elicited by DNA prime-protein boost vaccination. Emerging Microbes and Infections, 2021, 10, 1390-1403.	3.0	16
587	An overview of methods for the structural and functional mapping of epitopes recognized by anti-SARS-CoV-2 antibodies. RSC Chemical Biology, 2021, 2, 1580-1589.	2.0	4
588	Antibody neutralization of SARS-CoV-2 through ACE2 receptor mimicry. Nature Communications, 2021, 12, 250.	5.8	108
589	Virusâ€Free and Liveâ€Cell Visualizing SARSâ€CoVâ€2 Cell Entry for Studies of Neutralizing Antibodies and Compound Inhibitors. Small Methods, 2021, 5, 2001031.	4.6	25
590	Antibody response and therapy in COVID-19 patients: what can be learned for vaccine development?. Science China Life Sciences, 2020, 63, 1833-1849.	2.3	29
591	Human Monoclonal Antibodies: On the Menu of Targeted Therapeutics Against COVID-19. Virologica Sinica, 2020, 35, 713-724.	1.2	10
592	ACTIVating Resources for the COVID-19 Pandemic: InÂVivo Models for Vaccines and Therapeutics. Cell Host and Microbe, 2020, 28, 646-659.	5.1	36
593	Crippling life support for SARS-CoV-2 and other viruses through synthetic lethality. Journal of Cell Biology, 2020, 219, .	2.3	20
594	Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. Journal of Experimental Medicine, 2021, 218, .	4.2	283
595	Establishment of a Collection of Blood-Derived Products from COVID-19 Patients for Translational Research: Experience of the LPCE Biobank (Nice, France). Biopreservation and Biobanking, 2020, 18, 517-524.	0.5	11
596	Neutralizing antibodies against SARS-CoV-2: current understanding, challenge and perspective. Antibody Therapeutics, 2020, 3, 285-299.	1.2	34
597	Role of Immunoglobulin M and A Antibodies in the Neutralization of Severe Acute Respiratory Syndrome Coronavirus 2. Journal of Infectious Diseases, 2021, 223, 957-970.	1.9	64
598	The development of neutralizing antibodies against SARS-CoV-2 and their common features. Journal of Molecular Cell Biology, 2021, 12, 980-986.	1.5	13
722	Monitor for COVID-19 vaccine resistance evolution during clinical trials. PLoS Biology, 2020, 18, e3001000.	2.6	50
723	CD8 T cell epitope generation toward the continually mutating SARS-CoV-2 spike protein in genetically diverse human population: Implications for disease control and prevention. PLoS ONE, 2020, 15, e0239566.	1.1	18
724	Antibody response to SARS-CoV-2 infection in humans: A systematic review. PLoS ONE, 2020, 15, e0244126.	1.1	269

#	Article	IF	CITATIONS
725	A natural mutation between SARS-CoV-2 and SARS-CoV determines neutralization by a cross-reactive antibody. PLoS Pathogens, 2020, 16, e1009089.	2.1	55
728	Progress in Studies on Structural and Remedial Aspects of Newly Born Coronavirus, SARS-CoV-2. Current Topics in Medicinal Chemistry, 2020, 20, 2362-2378.	1.0	6
729	Deep Sequencing of B Cell Receptor Repertoires From COVID-19 Patients Reveals Strong Convergent Immune Signatures. Frontiers in Immunology, 2020, 11, 605170.	2.2	101
730	Lead SARS-CoV-2 Candidate Vaccines: Expectations from Phase III Trials and Recommendations Post-Vaccine Approval. Viruses, 2021, 13, 54.	1.5	61
731	SARS, SARS again, and MERS. Review of animal models of human respiratory syndromes caused by coronavirus infections. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2020, 97, 431-444.	0.3	2
732	Newly Emerging Human Coronaviruses: Animal Models and Vaccine Research for SARS, MERS, and COVID-19. Immune Network, 2020, 20, e28.	1.6	8
733	Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. ELife, 2020, 9, .	2.8	1,239
734	Neutralizing SARS-CoV-2. ELife, 2020, 9, .	2.8	5
735	SARS-CoV-2: Pathogenic Mechanisms and Host Immune Response. Advances in Experimental Medicine and Biology, 2021, 1313, 99-134.	0.8	6
736	Germinal Center-Induced Immunity Is Correlated With Protection Against SARS-CoV-2 Reinfection But Not Lung Damage. Journal of Infectious Diseases, 2021, 224, 1861-1872.	1.9	6
737	Antibody-dependent cellular cytotoxicity response to SARS-CoV-2 in COVID-19 patients. Signal Transduction and Targeted Therapy, 2021, 6, 346.	7.1	60
738	SARS-CoV-2–Reactive Mucosal B Cells in the Upper Respiratory Tract of Uninfected Individuals. Journal of Immunology, 2021, 207, 2581-2588.	0.4	5
739	How Antibodies Recognize Pathogenic Viruses: Structural Correlates of Antibody Neutralization of HIV-1, SARS-CoV-2, and Zika. Viruses, 2021, 13, 2106.	1.5	7
740	Expression and characterization of SARS-CoV-2 spike proteins. Nature Protocols, 2021, 16, 5339-5356.	5.5	31
741	A potent bispecific nanobody protects hACE2 mice against SARS-CoV-2 infection via intranasal administration. Cell Reports, 2021, 37, 109869.	2.9	59
742	Structure-guided antibody cocktail for prevention and treatment of COVID-19. PLoS Pathogens, 2021, 17, e1009704.	2.1	12
744	Does infection with or vaccination against SARS-CoV-2 lead to lasting immunity?. Lancet Respiratory Medicine,the, 2021, 9, 1450-1466.	5.2	110
745	Study of Riamilovir Activity Against SARS-CoV-2 Infection In Syrian Hamsters. Antibiotiki I Khimioterapiya, 2021, 66, 13-19.	0.1	1

#	Article	IF	CITATIONS
746	Uncovering a conserved vulnerability site in SARS oVâ€2 by a human antibody. EMBO Molecular Medicine, 2021, 13, e14544.	3.3	17
747	Key Substitutions in the Spike Protein of SARS-CoV-2 Variants Can Predict Resistance to Monoclonal Antibodies, but Other Substitutions Can Modify the Effects. Journal of Virology, 2022, 96, JVI0111021.	1.5	29
748	Neutralizing antibody 5-7 defines a distinct site of vulnerability in SARS-CoV-2 spike N-terminal domain. Cell Reports, 2021, 37, 109928.	2.9	52
749	Distant residues modulate conformational opening in SARS-CoV-2 spike protein. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	69
750	Engineering Extracellular Vesicles Enriched with Palmitoylated ACE2 as COVIDâ€19 Therapy. Advanced Materials, 2021, 33, e2103471.	11.1	60
751	Beta RBD boost broadens antibody-mediated protection against SARS-CoV-2 variants in animal models. Cell Reports Medicine, 2021, 2, 100450.	3.3	17
753	Polymersomes as Stable Nanocarriers for a Highly Immunogenic and Durable SARS-CoV-2 Spike Protein Subunit Vaccine. ACS Nano, 2021, 15, 15754-15770.	7.3	18
755	A class II MHC-targeted vaccine elicits immunity against SARS-CoV-2 and its variants. Proceedings of the United States of America, 2021, 118, .	3.3	22
756	Hydrogelâ€Based Slow Release of a Receptorâ€Binding Domain Subunit Vaccine Elicits Neutralizing Antibody Responses Against SARSâ€CoVâ€2. Advanced Materials, 2021, 33, e2104362.	11.1	48
757	One dose of COVID-19 nanoparticle vaccine REVC-128 protects against SARS-CoV-2 challenge at two weeks post-immunization. Emerging Microbes and Infections, 2021, 10, 2016-2029.	3.0	12
758	Mechanisms of Lung Injury Induced by SARS-CoV-2 Infection. Physiology, 2022, 37, 88-100.	1.6	18
759	Neutralization of SARS-CoV-2 Variants of Concern Harboring Q677H. MBio, 2021, 12, e0251021.	1.8	33
760	Isolation of a panel of ultra-potent human antibodies neutralizing SARS-CoV-2 and viral variants of concern. Cell Discovery, 2021, 7, 96.	3.1	21
761	Mechanism of a COVID-19 nanoparticle vaccine candidate that elicits a broadly neutralizing antibody response to SARS-CoV-2 variants. Science Advances, 2021, 7, eabj3107.	4.7	23
763	Epitope Analysis of Anti-SARS-CoV-2 Neutralizing Antibodies. Current Medical Science, 2021, 41, 1065.	0.7	3
765	A practical approach to SARS-CoV-2 testing in a pre and post-vaccination era. Journal of Clinical Virology Plus, 2021, 1, 100044.	0.4	2
766	Sterilizing Immunity against COVID-19: Developing Helper T cells I and II activating vaccines is imperative. Biomedicine and Pharmacotherapy, 2021, 144, 112282.	2.5	10
768	Going back in time for an antibody to fight COVID-19. Nature, 2020, 583, 203-204.	13.7	1

#	Article	IF	CITATIONS
774	Evaluation of Commercial Anti-SARS-CoV-2 Antibody Assays and Comparison of Standardized Titers in Vaccinated Health Care Workers. Journal of Clinical Microbiology, 2022, 60, JCM0174621.	1.8	32
775	Genetically-engineered hamster models: applications and perspective in dyslipidemia and atherosclerosis-related cardiovascular disease. Medical Review, 2021, 1, 92-110.	0.3	1
776	Glycosylation and Serological Reactivity of an Expression-enhanced SARS-CoV-2 Viral Spike Mimetic. Journal of Molecular Biology, 2022, 434, 167332.	2.0	22
777	Complete protection by a single-dose skin patch–delivered SARS-CoV-2 spike vaccine. Science Advances, 2021, 7, eabj8065.	4.7	31
778	Scientific rationale for developing potent RBD-based vaccines targeting COVID-19. Npj Vaccines, 2021, 6, 128.	2.9	102
779	Ambient Temperature Stable, Scalable COVIDâ€19 Polymer Particle Vaccines Induce Protective Immunity. Advanced Healthcare Materials, 2022, 11, e2102089.	3.9	14
780	Neutralizing Antibodies to SARS oVâ€2 Selected from a Human Antibody Library Constructed Decades Ago. Advanced Science, 2022, 9, e2102181.	5.6	14
781	Low-dose in vivo protection and neutralization across SARS-CoV-2 variants by monoclonal antibody combinations. Nature Immunology, 2021, 22, 1503-1514.	7.0	40
782	Contributions of single-particle cryoelectron microscopy toward fighting COVID-19. Trends in Biochemical Sciences, 2022, 47, 117-123.	3.7	6
784	Narrative review of the novel coronavirus SARS-CoV-2: update on genomic characteristics, transmissions and animal model. Journal of Thoracic Disease, 2020, 12, 7454-7466.	0.6	1
786	The race to find COVID-19 Vaccine: So near, yet so far!. Indian Journal of Medical Specialities, 2020, 11, 175.	0.1	1
787	Dynamics of B-Cell Repertoires and Emergence of Cross-Reactive Responses in COVID-19 Patients with Different Disease Severity. SSRN Electronic Journal, 0, , .	0.4	2
788	Of Cross-Immunity, Herd Immunity and Country-Specific Plans: Experiences from COVID-19 in India. SSRN Electronic Journal, 0, , .	0.4	0
789	Structure-Based Design with Tag-Based Purification and In-Process Biotinylation Enable Streamlined Development of SARS-CoV-2 Spike Molecular Probes. SSRN Electronic Journal, 2020, , 3639618.	0.4	3
790	Coronavirus antigens as targets of antibody responses. Clinics in Laboratory Medicine, 2021, 42, 97-109.	0.7	1
792	Probing Affinity, Avidity, Anticooperativity, and Competition in Antibody and Receptor Binding to the SARS-CoV-2 Spike by Single Particle Mass Analyses. ACS Central Science, 2021, 7, 1863-1873.	5.3	20
793	A Novel Double Mosaic Virus-like Particle-Based Vaccine against SARS-CoV-2 Incorporates Both Receptor Binding Motif (RBM) and Fusion Domain. Vaccines, 2021, 9, 1287.	2.1	10
794	In Vivo Electroporation of Plasmid DNA: A Promising Strategy for Rapid, Inexpensive, and Flexible Delivery of Anti-Viral Monoclonal Antibodies. Pharmaceutics, 2021, 13, 1882.	2.0	6

#	Article	IF	CITATIONS
795	T follicular helper cells in the humoral immune response to SARS-CoV-2 infection and vaccination. Journal of Leukocyte Biology, 2022, 111, 355-365.	1.5	25
796	A non-ACE2 competing human single-domain antibody confers broad neutralization against SARS-CoV-2 and circulating variants. Signal Transduction and Targeted Therapy, 2021, 6, 378.	7.1	26
805	Longitudinal analysis of SARS-CoV-2 spike and RNA-dependent RNA polymerase protein sequences reveals the emergence and geographic distribution of diverse mutations. Infection, Genetics and Evolution, 2022, 97, 105153.	1.0	16
806	Evaluation and correlation between SARS-CoV-2 neutralizing and binding antibodies in convalescent and vaccinated subjects. Journal of Immunological Methods, 2022, 500, 113197.	0.6	15
807	Application of SARS-CoV-2 Serology to Address Public Health Priorities. Frontiers in Public Health, 2021, 9, 744535.	1.3	4
809	A Multifunctional Neutralizing Antibodyâ€Conjugated Nanoparticle Inhibits and Inactivates SARSâ€CoVâ€2. Advanced Science, 2022, 9, e2103240.	5.6	16
810	Analysis of Glycosylation and Disulfide Bonding of Wild-Type SARS-CoV-2 Spike Glycoprotein. Journal of Virology, 2022, 96, JVI0162621.	1.5	24
811	The Drug Repurposing for COVID-19 Clinical Trials Provide Very Effective Therapeutic Combinations: Lessons Learned From Major Clinical Studies. Frontiers in Pharmacology, 2021, 12, 704205.	1.6	89
812	A Bacterial Cell-Based Assay To Study SARS-CoV-2 Protein-Protein Interactions. MBio, 2021, , e0293621.	1.8	1
813	Immunogenicity and Reactogenicity of SARS-CoV-2 Vaccines in Patients With Cancer: The CANVAX Cohort Study. Journal of Clinical Oncology, 2022, 40, 12-23.	0.8	75
814	Identification of a therapeutic interfering particle—A single-dose SARS-CoV-2 antiviral intervention with a high barrier to resistance. Cell, 2021, 184, 6022-6036.e18.	13.5	36
815	Longitudinal Dynamics of Human B-Cell Response at the Single-Cell Level in Response to Tdap Vaccination. Vaccines, 2021, 9, 1352.	2.1	2
816	Multifactorial seroprofiling dissects the contribution of pre-existing human coronaviruses responses to SARS-CoV-2 immunity. Nature Communications, 2021, 12, 6703.	5.8	36
817	Nature of Acquired Immune Responses, Epitope Specificity and Resultant Protection from SARS-CoV-2. Journal of Personalized Medicine, 2021, 11, 1253.	1.1	3
818	XAV-19, a Swine Glyco-Humanized Polyclonal Antibody Against SARS-CoV-2 Spike Receptor-Binding Domain, Targets Multiple Epitopes and Broadly Neutralizes Variants. Frontiers in Immunology, 2021, 12, 761250.	2.2	7
819	Computational redesign of Fab CC12.3 with substantially better predicted binding affinity to SARS-CoV-2 than human ACE2 receptor. Scientific Reports, 2021, 11, 22202.	1.6	5
820	Emerging mutations in the SARS-CoV-2 variants and their role in antibody escape to small molecule-based therapeutic resistance. Current Opinion in Pharmacology, 2022, 62, 64-73.	1.7	29
822	Mutations of SARS-CoV-2 spike protein: Implications on immune evasion and vaccine-induced immunity. Seminars in Immunology, 2021, 55, 101533.	2.7	72

#	Article	IF	CITATIONS
823	Role of Senescence and Aging in SARS-CoV-2 Infection and COVID-19 Disease. Cells, 2021, 10, 3367.	1.8	42
824	BNT162b2 vaccine induces divergent B cell responses to SARS-CoV-2 S1 and S2. Nature Immunology, 2022, 23, 33-39.	7.0	44
826	The antibody response to SARS-CoV-2 Beta underscores the antigenic distance to other variants. Cell Host and Microbe, 2022, 30, 53-68.e12.	5.1	52
827	Safety and Immunogenicity Analysis of a Newcastle Disease Virus (NDV-HXP-S) Expressing the Spike Protein of SARS-CoV-2 in Sprague Dawley Rats. Frontiers in Immunology, 2021, 12, 791764.	2.2	14
828	Progression and Resolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Golden Syrian Hamsters. American Journal of Pathology, 2022, 192, 195-207.	1.9	22
829	A rapid simple point-of-care assay for the detection of SARS-CoV-2 neutralizing antibodies. Communications Medicine, 2021, 1, .	1.9	23
830	Evaluating Humoral Immunity against SARS-CoV-2: Validation of a Plaque-Reduction Neutralization Test and a Multilaboratory Comparison of Conventional and Surrogate Neutralization Assays. Microbiology Spectrum, 2021, 9, e0088621.	1.2	17
833	SARS CoV-2 Delta variant exhibits enhanced infectivity and a minor decrease in neutralization sensitivity to convalescent or post-vaccination sera. IScience, 2021, 24, 103467.	1.9	26
834	Long-term specific IgG response to SARS-CoV-2 nucleocapsid protein in recovered COVID-19 patients. Scientific Reports, 2021, 11, 23216.	1.6	35
836	OUP accepted manuscript. Clinical Chemistry, 2022, , .	1.5	12
837	Investigating Constraints Along the Plant Secretory Pathway to Improve Production of a SARS-CoV-2 Spike Vaccine Candidate. Frontiers in Plant Science, 2021, 12, 798822.	1.7	6
839	Clonal Wars: Monoclonal Antibodies Against Infectious Pathogens. DNA and Cell Biology, 2022, 41, 34-37.	0.9	2
840	Formation and Expansion of Memory B Cells against Coronavirus in Acutely Infected COVID-19 Individuals. Pathogens, 2022, 11, 186.	1.2	4
841	Quantitative measurement of IgG to SARSâ€CoVâ€2 antigens using monoclonal antibodyâ€based enzymeâ€linke immunosorbent assays. Clinical and Translational Immunology, 2022, 11, e1369.	ed 1.7	8
842	Clinical Application of Antibody Immunity Against SARS-CoV-2: Comprehensive Review on Immunoassay and Immunology, 2023, 64, 17-32.	2.9	10
843	SARS-CoV-2 reactive and neutralizing antibodies discovered by single-cell sequencing of plasma cells and mammalian display. Cell Reports, 2022, 38, 110242.	2.9	13
844	Dichotomy between the humoral and cellular responses elicited by mRNA and adenoviral vector vaccines against SARS-CoV-2. BMC Medicine, 2022, 20, 32.	2.3	7
845	Potential Therapeutic Use of the Rosemary Diterpene Carnosic Acid for Alzheimer's Disease, Parkinson's Disease, and Long-COVID through NRF2 Activation to Counteract the NLRP3 Inflammasome. Antioxidants, 2022, 11, 124.	2.2	57

#	Article	IF	CITATIONS
846	Preclinical immunological evaluation of an intradermal heterologous vaccine against SARS-CoV-2 variants. Emerging Microbes and Infections, 2022, 11, 212-226.	3.0	6
847	Animal Models of Human Pathology 2020. BioMed Research International, 2022, 2022, 1-2.	0.9	0
848	A bispecific monomeric nanobody induces spike trimer dimers and neutralizes SARS-CoV-2 in vivo. Nature Communications, 2022, 13, 155.	5.8	49
849	A lethal mouse model for evaluating vaccine-associated enhanced respiratory disease during SARS-CoV-2 infection. Science Advances, 2022, 8, eabh3827.	4.7	27
851	Golden Syrian hamster as a model to study cardiovascular complications associated with SARS-CoV-2 infection. ELife, 2022, 11, .	2.8	41
852	Immunology and Technology of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccines. Pharmacological Reviews, 2022, 74, 313-339.	7.1	9
853	The fatty acid site is coupled to functional motifs in the SARS-CoV-2 spike protein and modulates spike allosteric behaviour. Computational and Structural Biotechnology Journal, 2022, 20, 139-147.	1.9	19
854	Exploring Rapid and Effective Screening Methods for Anti-SARS-CoV-2 Neutralizing Antibodies in COVID-19 Convalescent Patients and Longitudinal Vaccinated Populations. Pathogens, 2022, 11, 171.	1.2	4
855	Long-Term Kinetics of SARS-CoV-2 Antibodies and Impact of Inactivated Vaccine on SARS-CoV-2 Antibodies Based on a COVID-19 Patients Cohort. Frontiers in Immunology, 2022, 13, 829665.	2.2	19
856	Discovery of ultrapotent broadly neutralizing antibodies from SARS-CoV-2 elite neutralizers. Cell Host and Microbe, 2022, 30, 69-82.e10.	5.1	42
858	The mutational dynamics of the SARS-CoV-2 virus in serial passages in vitro. Virologica Sinica, 2022, 37, 198-207.	1.2	12
859	Immunization with synthetic SARS-CoV-2 S glycoprotein virus-like particles protects macaques from infection. Cell Reports Medicine, 2022, 3, 100528.	3.3	6
860	Intranasal immunization with a Middle East respiratory syndrome-coronavirus antigen conjugated to the M-cell targeting ligand Co4B enhances antigen-specific mucosal and systemic immunity and protects against infection. Vaccine, 2022, 40, 714-725.	1.7	0
861	Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science, 2022, 375, .	6.0	68
862	Comparative Immunogenicity of the Recombinant Receptor-Binding Domain of Protein S SARS-CoV-2 Obtained in Prokaryotic and Mammalian Expression Systems. Vaccines, 2022, 10, 96.	2.1	23
864	A new testing platform using fingerstick blood for quantitative antibody response evaluation after SARS-CoV-2 vaccination. Emerging Microbes and Infections, 2022, 11, 250-259.	3.0	3
865	A pandemic-enabled comparison of discovery platforms demonstrates a nail̂^ve antibody library can match the best immune-sourced antibodies. Nature Communications, 2022, 13, 462.	5.8	17
867	Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. Journal of Biomedical Science, 2022, 29, 1.	2.6	144

~	_
CHAI	Report

#	Article	IF	CITATIONS
869	Optimization of SARS-CoV-2 Spike Protein Expression in the Silkworm and Induction of Efficient Protective Immunity by Inoculation With Alum Adjuvants. Frontiers in Immunology, 2021, 12, 803647.	2.2	7
870	Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2. Nature Communications, 2022, 13, 405.	5.8	92
873	Standardized two-step testing of antibody activity in COVID-19 convalescent plasma. IScience, 2022, 25, 103602.	1.9	6
875	Nucleic acid delivery of immune-focused SARS-CoV-2 nanoparticles drives rapid and potent immunogenicity capable of single-dose protection. Cell Reports, 2022, 38, 110318.	2.9	17
876	Germinal center responses to SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals. Cell, 2022, 185, 1008-1024.e15.	13.5	101
877	Neutralizing Antibodies and Antibody-Dependent Enhancement in COVID-19: A Perspective. Journal of the Indian Institute of Science, 2022, , 1-17.	0.9	12
878	SARS-CoV-2 Infection and Lung Regeneration. Clinical Microbiology Reviews, 2022, 35, e0018821.	5.7	24
879	Monoclonal antibodies targeting two immunodominant epitopes on the Spike protein neutralize emerging SARS-CoV-2 variants of concern. EBioMedicine, 2022, 76, 103818.	2.7	14
880	A combination of two human neutralizing antibodies prevents SARS-CoV-2 infection in cynomolgus macaques. Med, 2022, 3, 188-203.e4.	2.2	11
882	Neutralizing monoclonal antibodies against highly pathogenic coronaviruses. Current Opinion in Virology, 2022, 53, 101199.	2.6	2
883	Evaluation of Commercial Anti-SARS-CoV-2 Neutralizing Antibody Assays in Seropositive Subjects. SSRN Electronic Journal, 0, , .	0.4	0
884	Multiple expansions of globally uncommon SARS-CoV-2 lineages in Nigeria. Nature Communications, 2022, 13, 688.	5.8	23
885	Development of SARS-CoV2 humoral response including neutralizing antibodies is not sufficient to protect patients against fatal infection. Scientific Reports, 2022, 12, 2077.	1.6	8
886	A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection. Science Translational Medicine, 2022, 14, eabi9215.	5.8	123
887	An adjuvant strategy enabled by modulation of the physical properties of microbial ligands expands antigen immunogenicity. Cell, 2022, 185, 614-629.e21.	13.5	40
890	Magnetic Enrichment of SARS-CoV-2 Antigen-Binding B Cells for Analysis of Transcriptome and Antibody Repertoire. Magnetochemistry, 2022, 8, 23.	1.0	2
891	SARS-CoV-2 Omicron-neutralizing memory B cells are elicited by two doses of BNT162b2 mRNA vaccine. Science Immunology, 2022, 7, eabn8590.	5.6	88
892	A SARS-CoV-2 variant elicits an antibody response with a shifted immunodominance hierarchy. PLoS Pathogens, 2022, 18, e1010248.	2.1	48

#	Article	IF	CITATIONS
893	A Feasible Alternative Strategy Targeting Furin Disrupts SARS-CoV-2 Infection Cycle. Microbiology Spectrum, 2022, , e0236421.	1.2	0
894	A Potent and Protective Human Neutralizing Antibody Against SARS-CoV-2 Variants. Frontiers in Immunology, 2021, 12, 766821.	2.2	15
895	Next-Generation Serology by Mass Spectrometry: Readout of the SARS-CoV-2 Antibody Repertoire. Journal of Proteome Research, 2022, 21, 274-288.	1.8	16
896	Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 2022, 602, 657-663.	13.7	1,350
897	Deep dissection of the antiviral immune profile of patients with COVID-19. Communications Biology, 2021, 4, 1389.	2.0	9
898	SARS-CoV-2 spreads through cell-to-cell transmission. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	145
899	A serum-stable RNA aptamer specific for SARS-CoV-2 neutralizes viral entry. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	58
900	Rapid discovery of diverse neutralizing SARS-CoV-2 antibodies from large-scale synthetic phage libraries. MAbs, 2022, 14, 2002236.	2.6	14
901	Comparative Immunogenicity and Effectiveness of mRNA-1273, BNT162b2, and Ad26.COV2.S COVID-19 Vaccines. Journal of Infectious Diseases, 2022, 225, 1141-1150.	1.9	102
902	Epitope profiling using computational structural modelling demonstrated on coronavirus-binding antibodies. PLoS Computational Biology, 2021, 17, e1009675.	1.5	33
903	Highly synergistic combinations of nanobodies that target SARS-CoV-2 and are resistant to escape. ELife, 2021, 10, .	2.8	36
904	Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science, 2021, , eabl6251.	6.0	12
905	A scalable serology solution for profiling humoral immune responses to SARS oVâ€2 infection and vaccination. Clinical and Translational Immunology, 2022, 11, e1380.	1.7	65
906	Stabilization of the SARS-CoV-2 receptor binding domain by protein core redesign and deep mutational scanning. Protein Engineering, Design and Selection, 2022, 35, .	1.0	8
909	SARS-CoV-2 and Coronavirus Disease Mitigation: Treatment Options, Vaccinations and Variants. Pathogens, 2022, 11, 275.	1.2	9
910	Therapeutic antibodies for COVID-19: is a new age of IgM, IgA and bispecific antibodies coming?. MAbs, 2022, 14, 2031483.	2.6	15
911	Zinc and vitamin C intake increases spike and neutralising antibody production following SARS oVâ€⊋ infection. Clinical and Translational Medicine, 2022, 12, e731.	1.7	10
912	A SARS-CoV-2 ferritin nanoparticle vaccine elicits protective immune responses in nonhuman primates. Science Translational Medicine, 2022, 14, .	5.8	73

#	Article	IF	CITATIONS
913	Reduced Serological Response to COVID-19 Vaccines in Patients with IBD is Further Diminished by TNF Inhibitor Therapy; Early Results of the VARIATION study [VAriability in Response in IBD Against SARS-COV-2 ImmunisatiON]. Journal of Crohn's and Colitis, 2022, 16, 1354-1362.	0.6	15
914	Analysis of B Cell Receptor Repertoires Reveals Key Signatures of the Systemic B Cell Response after SARS-CoV-2 Infection. Journal of Virology, 2022, 96, JVI0160021.	1.5	24
915	Modeling how antibody responses may determine the efficacy of COVID-19 vaccines. Nature Computational Science, 2022, 2, 123-131.	3.8	39
916	Anti-SARS-CoV-2 IgG and IgA antibodies in COVID-19 convalescent plasma do not enhance viral infection. PLoS ONE, 2022, 17, e0257930.	1.1	12
917	Multivariate mining of an alpaca immune repertoire identifies potent cross-neutralizing SARS-CoV-2 nanobodies. Science Advances, 2022, 8, eabm0220.	4.7	18
920	Next-Generation Molecular Discovery: From Bottom-Up In Vivo and In Vitro Approaches to In Silico Top-Down Approaches for Therapeutics Neogenesis. Life, 2022, 12, 363.	1.1	1
921	Short-Term Instantaneous Prophylaxis and Efficient Treatment Against SARS-CoV-2 in hACE2 Mice Conferred by an Intranasal Nanobody (Nb22). Frontiers in Immunology, 2022, 13, 865401.	2.2	8
922	Optimization of Anti-SARS-CoV-2 Neutralizing Antibody Therapies: Roadmap to Improve Clinical Effectiveness and Implementation. Frontiers in Medical Technology, 2022, 4, 867982.	1.3	11
924	Possible Cross-Reactivity of Feline and White-Tailed Deer Antibodies against the SARS-CoV-2 Receptor Binding Domain. Journal of Virology, 2022, 96, e0025022.	1.5	10
926	Broad anti–SARS-CoV-2 antibody immunity induced by heterologous ChAdOx1/mRNA-1273 vaccination. Science, 2022, 375, 1041-1047.	6.0	59
927	Persistence of immunogenicity, contributing factors of an immune response, and reactogenicities after a single dose of the ChAdOx1 (AZD1222) COVID-19 vaccine in the Thai population. Human Vaccines and Immunotherapeutics, 2022, 18, 1-6.	1.4	9
929	Impact of new variants on SARS-CoV-2 infectivity and neutralization: A molecular assessment of the alterations in the spike-host protein interactions. IScience, 2022, 25, 103939.	1.9	32
930	Antigen–Antibody Complex-Guided Exploration of the Hotspots Conferring the Immune-Escaping Ability of the SARS-CoV-2 RBD. Frontiers in Molecular Biosciences, 2022, 9, 797132.	1.6	3
931	Efficient discovery of SARS-CoV-2-neutralizing antibodies via B cell receptor sequencing and ligand blocking. Nature Biotechnology, 2022, 40, 1270-1275.	9.4	27
932	Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nature Immunology, 2022, 23, 543-555.	7.0	185
933	No substantial preexisting B cell immunity against SARS-CoV-2 in healthy adults. IScience, 2022, 25, 103951.	1.9	8
934	Anti-SARS-CoV-2 equine F (Ab′)2 immunoglobulin as a possible therapy for COVID-19. Scientific Reports, 2022, 12, 3890.	1.6	8
936	The evolution of SARS-CoV-2 variants and their clinical and healthcare implications. Revista Clínica Espanõla, 2022, , .	0.3	1

#	Article	IF	Citations
937	The Effect of Vaccine Type and SARS-CoV-2 Lineage on Commercial SARS-CoV-2 Serologic and Pseudotype Neutralization Assays in mRNA Vaccine Recipients. Microbiology Spectrum, 2022, 10, e0021122.	1.2	8
938	Breakthrough SARS-CoV-2 infections after vaccination: a critical review. Human Vaccines and Immunotherapeutics, 2022, 18, 1-5.	1.4	6
939	Thinking Outside the Box: Utilizing Nontraditional Animal Models for COVID-19 Research. International Journal of Translational Medicine, 2022, 2, 113-133.	0.1	2
943	Reappraising the Value of HIV-1 Vaccine Correlates of Protection Analyses. Journal of Virology, 2022, , e0003422.	1.5	7
945	Epitope mapping of neutralising antiâ€SARSâ€CoVâ€2 monoclonal antibodies: Implications for immunotherapy and vaccine design. Reviews in Medical Virology, 2022, 32, e2347.	3.9	7
946	RBD trimer mRNA vaccine elicits broad and protective immune responses against SARS-CoV-2 variants. IScience, 2022, 25, 104043.	1.9	19
947	Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins. Immunity, 2022, 55, 998-1012.e8.	6.6	86
948	Identification of Entry Inhibitors against Delta and Omicron Variants of SARS-CoV-2. International Journal of Molecular Sciences, 2022, 23, 4050.	1.8	17
950	Equine immunoglobulin fragment F(ab')2 displays high neutralizing capability against multiple SARS-CoV-2 variants. Clinical Immunology, 2022, 237, 108981.	1.4	2
951	A global picture: therapeutic perspectives for COVID-19. Immunotherapy, 2022, 14, 351-371.	1.0	56
952	Isolation of human monoclonal antibodies with neutralizing activity to a broad spectrum of SARS-CoV-2 viruses including the Omicron variants. Antiviral Research, 2022, 201, 105297.	1.9	3
953	SARS-CoV-2 gained a novel spike protein S1–N-Terminal Domain (S1-NTD). Environmental Research, 2022, 211, 113047.	3.7	7
954	Human neutralizing antibodies for SARS-CoV-2 prevention and immunotherapy. Immunotherapy Advances, 2022, 2, .	1.2	9
956	Neutralizing antibody responses over time in demographically and clinically diverse individuals recovered from SARS-CoV-2 infection in the United States and Peru: A cohort study. PLoS Medicine, 2021, 18, e1003868.	3.9	20
958	RBD Double Mutations of SARS-CoV-2 Strains Increase Transmissibility through Enhanced Interaction between RBD and ACE2 Receptor. Viruses, 2022, 14, 1.	1.5	23
959	Response and Duration of Serum Anti-SARS-CoV-2 Antibodies After Inactivated Vaccination Within 160 Days. Frontiers in Immunology, 2021, 12, 786554.	2.2	32
967	Phosphate-mediated coanchoring of RBD immunogens and molecular adjuvants to alum potentiates humoral immunity against SARS-CoV-2. Science Advances, 2021, 7, eabj6538.	4.7	19
968	Evolution of enhanced innate immune evasion by SARS-CoV-2. Nature, 2022, 602, 487-495.	13.7	237

#	Article	IF	CITATIONS
969	ChAdOx1 nCoV-19 vaccine elicits monoclonal antibodies with cross-neutralizing activity against SARS-CoV-2 viral variants. Cell Reports, 2022, 39, 110757.	2.9	10
970	BNT162b2, mRNA-1273, and Sputnik V Vaccines Induce Comparable Immune Responses on a Par With Severe Course of COVID-19. Frontiers in Immunology, 2022, 13, 797918.	2.2	1
973	Novel sarbecovirus bispecific neutralizing antibodies with exceptional breadth and potency against currently circulating SARS-CoV-2 variants and sarbecoviruses. Cell Discovery, 2022, 8, 36.	3.1	22
974	Detailed analysis of antibody responses to SARS-CoV-2 vaccination and infection in macaques. PLoS Pathogens, 2022, 18, e1010155.	2.1	6
975	Structural definition of a pan-sarbecovirus neutralizing epitope on the spike S2 subunit. Communications Biology, 2022, 5, 342.	2.0	41
976	Protein engineering responses to the COVID-19 pandemic. Current Opinion in Structural Biology, 2022, 74, 102385.	2.6	11
977	Prolonged Protective Immunity Induced by Mild SARS-CoV-2 Infection of K18-hACE2 Mice. Vaccines, 2022, 10, 613.	2.1	2
978	Chemically Modified Bacterial Sacculi as a Vaccine Microparticle Scaffold. ACS Chemical Biology, 2022, 17, 1184-1196.	1.6	5
980	Potent Antiâ€SARSâ€CoVâ€2 Efficacy of COVIDâ€19 Hyperimmune Globulin from Vaccineâ€Immunized Plasma. Advanced Science, 2022, 9, e2104333.	5.6	8
981	Functional Analysis of Spike from SARS-CoV-2 Variants Reveals the Role of Distinct Mutations in Neutralization Potential and Viral Infectivity. Viruses, 2022, 14, 803.	1.5	10
982	Covax-19/Spikogen® vaccine based on recombinant spike protein extracellular domain with Advax-CpG55.2 adjuvant provides single dose protection against SARS-CoV-2 infection in hamsters. Vaccine, 2022, 40, 3182-3192.	1.7	25
988	Computational approach for binding prediction of SARS-CoV-2 with neutralizing antibodies. Computational and Structural Biotechnology Journal, 2022, 20, 2212-2222.	1.9	4
989	Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs, 2022, 36, 231-323.	2.2	24
991	Phenotypic determinism and stochasticity in antibody repertoires of clonally expanded plasma cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113766119.	3.3	12
992	Comparison of Six Serological Immunoassays for the Detection of SARS-CoV-2 Neutralizing Antibody Levels in the Vaccinated Population. Viruses, 2022, 14, 946.	1.5	14
993	An antibody targeting the N-terminal domain of SARS-CoV-2 disrupts the spike trimer. Journal of Clinical Investigation, 2022, 132, .	3.9	14
995	A combination of potently neutralizing monoclonal antibodies isolated from an Indian convalescent donor protects against the SARS-CoV-2 Delta variant. PLoS Pathogens, 2022, 18, e1010465.	2.1	8
996	Potential for a Plant-Made SARS-CoV-2 Neutralizing Monoclonal Antibody as a Synergetic Cocktail Component. Vaccines, 2022, 10, 772.	2.1	10

#	Article	IF	CITATIONS
997	COVID-19 patient serum less potently inhibits ACE2-RBD binding for various SARS-CoV-2 RBD mutants. Scientific Reports, 2022, 12, 7168.	1.6	15
998	Biophysical Fitness Landscape of the SARS-CoV-2 Delta Variant Receptor Binding Domain. Journal of Molecular Biology, 2022, 434, 167622.	2.0	3
999	Recall of preexisting cross-reactive B cell memory after Omicron BA.1 breakthrough infection. Science Immunology, 2022, 7, eabq3511.	5.6	82
1000	SARS-CoV-2-related pangolin coronavirus exhibits similar infection characteristics to SARS-CoV-2 and direct contact transmissibility in hamsters. IScience, 2022, 25, 104350.	1.9	13
1001	Off-the-shelf CAR natural killer cells secreting IL-15 target spike in treating COVID-19. Nature Communications, 2022, 13, 2576.	5.8	21
1002	A bivalent Epstein-Barr virus vaccine induces neutralizing antibodies that block infection and confer immunity in humanized mice. Science Translational Medicine, 2022, 14, eabf3685.	5.8	34
1003	Evaluation of commercial Anti-SARS-CoV-2 neutralizing antibody assays in seropositive subjects. Journal of Clinical Virology, 2022, 152, 105169.	1.6	10
1004	Virological and Clinical Determinants of the Magnitude of Humoral Responses to SARS-CoV-2 in Mild-Symptomatic Individuals. Frontiers in Immunology, 2022, 13, 860215.	2.2	6
1005	Antibodies from convalescent plasma promote SARS-CoV-2 clearance in individuals with and without endogenous antibody response. Journal of Clinical Investigation, 2022, 132, .	3.9	26
1006	Antibody-mediated neutralization of SARS-CoV-2. Immunity, 2022, 55, 925-944.	6.6	74
1007	lgG targeting distinct seasonal coronavirus- conserved SARS-CoV-2 spike subdomains correlates with differential COVID-19 disease outcomes. Cell Reports, 2022, 39, 110904.	2.9	9
1008	Ultrapotent and broad neutralization of SARS-CoV-2 variants by modular, tetravalent, bi-paratopic antibodies. Cell Reports, 2022, 39, 110905.	2.9	5
1009	Safety and immunogenicity of Nanocovax, a SARS-CoV-2 recombinant spike protein vaccine: Interim results of a double-blind, randomised controlled phase 1 and 2 trial. The Lancet Regional Health - Western Pacific, 2022, 24, 100474.	1.3	13
1010	Point mutations in SARS-CoV-2 variants induce long-range dynamical perturbations in neutralizing antibodies. Chemical Science, 2022, 13, 7224-7239.	3.7	6
1015	Evaluation of Antibody-Dependent Fc-Mediated Viral Entry, as Compared With Neutralization, in SARS-CoV-2 Infection. Frontiers in Immunology, 0, 13, .	2.2	4
1016	Protective neutralizing epitopes in SARS oVâ€2. Immunological Reviews, 2022, 310, 76-92.	2.8	23
1017	Leveraging South African <scp>HIV</scp> research to define <scp>SARS oV</scp> â€2 immunity triggered by sequential variants of concern. Immunological Reviews, 2022, 310, 61-75.	2.8	6
1018	Longitudinal profile of neutralizing and binding antibodies in vaccinated and convalescent COVIDâ€19 cohorts by chemiluminescent immunoassays. Immunity, Inflammation and Disease, 2022, 10, .	1.3	7

#	Article	IF	CITATIONS
1019	Longitudinal variation in SARS-CoV-2 antibody levels and emergence of viral variants: a serological analysis. Lancet Microbe, The, 2022, 3, e493-e502.	3.4	22
1020	Evaluation of strategies to modify Anti-SARS-CoV-2 monoclonal antibodies for optimal functionality as therapeutics. PLoS ONE, 2022, 17, e0267796.	1.1	3
1021	Targeted isolation of diverse human protective broadly neutralizing antibodies against SARS-like viruses. Nature Immunology, 2022, 23, 960-970.	7.0	39
1023	SARS-CoV-2-neutralising monoclonal antibodies to prevent COVID-19. The Cochrane Library, 2022, 2022, .	1.5	20
1025	Anticuerpos Anti SARS-CoV-2, Post-vacunación en Cochabamba, Bolivia. Gaceta Medica Boliviana, 2022, 45, 29-35.	0.0	0
1026	Increased body mass index linked to decreased neutralizing antibody titers of inactivated SARSâ€CoVâ€⊋ vaccine in healthcare workers. Obesity Science and Practice, 2023, 9, 23-29.	1.0	4
1027	Potent human broadly SARS-CoV-2–neutralizing IgA and IgG antibodies effective against Omicron BA.1 and BA.2. Journal of Experimental Medicine, 2022, 219, .	4.2	34
1028	Single-cell profiling of the antigen-specific response to BNT162b2 SARS-CoV-2 RNA vaccine. Nature Communications, 2022, 13, .	5.8	28
1029	A one-year follow-up study on dynamic changes of leukocyte subsets and virus-specific antibodies of patients with COVID-19 in Sichuan, China. International Journal of Medical Sciences, 2022, 19, 1122-1130.	1.1	0
1030	Broadly Neutralizing Antibodies Against Omicron Variants of SARS-CoV-2 Derived from mRNA-Lipid Nanoparticle-Immunized Mice. SSRN Electronic Journal, 0, , .	0.4	0
1032	A broad and potent neutralization epitope in SARS-related coronaviruses. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	34
1033	Decreased Efficiency of Neutralizing Antibodies from Previously Infected or Vaccinated Individuals against the B.1.617.2 (Delta) SARS-CoV-2 Variant. Microbiology Spectrum, 2022, 10, .	1.2	5
1035	Vaccine-elicited murine antibody WS6 neutralizes diverse beta-coronaviruses by recognizing a helical stem supersite of vulnerability. Structure, 2022, 30, 1233-1244.e7.	1.6	13
1036	SARS-CoV-2 Omicron sublineages exhibit distinct antibody escape patterns. Cell Host and Microbe, 2022, 30, 1231-1241.e6.	5.1	55
1038	Plasma and memory antibody responses to Gamma SARS-CoV-2 provide limited cross-protection to other variants. Journal of Experimental Medicine, 2022, 219, .	4.2	6
1039	Guardians of the oral and nasopharyngeal galaxy: <scp>IgA</scp> and protection against <scp>SARS oV</scp> â€2 infection*. Immunological Reviews, 2022, 309, 75-85.	2.8	32
1040	Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science, 2022, 377, .	6.0	120
1041	Broadly neutralizing antibodies target the coronavirus fusion peptide. Science, 2022, 377, 728-735.	6.0	111

#	Article	IF	CITATIONS
1042	Nasal Mucosa Exploited by SARS-CoV-2 for Replicating and Shedding during Reinfection. Viruses, 2022, 14, 1608.	1.5	2
1043	GMP Manufacturing and IND-Enabling Studies of a Recombinant Hyperimmune Globulin Targeting SARS-CoV-2. Pathogens, 2022, 11, 806.	1.2	3
1044	Structure-selected RBM immunogens prime polyclonal memory responses that neutralize SARS-CoV-2 variants of concern. PLoS Pathogens, 2022, 18, e1010686.	2.1	2
1045	COVID-19 lung disease shares driver AT2 cytopathic features with Idiopathic pulmonary fibrosis. EBioMedicine, 2022, 82, 104185.	2.7	21
1046	Human antibodies to SARS-CoV-2 with a recurring YYDRxG motif retain binding and neutralization to variants of concern including Omicron. Communications Biology, 2022, 5, .	2.0	9
1047	Conformational flexibility in neutralization of SARS-CoV-2 by naturally elicited anti-SARS-CoV-2 antibodies. Communications Biology, 2022, 5, .	2.0	5
1048	Application of recombinant antibodies for treatment of Clostridioides difficile infection: Current status and future perspective. Frontiers in Immunology, 0, 13, .	2.2	9
1049	Physical-Chemical Regulation of Membrane Receptors Dynamics in Viral Invasion and Immune Defense. Journal of Molecular Biology, 2023, 435, 167800.	2.0	2
1050	Evolutionary remodelling of Nâ€ŧerminal domain loops fineâ€ŧunes <scp>SARS oV</scp> â€2 spike. EMBO Reports, 2022, 23, .	2.0	18
1051	Engineering SARS-CoV-2 neutralizing antibodies for increased potency and reduced viral escape pathways. IScience, 2022, 25, 104914.	1.9	5
1052	A public antibody class recognizes an S2 epitope exposed on open conformations of SARS-CoV-2 spike. Nature Communications, 2022, 13, .	5.8	34
1053	Antibodies from primary humoral responses modulate the recruitment of naive B cells during secondary responses. Immunity, 2022, 55, 1856-1871.e6.	6.6	54
1055	Epitopes mapped onto SARS-CoV-2 receptor-binding motif by five distinct human neutralising antibodies. Molecular Simulation, 0, , 1-11.	0.9	0
1056	Simplified Purification of Glycoprotein-Modified Ferritin Nanoparticles for Vaccine Development. Biochemistry, 0, , .	1.2	4
1058	Potently neutralizing and protective anti-human metapneumovirus antibodies target diverse sites on the fusion glycoprotein. Immunity, 2022, 55, 1710-1724.e8.	6.6	11
1059	A key F27I substitution within HCDR1 facilitates the rapid maturation of P2C-1F11-like neutralizing antibodies in a SARS-CoV-2-infected donor. Cell Reports, 2022, 40, 111335.	2.9	2
1060	Heterogenous humoral and cellular immune responses with distinct trajectories post-SARS-CoV-2 infection in a population-based cohort. Nature Communications, 2022, 13, .	5.8	18
1061	A neutralizing epitope on the SD1 domain of SARS-CoV-2 spike targeted following infection and vaccination. Cell Reports, 2022, 40, 111276.	2.9	29

#	Article	IF	CITATIONS
1063	An antibody that neutralizes SARS-CoV-1 and SARS-CoV-2 by binding to a conserved spike epitope outside the receptor binding motif. Science Immunology, 2022, 7, .	5.6	23
1064	Broadly neutralizing antibodies to SARS-related viruses can be readily induced in rhesus macaques. Science Translational Medicine, 2022, 14, .	5.8	15
1065	Potential of antibody pair targeting conserved antigenic sites in diagnosis of SARS-CoV-2 variants infection. Journal of Virological Methods, 2022, 309, 114597.	1.0	1
1066	Converting non-neutralizing SARS-CoV-2 antibodies into broad-spectrum inhibitors. Nature Chemical Biology, 2022, 18, 1270-1276.	3.9	8
1067	Recurrence of COVID-19 infection symptoms in short time; reinfection or reactivation? Three cases of three healthcare workers and a literature review. Annals of Medicine and Surgery, 2022, 82, .	0.5	0
1068	Humoral cross-coronavirus responses against the S2 region in children with Kawasaki disease. Virology, 2022, 575, 83-90.	1.1	1
1069	Single domain antibodies derived from ancient animals as broadly neutralizing agents for SARS-CoV-2 and other coronaviruses. Biomedical Engineering Advances, 2022, 4, 100054.	2.2	3
1070	Preclinial Safety and Efficacy of a Therapeutic Antibody That Targets SARS-CoV-2 at the Sotrovimab Face But is Escaped by Omicron. SSRN Electronic Journal, 0, , .	0.4	0
1071	Highâ€resolution analysis of individual spike peptideâ€specific <scp>CD4</scp> ⁺ Tâ€cell responses in vaccine recipients and <scp>COVID</scp> â€19 patients. Clinical and Translational Immunology, 2022, 11, .	1.7	10
1072	Approach for the study of COVID-19 infection and vaccine development using mice model: A narrative review. AIP Conference Proceedings, 2022, , .	0.3	0
1073	Antibody-mediated immunity to SARS-CoV-2 spike. Advances in Immunology, 2022, , 1-69.	1.1	12
1074	Differential persistence of neutralizing antibody against SARS-CoV-2 in post immunized Bangladeshi population. Scientific Reports, 2022, 12, .	1.6	3
1075	The role of B cells in COVID-19 infection and vaccination. Frontiers in Immunology, 0, 13, .	2.2	25
1076	Broad-Spectrum Small-Molecule Inhibitors of the SARS-CoV-2 Spike—ACE2 Protein–Protein Interaction from a Chemical Space of Privileged Protein Binders. Pharmaceuticals, 2022, 15, 1084.	1.7	5
1077	Design of immunogens for eliciting antibody responses that may protect against SARS-CoV-2 variants. PLoS Computational Biology, 2022, 18, e1010563.	1.5	4
1078	Isolation of an escape-resistant SARS-CoV-2 neutralizing nanobody from a novel synthetic nanobody library. Frontiers in Immunology, 0, 13, .	2.2	7
1079	Screening and Characterization of Shark-Derived VNARs against SARS-CoV-2 Spike RBD Protein. International Journal of Molecular Sciences, 2022, 23, 10904.	1.8	8
1080	Potential of conserved antigenic sites in development of universal SARS-like coronavirus vaccines. Frontiers in Immunology, 0, 13, .	2.2	0

#	Article	IF	CITATIONS
1082	Prospects of animal models and their application in studies on adaptive immunity to SARS-CoV-2. Frontiers in Immunology, 0, 13, .	2.2	4
1083	De novo design and Rosettaâ€based assessment of highâ€affinity antibody variable regions (Fv) against the <scp>SARSâ€CoV</scp> â€2 spike receptor binding domain (<scp>RBD</scp>). Proteins: Structure, Function and Bioinformatics, 2023, 91, 196-208.	1.5	1
1084	COVIDâ€19 immunopathology: From acute diseases to chronic sequelae. Journal of Medical Virology, 2023, 95, .	2.5	24
1085	Therapeutic Role of Neutralizing Antibody for the Treatment against SARS-CoV-2 and Its Emerging Variants: A Clinical and Pre-Clinical Perspective. Vaccines, 2022, 10, 1612.	2.1	14
1086	Targeted protein S-nitrosylation of ACE2 inhibits SARS-CoV-2 infection. Nature Chemical Biology, 2023, 19, 275-283.	3.9	12
1087	Building a Resilient Scientific Network for COVID-19 and Beyond. MBio, 0, , .	1.8	1
1088	Persistent but dysfunctional mucosal SARS-CoV-2-specific IgA and low lung IL-1β associate with COVID-19 fatal outcome: A cross-sectional analysis. Frontiers in Immunology, 0, 13, .	2.2	8
1089	A single-administration therapeutic interfering particle reduces SARS-CoV-2 viral shedding and pathogenesis in hamsters. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
1090	Broad Tricyclic Ring Inhibitors Block SARS-CoV-2 Spike Function Required for Viral Entry. ACS Infectious Diseases, 2022, 8, 2045-2058.	1.8	4
1092	Anti-SARS-CoV-2 immunoadhesin remains effective against Omicron and other emerging variants of concern. IScience, 2022, 25, 105193.	1.9	7
1093	Differential patterns of cross-reactive antibody response against SARS-CoV-2 spike protein detected for chronically ill and healthy COVID-19 naÃ ⁻ ve individuals. Scientific Reports, 2022, 12, .	1.6	8
1094	Antibody Therapy for COVID-19: Categories, Pros, and Cons. Viral Immunology, 2022, 35, 517-528.	0.6	1
1095	Exploiting V-Gene Bias for Rapid, High-Throughput Monoclonal Antibody Isolation from Horses. Viruses, 2022, 14, 2172.	1.5	0
1096	Longitudinal Characterization of Phagocytic and Neutralization Functions of Anti-Spike Antibodies in Plasma of Patients after Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Journal of Immunology, 2022, 209, 1499-1512.	0.4	1
1097	Cell Entry and Unusual Replication of SARS-CoV-2. Current Drug Targets, 2022, 23, 1539-1554.	1.0	1
1098	Laboratory assessment of state of post-vaccination humoral immunity to infections with aerosol transmission mechanism. Medical Alphabet, 2022, , 50-54.	0.0	0
1099	Pandemic's silver lining. MAbs, 2022, 14, .	2.6	1
1100	Nebulized mRNAâ€Encoded Antibodies Protect Hamsters from SARSâ€CoVâ€2 Infection. Advanced Science, 2022, 9, .	5.6	12

#	Article	IF	CITATIONS
1101	A novel plasma proteomicâ€based model for predicting liver fibrosis in HIV/HBV coâ€infected adults. Journal of Medical Virology, 2023, 95, .	2.5	0
1102	Pan-neutralizing, germline-encoded antibodies against SARS-CoV-2: Addressing the long-term problem of escape variants. Frontiers in Immunology, 0, 13, .	2.2	2
1105	Angiotensin Converting Enzyme 2 (ACE2) - A macromolecule and its impact on human reproduction during COVID-19 pandemic. Journal of Experimental Biology and Agricultural Sciences, 2022, 10, 960-977.	0.1	0
1106	Non-Myelofibrosis Chronic Myeloproliferative Neoplasm Patients Show Better Seroconversion Rates after SARS-CoV-2 Vaccination Compared to Other Hematologic Diseases: A Multicentric Prospective Study of KroHem. Biomedicines, 2022, 10, 2892.	1.4	4
1107	Rare, convergent antibodies targeting the stem helix broadly neutralize diverse betacoronaviruses. Cell Host and Microbe, 2023, 31, 97-111.e12.	5.1	21
1109	A novel plantâ€made monoclonal antibody enhances the synergetic potency of an antibody cocktail against the <scp>SARSâ€CoV</scp> â€2 Omicron variant. Plant Biotechnology Journal, 2023, 21, 549-559.	4.1	8
1110	Immunotherapeutic and immunomodulatory potentials of Antigen-Antibody complex vaccines. Medical Hypotheses, 2023, 170, 111001.	0.8	2
1111	CD4 and IL-2 mediated NK cell responses after COVID-19 infection and mRNA vaccination in adults. Immunobiology, 2023, 228, 152304.	0.8	2
1112	Essential oils block cellular entry of SARS-CoV-2 delta variant. Scientific Reports, 2022, 12, .	1.6	5
1114	Assessing the long-stand antibody response induced by COVID-19 vaccines: A study in an educational cohort in San Luis, Argentina. Vaccine, 2022, , .	1.7	0
1115	How Protective are Antibodies to SARS-CoV-2, the Main Weapon of the B-Cell Response?. Stem Cell Reviews and Reports, 0, , .	1.7	2
1116	Challenges and developments in universal vaccine design against SARS-CoV-2 variants. Npj Vaccines, 2022, 7, .	2.9	25
1118	Characterization of Systemic and Mucosal Humoral Immune Responses to an Adjuvanted Intranasal SARS-CoV-2 Protein Subunit Vaccine Candidate in Mice. Vaccines, 2023, 11, 30.	2.1	3
1119	<scp>FLUâ€LISA (</scp> fluorescenceâ€linked immunosorbent assay <scp>)</scp> : highâ€throughput antibody profiling using antigen microarrays. Immunology and Cell Biology, 2023, 101, 231-248.	1.0	5
1120	Immune repertoire sequencing reveals an abnormal adaptive immune system in COVIDâ€19 survivors. Journal of Medical Virology, 2023, 95, .	2.5	2
1121	Thermophilic Filamentous Fungus C1-Cell-Cloned SARS-CoV-2-Spike-RBD-Subunit-Vaccine Adjuvanted with Aldydrogel®85 Protects K18-hACE2 Mice against Lethal Virus Challenge. Vaccines, 2022, 10, 2119.	2.1	4
1122	Immunoglobulin germline gene polymorphisms influence the function of SARS-CoV-2 neutralizing antibodies. Immunity, 2023, 56, 193-206.e7.	6.6	12
1123	Variations within the Glycan Shield of SARS-CoV-2 Impact Viral Spike Dynamics. Journal of Molecular Biology, 2023, 435, 167928.	2.0	24

#	Article	IF	CITATIONS
1125	HIV and SARS-CoV-2 Co-Infection: From Population Study Evidence to In Vitro Studies. Life, 2022, 12, 2089.	1.1	0
1126	Animal Models to Test SARS-CoV-2 Vaccines: Which Ones Are in Use and Future Expectations. Pathogens, 2023, 12, 20.	1.2	4
1127	Prophylactic Administration of the Monoclonal Antibody Adintrevimab Protects against SARS-CoV-2 in Hamster and Non-Human Primate Models of COVID-19. Antimicrobial Agents and Chemotherapy, 2023, 67,	1.4	2
1129	Antibody feedback contributes to facilitating the development of Omicron-reactive memory B cells in SARS-CoV-2 mRNA vaccinees. Journal of Experimental Medicine, 2023, 220, .	4.2	11
1131	Attenuated humoral responses in HIV after SARS-CoV-2 vaccination linked to B cell defects and altered immune profiles. IScience, 2023, 26, 105862.	1.9	8
1134	RBD-Based ELISA and Luminex Predict Anti-SARS-CoV-2 Surrogate-Neutralizing Activity in Two Longitudinal Cohorts of German and Spanish Health Care Workers. Microbiology Spectrum, 2023, 11, .	1.2	1
1135	Effects of tuberculosis and/or HIV-1 infection on COVID-19 presentation and immune response in Africa. Nature Communications, 2023, 14, .	5.8	17
1136	Humoral immunity for durable control of SARS-CoV-2 and its variants. Inflammation and Regeneration, 2023, 43, .	1.5	6
1137	Preclinical studies of antiviral activity of the RPH-137 fusion protein and molnupiravir against COVID-19. BIOpreparations Prevention Diagnosis Treatment, 2022, 22, 414-434.	0.2	1
1139	Unglycosylated Soluble SARS-CoV-2 Receptor Binding Domain (RBD) Produced in E. coli Combined with the Army Liposomal Formulation Containing QS21 (ALFQ) Elicits Neutralizing Antibodies against Mismatched Variants. Vaccines, 2023, 11, 42.	2.1	5
1140	Subcutaneous delivery of an antibody against SARS-CoV-2 from a supramolecular hydrogel depot. Biomaterials Science, 2023, 11, 2065-2079.	2.6	7
1141	Protective roles and protective mechanisms of neutralizing antibodies against SARS-CoV-2 infection and their potential clinical implications. Frontiers in Immunology, 0, 14, .	2.2	14
1142	SARS-CoV-2 Establishes a Productive Infection in Hepatoma and Glioblastoma Multiforme Cell Lines. Cancers, 2023, 15, 632.	1.7	3
1143	Applications of genetic engineering in COVID-19. , 2023, , 219-237.		0
1144	Animal models of COVID-19 and complications. , 2023, , 623-636.		0
1145	State of the art in epitope mapping and opportunities in COVID-19. Future Science OA, 2023, 9, .	0.9	4
1146	Development of a Single-Chain Fragment Variable that Binds to the SARS-CoV-2 Spike Protein Produced by Genetically Modified Lactic Acid Bacteria. Molecular Biotechnology, 2024, 66, 151-160.	1.3	0
1147	Antiviral neutralizing antibodies: from in vitro to in vivo activity. Nature Reviews Immunology, 2023, 23, 720-734.	10.6	8

#	Article	IF	CITATIONS
1149	Lessons learned: A look back at the performance of nine COVID-19 serologic assays and their proposed utility. Clinical Biochemistry, 2023, 117, 60-68.	0.8	0
1150	A Competitive Panning Method Reveals an Anti-SARS-CoV-2 Nanobody Specific for an RBD-ACE2 Binding Site. Vaccines, 2023, 11, 371.	2.1	3
1151	SARS-CoV-2 multi-antigen protein microarray for detailed characterization of antibody responses in COVID-19 patients. PLoS ONE, 2023, 18, e0276829.	1.1	4
1152	Ruxolitinib treatment in myelofibrosis and polycythemia vera causes suboptimal humoral immune response following standard and booster vaccination with BNT162b2 mRNA COVID-19 vaccine. Frontiers in Oncology, 0, 13, .	1.3	5
1153	Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause deadly disease. Immunity, 2023, 56, 669-686.e7.	6.6	43
1154	Development of neutralizing antibodies against SARS-CoV-2, using a high-throughput single-B-cell cloning method. Antibody Therapeutics, 2023, 6, 76-86.	1.2	0
1155	Site of vulnerability on SARS-CoV-2 spike induces broadly protective antibody against antigenically distinct Omicron subvariants. Journal of Clinical Investigation, 2023, 133, .	3.9	4
1156	Preclinical safety and efficacy of a therapeutic antibody that targets SARS-CoV-2 at the sotrovimab face but is escaped by Omicron. IScience, 2023, 26, 106323.	1.9	0
1157	Variants of SARS-CoV-2: Influences on the Vaccines' Effectiveness and Possible Strategies to Overcome Their Consequences. Medicina (Lithuania), 2023, 59, 507.	0.8	5
1158	A plant-produced SARS-CoV-2 spike protein elicits heterologous immunity in hamsters. Frontiers in Plant Science, 0, 14, .	1.7	11
1161	Construction of a new chromosome-scale, long-read reference genome assembly for the Syrian hamster, <i>Mesocricetus auratus</i> . GigaScience, 2022, 11, .	3.3	5
1162	Review of therapeutic mechanisms and applications based on SARS-CoV-2 neutralizing antibodies. Frontiers in Microbiology, 0, 14, .	1.5	5
1164	Rapid, early, and potent Spike-directed IgG, IgM, and IgA distinguish asymptomatic from mildly symptomatic COVID-19 in Uganda, with IgG persisting for 28 months. Frontiers in Immunology, 0, 14, .	2.2	7
1165	Identification of a conserved S2 epitope present on spike proteins from all highly pathogenic coronaviruses. ELife, 0, 12, .	2.8	22
1166	Ancestral SARS-CoV-2-Driven Antibody Repertoire Diversity in an Unvaccinated Individual Correlates with Expanded Neutralization Breadth. Microbiology Spectrum, 2023, 11, .	1.2	0
1167	Exploring the Potential of Broadly Neutralizing Antibodies for Treating SARS-CoV-2 Variants of Global Concern in 2023: A Comprehensive Clinical Review. Cureus, 2023, , .	0.2	1
1170	Pre-clinical models to define correlates of protection for SARS-CoV-2. Frontiers in Immunology, 0, 14,	2.2	3
1171	SARS-Cov-2 Coronavirus Infection in Wild Animals. , 2023, , 113-120.		0

#	Article	IF	CITATIONS
1172	Bispecific antibodies combine breadth, potency, and avidity of parental antibodies to neutralize sarbecoviruses. IScience, 2023, 26, 106540.	1.9	2
1173	Comprehensive structural analysis reveals broad-spectrum neutralizing antibodies against SARS-CoV-2 Omicron variants. Cell Discovery, 2023, 9, .	3.1	2
1174	Reduced serological response to COVID-19 booster vaccine is associated with reduced B cell memory in patients with Inflammatory Bowel Disease; VARIATION (VAriability in Response in IBD AgainsT) Tj ETQq0 0 0 rg	BTq /@ verlc	ck110 Tf 50
1175	Immunology of COVID-19. , 2024, , 52-71.		0
1176	Covid-19 infection: Successful global spread, challenges to public health surveillance, and lessons learnt. Journal of Public Health and Epidemiology, 2023, 15, 50-54.	0.1	0
1178	SARS-CoV-2 Variant Pathogenesis Following Primary Infection and Reinfection in Syrian Hamsters. MBio, 0, , .	1.8	4
1179	Inactivated vaccine-elicited potent antibodies can broadly neutralize SARS-CoV-2 circulating variants. Nature Communications, 2023, 14, .	5.8	12
1180	SARS-CoV-2: Immunity, Challenges with Current Vaccines, and a Novel Perspective on Mucosal Vaccines. Vaccines, 2023, 11, 849.	2.1	12
1181	A ferritin-based COVID-19 nanoparticle vaccine that elicits robust, durable, broad-spectrum neutralizing antisera in non-human primates. Nature Communications, 2023, 14, .	5.8	21
1182	Severe COVID-19: Drugs and Clinical Trials. Journal of Clinical Medicine, 2023, 12, 2893.	1.0	0
1183	Broadly neutralizing antibodies against Omicron variants of SARS-CoV-2 derived from mRNA-lipid nanoparticle-immunized mice. Heliyon, 2023, 9, e15587.	1.4	1
1184	Vaccination of SARS-CoV-2-infected individuals expands a broad range of clonally diverse affinity-matured B cell lineages. Nature Communications, 2023, 14, .	5.8	1
1211	Antibody-Secreting Cell Isolation from Different Species for Microfluidic Antibody Hit Discovery. Methods in Molecular Biology, 2023, , 313-325.	0.4	0
1212	Efficient Microfluidic Downstream Processes for Rapid Antibody Hit Confirmation. Methods in Molecular Biology, 2023, , 327-341.	0.4	0
1236	(Re-)emerging viral zoonotic diseases at the human–animal–environment interface. , 2024, , 93-111.		0
1242	B-cell and antibody responses to SARS-CoV-2: infection, vaccination, and hybrid immunity. , 2024, 21, 144-158.		4
1260	Approaches to Improve the Immunogenicity of Plasmid DNA-Based Vaccines against COVID-19. , 0, , .		0
1270	Mammalian Antigen Display for Pandemic Countermeasures. Methods in Molecular Biology, 2024, , 191-216.	0.4	0

ARTICLE

IF CITATIONS