Gas Diffusion Strategy for Inserting Atomic Iron Sites in for Unusually Highâ€Efficient CO₂ Electro Zn–CO₂ Batteries

Advanced Materials 32, e2002430

DOI: 10.1002/adma.202002430

Citation Report

#	Article	IF	CITATIONS
1	Iron clusters boosted performance in electrocatalytic carbon dioxide conversion. Journal of Materials Chemistry A, 2020, 8, 21661-21667.	5.2	8
2	Investigation on the Strategies for Discharge Capacity Improvement of Aprotic Li-CO ₂ Batteries. Energy & Fuels, 2020, 34, 16870-16878.	2.5	9
3	Multiscale structural engineering of atomically dispersed FeN4 electrocatalyst for proton exchange membrane fuel cells. Journal of Energy Chemistry, 2021, 58, 629-635.	7.1	28
4	Recent Advances in Strategies for Improving the Performance of CO ₂ Reduction Reaction on Single Atom Catalysts. Small Science, 2021, 1, 2000028.	5.8	57
5	Two-dimensional matrices confining metal single atoms with enhanced electrochemical reaction kinetics for energy storage applications. Energy and Environmental Science, 2021, 14, 1794-1834.	15.6	45
6	Catalytic mechanism and design principle of coordinately unsaturated single metal atom-doped covalent triazine frameworks with high activity and selectivity for CO ₂ electroreduction. Journal of Materials Chemistry A, 2021, 9, 3555-3566.	5.2	26
7	Dense binary Fe–Cu sites promoting CO ₂ utilization enable highly reversible hybrid Na–CO ₂ batteries. Journal of Materials Chemistry A, 2021, 9, 22114-22128.	5.2	17
8	Synthesis Strategies, Catalytic Applications, and Performance Regulation of Singleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2008318.	7.8	133
9	Formamide-derived "glue―for the hundred-gram scale synthesis of atomically dispersed iron–nitrogen–carbon electrocatalysts. Nanoscale, 2021, 13, 17890-17899.	2.8	4
10	Electrocatalysis for CO ₂ conversion: from fundamentals to value-added products. Chemical Society Reviews, 2021, 50, 4993-5061.	18.7	559
11	Highly selective CO ₂ conversion to methane or syngas tuned by CNTs@non-noble–metal cathodes in Zn–CO ₂ flow batteries. Green Chemistry, 2021, 23, 8138-8146.	4.6	15
12	Metalâ€Free Bifunctional Ordered Mesoporous Carbon for Reversible Zn O ₂ Batteries. Small Methods, 2021, 5, e2001039.	4.6	60
13	Recent progress and perspective of electrochemical CO2 reduction towards C2-C5 products over non-precious metal heterogeneous electrocatalysts. Nano Research, 2021, 14, 3188-3207.	5.8	57
14	Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives. Nano Research, 2021, 14, 3795-3809.	5.8	80
15	Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Singleâ€Atomic Iron Sites. Angewandte Chemie, 2021, 133, 9160-9167.	1.6	26
16	From CO2 to Value-Added Products: A Review about Carbon-Based Materials for Electro-Chemical CO2 Conversion. Catalysts, 2021, 11, 351.	1.6	33
17	Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Singleâ€Atomic Iron Sites. Angewandte Chemie - International Edition, 2021, 60, 9078-9085.	7.2	157
18	Nanomaterials for adsorption and conversion of CO2 under gentle conditions. Materials Today, 2021, 50, 385-399.	8.3	21

#	Article	IF	CITATIONS
19	Nonnitrogen Coordination Environment Steering Electrochemical CO ₂ -to-CO Conversion over Single-Atom Tin Catalysts in a Wide Potential Window. ACS Catalysis, 2021, 11, 5212-5221.	5.5	79
20	Metal–CO ₂ Electrochemistry: From CO ₂ Recycling to Energy Storage. Advanced Energy Materials, 2021, 11, 2100667.	10.2	65
21	A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Metals, 2021, 40, 3019.	3.6	74
22	Effect of Carbon Doping on CO ₂ â€Reduction Activity of Single Cobalt Sites in Graphitic Carbon Nitride. ChemNanoMat, 2021, 7, 1051-1056.	1.5	15
23	Synergistically electronic tuning of metalloid CdSe nanorods for enhanced electrochemical CO2 reduction. Science China Materials, 2021, 64, 2997-3006.	3.5	20
24	Wide Potential CO ₂ â€toâ€CO Electroreduction Relies on Pyridinicâ€N/Ni–N _{<i>x</i>} Sites and Its Zn–CO ₂ Battery Application. Energy Technology, 2021, 9, 2100205.	1.8	8
25	Recent Development of Electrocatalytic CO ₂ Reduction Application to Energy Conversion. Small, 2021, 17, e2100323.	5.2	53
26	Recent progress on single-atom catalysts for CO2 electroreduction. Materials Today, 2021, 48, 95-114.	8.3	63
27	Engineering the Coordination Sphere of Isolated Active Sites to Explore the Intrinsic Activity in Single-Atom Catalysts. Nano-Micro Letters, 2021, 13, 136.	14.4	138
28	Efficient electrochemical nitrate removal on Cu and nitrogen doped carbon. Chemical Engineering Journal, 2021, 415, 128958.	6.6	36
29	Hierarchical Crossâ€Linked Carbon Aerogels with Transition Metalâ€Nitrogen Sites for Highly Efficient Industrialâ€Level CO ₂ Electroreduction. Advanced Functional Materials, 2021, 31, 2104377.	7.8	56
30	Ultraâ€Iowâ€Ioaded Niâ^`Fe Dimer Anchored to Nitrogen/Oxygen Sites for Boosting Electroreduction of Carbon Dioxide. ChemSusChem, 2021, 14, 4499-4506.	3.6	9
31	Cathodic corrosion as a facile and universal method for the preparation of supported metal single atoms. Nano Research, 2022, 15, 1838-1844.	5.8	9
32	A New Strategy for Accelerating Dynamic Proton Transfer of Electrochemical CO ₂ Reduction at High Current Densities. Advanced Functional Materials, 2021, 31, 2104243.	7.8	49
33	Enhancement of Mass Transfer for Facilitating Industrial‣evel CO ₂ Electroreduction on Atomic NiN ₄ Sites. Advanced Energy Materials, 2021, 11, 2102152.	10.2	56
34	Rationally constructing CoO and CoSe2 hybrid with CNTs-graphene for impressively enhanced oxygen evolution and DFT calculations. Chemical Engineering Journal, 2021, 422, 129982.	6.6	33
35	Phosphorus Induced Electron Localization of Single Iron Sites for Boosted CO ₂ Electroreduction Reaction. Angewandte Chemie, 2021, 133, 23806-23810.	1.6	22
36	Phosphorus Induced Electron Localization of Single Iron Sites for Boosted CO ₂ Electroreduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 23614-23618.	7.2	197

#	Article	IF	CITATIONS
37	In-situ formation of isolated iron sites coordinated on nitrogen-doped carbon coated carbon cloth as self-supporting electrode for flexible aluminum-air battery. Chemical Engineering Journal, 2021, 421, 129973.	6.6	21
38	Implanted metal-nitrogen active sites enhance the electrocatalytic activity of zeolitic imidazolate zinc framework-derived porous carbon for the hydrogen evolution reaction in acidic and alkaline media. Journal of Colloid and Interface Science, 2021, 604, 441-457.	5.0	47
39	High-efficient CO2 electrocatalysis over nanoporous Au film enabled by a combined pore engineering and ionic liquid-mediated approach. Chemical Engineering Journal, 2021, 425, 131663.	6.6	8
40	CuBi electrocatalysts modulated to grow on derived copper foam for efficient CO2-to-formate conversion. Journal of Colloid and Interface Science, 2022, 606, 994-1003.	5.0	10
41	Carbonâ€Supported Single Metal Site Catalysts for Electrochemical CO ₂ Reduction to CO and Beyond. Small, 2021, 17, e2005148.	5.2	86
42	Atomic regulation of metal–organic framework derived carbon-based single-atom catalysts for the electrochemical CO ₂ reduction reaction. Journal of Materials Chemistry A, 2021, 9, 23382-23418.	5.2	46
43	In/ZnO@C hollow nanocubes for efficient electrochemical reduction of CO ₂ to formate and rechargeable Zn–CO ₂ batteries. Materials Chemistry Frontiers, 2021, 5, 6618-6627.	3.2	19
44	Ultrathin p–n type Cu ₂ O/CuCoCr-layered double hydroxide heterojunction nanosheets for photo-assisted aqueous Zn–CO ₂ batteries. Journal of Materials Chemistry A, 2021, 9, 26061-26068.	5.2	21
45	Electron Localization and Lattice Strain Induced by Surface Lithium Doping Enable Ampereâ€Level Electrosynthesis of Formate from CO ₂ . Angewandte Chemie - International Edition, 2021, 60, 25741-25745.	7.2	66
46	Electron Localization and Lattice Strain Induced by Surface Lithium Doping Enable Ampere‣evel Electrosynthesis of Formate from CO ₂ . Angewandte Chemie, 2021, 133, 25945-25949.	1.6	19
47	Edge-hosted Fe-N3 sites on a multiscale porous carbon framework combining high intrinsic activity with efficient mass transport for oxygen reduction. Chem Catalysis, 2021, 1, 1291-1307.	2.9	86
48	Hollow carbon spheres and their noble metal-free hybrids in catalysis. Frontiers of Chemical Science and Engineering, 2021, 15, 1380-1407.	2.3	11
49	Axial chlorine coordinated iron-nitrogen-carbon single-atom catalysts for efficient electrochemical CO2 reduction. Chemical Engineering Journal, 2022, 430, 132882.	6.6	51
50	Carbon Nanotubesâ€Based Electrocatalysts: Structural Regulation, Support Effect, and Synchrotronâ€Based Characterization. Advanced Functional Materials, 2022, 32, 2106684.	7.8	14
51	Atomically Dispersed Zinc(I) Active Sites to Accelerate Nitrogen Reduction Kinetics for Ammonia Electrosynthesis. Advanced Materials, 2022, 34, e2103548.	11.1	99
52	Single-Atom Fe-N ₄ on a Carbon Substrate for Nitrogen Reduction Reaction. ACS Applied Nano Materials, 2021, 4, 13001-13009.	2.4	19
53	Recent Advances in Metal–Gas Batteries with Carbonâ€Based Nonprecious Metal Catalysts. Small, 2022, 18, e2103747.	5.2	10
54	Functional Aqueous Zinc–Acetylene Batteries for Electricity Generation and Electrochemical Acetylene Reduction to Ethylene. Angewandte Chemie, 2022, 134, .	1.6	4

#	ARTICLE Structural rule of N-coordinated single-atom catalysts for electrochemical CO ₂	IF	CITATIONS
55 56	reduction. Journal of Materials Chemistry A, 2022, 10, 3585-3594. Nitrogenâ€Doped Carbon Polyhedrons Confined Fe–P Nanocrystals as Highâ€Efficiency Bifunctional	5.2	13 39
57	Catalysts for Aqueous Znâ [~] CÓ ₂ Batteries. Small, 2022, 18, e2104965. Recent advances in heterostructured cathodic electrocatalysts for non-aqueous Li–O ₂ batteries. Chemical Science, 2022, 13, 2841-2856.	3.7	20
58	Tuning the Metal Electronic Structure of Anchored Cobalt Phthalocyanine via Dualâ€Regulator for Efficient CO ₂ Electroreduction and Zn–CO ₂ Batteries. Advanced Functional Materials, 2022, 32, .	7.8	43
59	Hydroxyâ€Groupâ€Functionalized Single Crystal of Copper(II)â€Porphyrin Complex for Electroreduction CO 2 to CH 4. ChemSusChem, 2022, , .	3.6	3
60	Functional Aqueous Zinc–Acetylene Batteries for Electricity Generation and Electrochemical Acetylene Reduction to Ethylene. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
61	Dual-Atom Metal and Nonmetal Site Catalyst on a Single Nickel Atom Supported on a Hybridized BCN Nanosheet for Electrochemical CO ₂ Reduction to Methane: Combining High Activity and Selectivity. ACS Applied Materials & Interfaces, 2022, 14, 9073-9083.	4.0	34
62	Fe/HZSM-5 synergizes with biomass pyrolysis carbon to reform CH4–CO2 to syngas in microwave field. International Journal of Hydrogen Energy, 2022, 47, 11153-11163.	3.8	14
63	Atomically Dispersed Cu Anchored on Nitrogen and Boron Codoped Carbon Nanosheets for Enhancing Catalytic Performance. ACS Applied Materials & Interfaces, 2021, 13, 61047-61054.	4.0	18
64	Single metal atoms catalysts—Promising candidates for next generation energy storage and conversion devices. EcoMat, 2022, 4, .	6.8	28
65	Promoting Electrochemical CO ₂ Reduction via Boosting Activation of Adsorbed Intermediates on Iron Singleâ€Atom Catalyst. Advanced Functional Materials, 2022, 32, .	7.8	52
66	Layered bismuth oxide/bismuth sulfide supported on carrageenan derived carbon for efficient carbon dioxide electroreduction to formate. Chinese Journal of Chemical Engineering, 2022, 43, 116-123.	1.7	4
67	Kinetically accelerated and high-mass loaded lithium storage enabled by atomic iron embedded carbon nanofibers. Nano Research, 2022, 15, 6176-6183.	5.8	12
68	Controllable fabrication of atomic dispersed low-coordination nickel-nitrogen sites for highly efficient electrocatalytic CO2 reduction. Chemical Engineering Journal, 2022, 440, 135956.	6.6	23
69	Transition metal-based single-atom catalysts (TM-SACs); rising materials for electrochemical CO2 reduction. Journal of Energy Chemistry, 2022, 70, 444-471.	7.1	44
70	Atomic Bridging Structure of Nickel–Nitrogen–Carbon for Highly Efficient Electrocatalytic Reduction of CO ₂ . Angewandte Chemie - International Edition, 2022, 61, e202113918.	7.2	85
71	Atomic Bridging Structure of Nickel–Nitrogen–Carbon for Highly Efficient Electrocatalytic Reduction of CO ₂ . Angewandte Chemie, 2022, 134, .	1.6	12
72	Aqueous Znâ€based rechargeable batteries: Recent progress and future perspectives. InformaÄnÃ- Materiály, 2022, 4, .	8.5	77

#	Article	IF	CITATIONS
73	Enhancing Zn-Co2 Battery with a Facile Pd Doped Perovskite Cathode for Efficient Co2 to Co Conversion. SSRN Electronic Journal, 0, , .	0.4	0
74	The Deep Understanding into the Promoted Carbon Dioxide Electroreduction of ZIFâ€8â€Derived Singleâ€Atom Catalysts by the Simple Grinding Process. Small Structures, 2022, 3, .	6.9	13
75	Bridge Sites of Au Surfaces Are Active for Electrocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2022, 144, 8641-8648.	6.6	38
76	Local Spinâ€State Tuning of Iron Singleâ€Atom Electrocatalyst by Sâ€Coordinated Doping for Kineticsâ€Boosted Ammonia Synthesis. Advanced Materials, 2022, 34, e2202240.	11.1	79
77	Unveiling the Protonâ€Feeding Effect in Sulfurâ€Doped Feâ^'Nâ^'C Singleâ€Atom Catalyst for Enhanced CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	126
78	Unveiling the Protonâ€Feeding Effect in Sulfurâ€Doped Feâ^'Nâ^'C Singleâ€Atom Catalyst for Enhanced CO ₂ Electroreduction. Angewandte Chemie, 2022, 134, .	1.6	7
79	Rationally designed nitrogen-doped carbon macroporous fibers with loading of single cobalt sites for efficient aqueous Zn-CO2 batteries. Chem Catalysis, 2022, 2, 1480-1493.	2.9	26
80	Atomic Bridging of Metalâ€Nitrogenâ€Carbon toward Efficient Integrated Electrocatalysis. Advanced Functional Materials, 2022, 32, .	7.8	18
81	Accelerating Protonation Kinetics for Ammonia Electrosynthesis on Single Iron Sites Embedded in Carbon with Intrinsic Defects. Advanced Functional Materials, 2022, 32, .	7.8	45
82	Atomically Dispersed Metalâ€Based Catalysts for Zn–CO ₂ Batteries. Small Structures, 2022, 3, .	6.9	74
83	Coupling Atomically Dispersed Fe–N ₅ Sites with Defective Nâ€Đoped Carbon Boosts CO ₂ Electroreduction. Small, 2022, 18, .	5.2	18
84	Dualâ€5cale Integration Design of Sn–ZnO Catalyst toward Efficient and Stable CO ₂ Electroreduction. Advanced Materials, 2022, 34, .	11.1	28
85	Mediating heterogenized nickel phthalocyanine into isolated Ni-N3 moiety for improving activity and stability of electrocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2022, 318, 121813.	10.8	20
86	Emerging single-atom iron catalysts for advanced catalytic systems. Nanoscale Horizons, 2022, 7, 1340-1387.	4.1	12
87	Active-site and interface engineering of cathode materials for aqueous Zn—gas batteries. Nano Research, 2023, 16, 2325-2346.	5.8	63
88	Highly Efficient Electrochemical CO ₂ Reduction on a Precise Homonuclear Diatomic Fe–Fe Catalyst. ACS Catalysis, 2022, 12, 11412-11420.	5.5	39
89	Bifunctional BiPd Alloy Particles Anchored on Carbon Matrix for Reversible Zn–CO ₂ Battery. ACS Applied Nano Materials, 2022, 5, 12387-12394.	2.4	35
90	Regulating the Coordination Environment of Mesopore onfined Single Atoms from Metalloproteinâ€MOFs for Highly Efficient Biocatalysis. Advanced Materials, 2022, 34, .	11.1	18

#	Article	IF	CITATIONS
91	Engineering electronic and geometric structures of Fe, N-doped carbon polyhedrons toward organic contaminant oxidation. Chemical Engineering Science, 2022, 264, 118178.	1.9	5
92	An enzyme-mimic single Fe-N ₃ atom catalyst for the oxidative synthesis of nitriles via C─C bond cleavage strategy. Science Advances, 2022, 8, .	4.7	28
93	A co-carbonization strategy for confining ultralow-loaded Fe/Mn dual sites in hierarchically porous N-doped carbon for synergistic CO ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 25463-25470.	5.2	9
94	Interfacial engineering of SnO2/Bi2O2CO3 heterojunction on heteroatoms-doped carbon for high-performance CO2 electroreduction to formate. Nano Research, 2023, 16, 2278-2285.	5.8	12
95	Layered Double Hydroxides for Photo(electro)catalytic Applications: A Mini Review. Nanomaterials, 2022, 12, 3525.	1.9	7
96	Enhancing Zn–CO2 battery with a facile Pd doped perovskite cathode for efficient CO2 to CO conversion. Energy, 2023, 263, 125688.	4.5	4
97	Metal–organic framework-derived single atom catalysts for electrocatalytic reduction of carbon dioxide to C1 products. Energy Advances, 2023, 2, 252-267.	1.4	1
98	Boosting Industrialâ€Level CO ₂ Electroreduction of Nâ€Doped Carbon Nanofibers with Confined Tinâ€Nitrogen Active Sites via Accelerating Proton Transport Kinetics. Advanced Functional Materials, 2023, 33, .	7.8	22
99	Accelerated Transfer and Spillover of Carbon Monoxide through Tandem Catalysis for Kineticsâ€boosted Ethylene Electrosynthesis. Angewandte Chemie, 2023, 135, .	1.6	1
100	Accelerated Transfer and Spillover of Carbon Monoxide through Tandem Catalysis for Kineticsâ€boosted Ethylene Electrosynthesis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	21
101	Asymmetric Coordination Environment Engineering of Atomic Catalysts for CO2 Reduction. Nanomaterials, 2023, 13, 309.	1.9	16
102	Positive Valent Metal Sites in Electrochemical CO ₂ Reduction Reaction. ChemPhysChem, 2023, 24, .	1.0	0
103	A rational design of functional porous frameworks for electrocatalytic CO ₂ reduction reaction. Chemical Society Reviews, 2023, 52, 1382-1427.	18.7	48
104	Magnesium: properties and rich chemistry for new material synthesis and energy applications. Chemical Society Reviews, 2023, 52, 2145-2192.	18.7	17
105	Chemical vapor deposition strategy for inserting atomic FeN4 sites into 3D porous honeycomb carbon aerogels as oxygen reduction reaction catalysts in high-performance Zn-air batteries. Chemical Engineering Journal, 2023, 464, 142719.	6.6	21
106	Efficiently electrochemical CO2 reduction on molybdenum-nitrogen-carbon catalysts with optimized p-block axial ligands. Chemical Engineering Science, 2023, 273, 118638.	1.9	2
107	Diatomic molecule catalysts toward synergistic electrocatalytic carbon dioxide reduction. Journal of Materials Chemistry A, 2023, 11, 6321-6328.	5.2	2
108	Electrochemical C–N coupling of CO ₂ and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds. Chemical Society Reviews, 2023, 52, 2193-2237.	18.7	47

		CITATION R	CITATION REPORT	
#	Article		IF	CITATIONS
109	Proton Transfer Dynamicsâ€Mediated CO ₂ Electroreduction. ChemSusChem, 2	023,16,.	3.6	5
110	Recent advances in the regulation of the coordination structures and environment of single-a catalysts for carbon dioxide reduction reaction. Journal of Materials Chemistry A, 2023, 11, 7	itom 949-7986.	5.2	6
111	Ultrathin Nitrogenâ€Doped Carbon Encapsulated Ni Nanoparticles for Highly Efficient Electro CO ₂ Reduction and Aqueous Zn O ₂ Batteries. Small, 2023, 19,	ochemical	5.2	12
112	Density Functional Theory Study of Oxygen Evolution Reaction Mechanism on Rare Earth Sc- Graphene. Batteries, 2023, 9, 175.	Doped	2.1	3
113	Heterogeneous Electrocatalysts for Metal–CO ₂ Batteries and CO _{2Electrolysis. ACS Energy Letters, 2023, 8, 1818-1838.}	b>	8.8	8
114	Promoting CO ₂ Dynamic Activation via Microâ€Engineering Technology for Enh Electrochemical CO ₂ Reduction. Small, 2023, 19, .	ancing	5.2	4
115	FeN ₄ OC Nanoplates Covalently Bonding on Graphene for Efficient CO <su Electroreduction and ZnCO₂ Batteries. Advanced Functional Materials, 2023</su 	b>2 , 33, .	7.8	6
116	Ultrafine Fe ₂ C Iron Carbide Nanoclusters Trapped in Topological Carbon Defect Efficient Electroreduction of Carbon Dioxide. Advanced Energy Materials, 2023, 13, .	s for	10.2	4
117	Rational Engineering of 2D Materials as Advanced Catalyst Cathodes for Highâ€₽erformance Metal–Carbon Dioxide Batteries. Small Structures, 2023, 4, .		6.9	2
130	Unified ORR mechanism criteria <i>via</i> charge–spin–coordination of Fe functional ur and Environmental Science, 2024, 17, 27-48.	its. Energy	15.6	1