Blistering1 Modulates Penicillium expansum Virulence Secretion

Molecular and Cellular Proteomics 19, 344-361 DOI: 10.1074/mcp.ra119.001831

Citation Report

#	Article	IF	CITATIONS
1	<i>Penicillium expansum:</i> biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit. Molecular Plant Pathology, 2020, 21, 1391-1404.	2.0	71
2	Molecular basis and regulation of pathogenicity and patulin biosynthesis in <i>Penicillium expansum</i> . Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3416-3438.	5.9	66
3	The Good, the Bad, and the Ugly: Mycotoxin Production During Postharvest Decay and Their Influence on Tritrophic Host–Pathogen–Microbe Interactions. Frontiers in Microbiology, 2021, 12, 611881.	1.5	16
4	Increased Organic Fertilizer and Reduced Chemical Fertilizer Increased Fungal Diversity and the Abundance of Beneficial Fungi on the Grape Berry Surface in Arid Areas. Frontiers in Microbiology, 2021, 12, 628503.	1.5	11
5	Molecular basis of pathogenesis of postharvest pathogenic Fungi and control strategy in fruits: progress and prospect. Molecular Horticulture, 2021, 1, .	2.3	37
6	Delivering the goods: Fungal secretion modulates virulence during host–pathogen interactions. Fungal Biology Reviews, 2021, 36, 76-86.	1.9	10
7	Genomic Analyses of Penicillium Species Have Revealed Patulin and Citrinin Gene Clusters and Novel Loci Involved in Oxylipin Production. Journal of Fungi (Basel, Switzerland), 2021, 7, 743.	1.5	6
8	Dnj1 Promotes Virulence in Cryptococcus neoformans by Maintaining Robust Endoplasmic Reticulum Homeostasis Under Temperature Stress. Frontiers in Microbiology, 2021, 12, 727039.	1.5	7
9	Metabolite changes of apple Penicillium expansum infection based on a UPLC-Q-TOF metabonomics approach. Postharvest Biology and Technology, 2021, 181, 111646.	2.9	10
10	Advances and Strategies for Controlling the Quality and Safety of Postharvest Fruit. Engineering, 2021, 7, 1177-1184.	3.2	51
11	Impact of the antifungal protein PgAFP on the proteome and patulin production of Penicillium expansum on apple-based medium. International Journal of Food Microbiology, 2022, 363, 109511.	2.1	3
12	More than a Virulence Factor: Patulin Is a Non-Host-Specific Toxin that Inhibits Postharvest Phytopathogens and Requires Efflux for <i>Penicillium</i> Tolerance. Phytopathology, 2022, 112, 1165-1174.	1.1	8
13	Penicillium raperi, a species isolated from Colorado cropping soils, is a potential biological control agent that produces multiple metabolites and is antagonistic against postharvest phytopathogens. Mycological Progress, 2022, 21, .	0.5	2
14	Microbe Related Chemical Signalling and Its Application in Agriculture. International Journal of Molecular Sciences, 2022, 23, 8998.	1.8	8
15	Profiling the secretomes of Penicillium expansum reveals that a serine carboxypeptidase (PeSCP) is required for the fungal virulence on apple fruit. Physiological and Molecular Plant Pathology, 2022, 122, 101897.	1.3	5
16	Early Reduction of Glucose Consumption Is a Biomarker of Kinase Inhibitor Efficacy Which Can Be Reversed with GLUT1 Overexpression in Lung Cancer Cells. Molecular Imaging and Biology, 0, , .	1.3	0
17	Comparative Penicillium spp. Transcriptomics: Conserved Pathways and Processes Revealed in Ungerminated Conidia and during Postharvest Apple Fruit Decay. Microorganisms, 2022, 10, 2414.	1.6	6
18	Transcriptome Analysis and Functional Characterization Reveal That Peclg Gene Contributes to the Virulence of Penicillium expansum on Apple Fruits. Foods, 2023, 12, 479.	1.9	4

#	Article	IF	CITATIONS
19	Elicitation of Fruit Fungi Infection and Its Protective Response to Improve the Postharvest Quality of Fruits. Stresses, 2023, 3, 231-255.	1.8	8