The justice and equity implications of the clean energy

Nature Energy 5, 569-577 DOI: 10.1038/s41560-020-0641-6

Citation Report

#	Article	IF	Citations
1	The future of coal in a carbon-constrained climate. Nature Climate Change, 2020, 10, 704-707.	8.1	85
2	Fully Biodegradable Water Droplet Energy Harvester Based on Leaves of Living Plants. ACS Applied Materials & Interfaces, 2020, 12, 56060-56067.	4.0	69
3	The impact of policies and business models on income equity in rooftop solar adoption. Nature Energy, 2021, 6, 84-91.	19.8	70
4	Advancing green energy solution with the impetus of COVID-19 pandemic. Journal of Energy Chemistry, 2021, 59, 688-705.	7.1	63
5	Impacts of the COVID-19 event on the NOx emissions of key polluting enterprises in China. Applied Energy, 2021, 281, 116042.	5.1	41
6	Actions Large Energy Buyers Can Take to Transform and Decarbonize the Grid: Procurement Practices for Achieving 100% Carbon Free Electricity. , 0, , .		0
7	Sociodemographic disparities in energy insecurity among low-income households before and during the COVID-19 pandemic. Nature Energy, 2021, 6, 186-193.	19.8	117
8	Background on Economic Development. , 2021, , 1-13.		0
9	The Emerging Potential of Microgrids in the Transition to 100% Renewable Energy Systems. Energies, 2021, 14, 1687.	1.6	15
10	What is going on with Middle Eastern solar prices, and what does it mean for the rest of us?. Progress in Photovoltaics: Research and Applications, 2021, 29, 638-648.	4.4	17
11	Thermally recyclable polyester-based phase change materials networks with high latent heat and network self-stability even at high temperature. Journal of Energy Storage, 2021, 36, 102364.	3.9	14
12	Fuel poverty policy: Go big or go home insulation. Energy Economics, 2021, 97, 105195.	5.6	22
13	Low arbon energy, sustainable development, and justice: Towards a just energy transition for the society and the environment. Sustainable Development, 2021, 29, 1049-1061.	6.9	37
14	Energy Storage as an Equity Asset. Current Sustainable/Renewable Energy Reports, 2021, 8, 149-155.	1.2	11
15	An analysis of energy justice programs across the United States. Energy Policy, 2021, 152, 112219.	4.2	34
16	Best Practices for an Equitable Clean Energy Transition: A Toolkit for U.S. States. Journal of Science Policy & Governance, 2021, 18, .	0.1	0
17	The flexibility gap: Socioeconomic and geographical factors driving residential flexibility. Energy Policy, 2021, 153, 112282.	4.2	13
18	WHAT WE CAN LEARN FROM THE GREEN NEW DEAL ABOUT THE IMPORTANCE OF EQUITY IN NATIONAL CLIMATE POLICY. Journal of Policy Analysis and Management, 2021, 40, 996-1002.	1.1	6

ATION REDO

#	ARTICLE	IF	CITATIONS
19	Exploring Residential Rooftop Solar Potential in the United States by Race and Ethnicity. Frontiers in Sustainable Cities, 2021, 3, .	1.2	9
20	Towards Decarbonization: Establishing a Sustainable, Equitable, Diverse Workforce in the U.S. Photovoltaic Industry. , 2021, , .		0
21	China's ambitious energy transition plans. Science, 2021, 373, 170-170.	6.0	32
22	Initial Impact and Socioeconomic Compensation for the Closure of a Coal-Fired Power Plant in a Local Entity. Sustainability, 2021, 13, 7391.	1.6	3
23	Targeting household energy assistance. Energy Economics, 2021, 99, 105311.	5.6	13
24	Analysis of the potential for PV rooftop prosumer production: Technical, economic and environmental assessment for the city of Valencia (Spain). Renewable Energy, 2021, 174, 372-381.	4.3	53
25	People and power: Expanding the role and scale of public engagement in energy transitions. Energy Research and Social Science, 2021, 78, 102136.	3.0	19
26	Energy justice within, between and beyond European community energy initiatives: A review. Energy Research and Social Science, 2021, 79, 102157.	3.0	56
27	Inequitable access to distributed energy resources due to grid infrastructure limits in California. Nature Energy, 2021, 6, 892-903.	19.8	53
28	Strengthening Gender Justice in a Just Transition: A Research Agenda Based on a Systematic Map of Gender in Coal Transitions. Energies, 2021, 14, 5985.	1.6	9
30	A U.S.‒China coal power transition and the global 1.5°C pathway. Advances in Climate Change Research, 2022, 13, 179-186.	2.1	3
31	Energy poor need more energy, but do they need more carbon? Evaluation of people's basic carbon needs. Ecological Economics, 2021, 187, 107081.	2.9	20
32	After the vote: climate policy decision-making in the administrative state. Current Opinion in Environmental Sustainability, 2021, 52, 58-67.	3.1	1
33	Impact of voltage degradation in water electrolyzers on sustainability of synthetic natural gas production: Energy, economic, and environmental analysis. Energy Conversion and Management, 2021, 245, 114516.	4.4	6
34	Expanding the scope of just transitions: Towards localized solutions and community-level dynamics. Energy Research and Social Science, 2021, 80, 102245.	3.0	20
35	Income-targeted marketing as a supply-side barrier to low-income solar adoption. IScience, 2021, 24, 103137.	1.9	4
36	An adaptive renewable energy plant (AREP) - To power local premises and vehicles with 100% renewables. Energy Strategy Reviews, 2021, 38, 100703.	3.3	4
37	A perspective on equity implications of net zero energy systems. Energy and Climate Change, 2021, 2, 100047.	2.2	18

_

	CITATION R	EPORT	
#	Article	IF	CITATIONS
38	Ethics, morality, and the psychology of climate justice. Current Opinion in Psychology, 2021, 42, 36-42.	2.5	8
39	Fuel poverty in industrialized countries: Definition, measures and policy implications a review. Energy, 2021, 236, 121557.	4.5	25
40	Can authoritarian regimes achieve just energy transition? Evidence from China's solar photovoltaic poverty alleviation initiative. Energy Research and Social Science, 2021, 82, 102315.	3.0	29
41	Just transition: A conceptual review. Energy Research and Social Science, 2021, 82, 102291.	3.0	165
42	Revealing crucial effects of temperature and salinization on swelling behavior of montmorillonite. Chemical Engineering Journal, 2022, 429, 132263.	6.6	25
43	Blockchain Applications in the Energy Industry. Advances in Computational Intelligence and Robotics Book Series, 2022, , 159-180.	0.4	4
44	Social and Policy Aspects of Offshore Renewable Energy. , 2021, , .		0
45	Nanofiber fabric based ion-gradient-enhanced moist-electric generator with a sustained voltage output of 1.1 volts. Materials Horizons, 2021, 8, 2303-2309.	6.4	59
46	Strengthening Gender Justice in a Just Transition: A Research Agenda Based on a Systematic Map of Gender in Coal Transitions. SSRN Electronic Journal, 0, , .	0.4	1
47	High energy burden and low-income energy affordability: conclusions from a literature review. Progress in Energy, 2020, 2, 042003.	4.6	64
48	Agrivoltaics Align with Green New Deal Goals While Supporting Investment in the US' Rural Economy. Sustainability, 2021, 13, 137.	1.6	42
49	Developing equitable health and climate solutions: insights from the field. Environmental Research Letters, 2021, 16, 011002.	2.2	2
50	Racial inequity in household energy efficiency and carbon emissions in the United States: An emissions paradox. Energy Research and Social Science, 2022, 84, 102365.	3.0	34
51	Energy transition in Brazil: Is there a role for multilevel governance in a centralized energy regime?. Energy Research and Social Science, 2022, 85, 102404.	3.0	34
52	Towards a multi-scalar and multi-horizon framework of energy injustice: A whole systems analysis of Estonian energy transition. Political Geography, 2022, 93, 102544.	1.3	15
53	What if we never run out of oil? From certainty of "peak oil―to "peak demand― Energy Research and Social Science, 2022, 85, 102407.	3.0	12
54	What makes people act climate-friendly? A decision-making path model for designing effective climate change policies. Current Opinion in Environmental Sustainability, 2021, 52, 132-139.	3.1	0
55	Moral rifts in the coal phase-out—how mayors shape distributive and recognition-based dimensions of a just transition in Lusatia. Journal of Environmental Policy and Planning, 2023, 25, 194-209.	1.5	7

		Crint		
#	Article		IF	CITATIONS
56				

#	Article	IF	CITATIONS
74	Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives. Nano-Micro Letters, 2022, 14, 42.	14.4	207
75	A measurement strategy to address disparities across household energy burdens. Nature Communications, 2022, 13, 288.	5.8	30
76	Electrification: Opportunities for social justice and social innovation. MRS Bulletin, 2021, 46, 1205.	1.7	2
77	Trapezoidal Cantilever-Structure Triboelectric Nanogenerator Integrated with a Power Management Module for Low-Frequency Vibration Energy Harvesting. ACS Applied Materials & Interfaces, 2022, 14, 5497-5505.	4.0	20
78	Characterizing local rooftop solar adoption inequity in the US. Environmental Research Letters, 2022, 17, 034028.	2.2	18
79	The Pivotal Role of sâ€; pâ€; and fâ€Block Metals in Water Electrolysis: Status Quo and Perspectives. Advanced Materials, 2022, 34, e2108432.	11.1	55
80	Structural evolution and hydrogen storage performance of Mg3LaH (n = 9–20). International Journal of Hydrogen Energy, 2022, 47, 7884-7891.	3.8	8
81	Assessing the regional adaptive capacity to renewable portfolio standard policy in China. Energy Policy, 2022, 162, 112798.	4.2	4
82	Necessary, welcome or dreaded? Insights on low-carbon transitions from unionized energy workers in the United States. Energy Research and Social Science, 2022, 88, 102511.	3.0	4
83	DC Output Water Droplet Energy Harvester Enhanced by Triboelectric Effect. SSRN Electronic Journal, 0, , .	0.4	0
84	Renewable Energy Management: An Analysis of the Status Quo. Studies in Infrastructure and Control, 2022, , 99-127.	0.4	3
85	A GLOBAL VIEW OF BASIC PRACTICE APPROACHES WITHIN THE SCOPE OF THE EU GREEN DEAL AND SUSTAINABLE DEVELOPMENT GOALS. Dokuz Eylļl Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 2022, 2· 47-67.	4,0.2	1
86	The State of Abandoned Mine Reclamation: Perspectives from Pennsylvania Stakeholders. SSRN Electronic Journal, 0, , .	0.4	0
87	The clean energy claims of BP, Chevron, ExxonMobil and Shell: A mismatch between discourse, actions and investments. PLoS ONE, 2022, 17, e0263596.	1.1	54
88	20 Years of global climate change governance research: taking stock and moving forward. International Environmental Agreements: Politics, Law and Economics, 2022, 22, 295-315.	1.5	3
89	Energy regime reconfiguration and just transitions in the Clobal South: Lessons for West Africa from Morocco's comparative experience. Futures, 2022, 139, 102934.	1.4	15
90	How to Meet the Green Deal Objectives—Is It Possible to Obtain 100% RES at the Regional Level in the EU?. Energies, 2022, 15, 2296.	1.6	14
91	Just Transitions: A Political Ecology Critique. Antipode, 2022, 54, 1003-1020.	2.5	24

#	Article	IF	CITATIONS
92	Who Will Pay for Legacy Utility Costs?. Journal of the Association of Environmental and Resource Economists, 2022, 9, 1047-1085.	1.0	4
93	Localized energy burden, concentrated disadvantage, and the feminization of energy poverty. IScience, 2022, 25, 104139.	1.9	6
94	A Path Toward Systemic Equity in Life Cycle Assessment and Decision-Making: Standardizing Sociodemographic Data Practices. Environmental Engineering Science, 2022, 39, 759-769.	0.8	14
95	Navigating tensions between rapid and just low-carbon transitions. Environmental Research Letters, 2022, 17, 041006.	2.2	31
96	The effect of renewable energy development on China's energy intensity: Evidence from partially linear functional-coefficient panel data analyses. Journal of Cleaner Production, 2022, 350, 131505.	4.6	13
97	Towards improved solar energy justice: Exploring the complex inequities of household adoption of photovoltaic panels. Energy Policy, 2022, 164, 112868.	4.2	41
98	Socioeconomic and demographic disparities in residential battery storage adoption: Evidence from California. Energy Policy, 2022, 164, 112877.	4.2	7
99	Analysis of the determinants of market capitalisation: Innovation, climate change policies and business context. Technological Forecasting and Social Change, 2022, 179, 121644.	6.2	9
100	Effect of cleaner residential heating policy on air pollution: A case study in Shandong Province, China. Journal of Environmental Management, 2022, 311, 114847.	3.8	12
101	Environmental Finance: An Interdisciplinary Review. Technological Forecasting and Social Change, 2022, 179, 121639.	6.2	65
102	Energy justice and the co-opting of indigenous narratives in U.S. offshore wind development. Renewable Energy Focus, 2022, 41, 133-142.	2.2	6
103	Optimizing the provincial targetÂallocation scheme of renewable portfolio standards in China. Energy, 2022, 250, 123699.	4.5	6
104	"After the leases are signed, it's a done deal― Exploring procedural injustices for utility-scale wind energy planning in the United States. Energy Research and Social Science, 2022, 89, 102549.	3.0	12
105	Just transition: Framing, organizing, and power-building for decarbonization. Energy Research and Social Science, 2022, 90, 102588.	3.0	17
106	Impacts of the COVID-19 pandemic on the energy sector. Journal of Zhejiang University: Science A, 2021, 22, 941-956.	1.3	15
107	Energy insecurity during temperature extremes in remote Australia. Nature Energy, 2022, 7, 43-54.	19.8	32
108	Three Faces of Climate Justice. Annual Review of Political Science, 2022, 25, 283-301.	3.5	20
109	Integration of prosumer peer-to-peer trading decisions into energy community modelling. Nature Energy, 2022, 7, 74-82.	19.8	50

#	Article	IF	CITATIONS
110	Transitioning From Urban Climate Action to Climate Equity. Journal of the American Planning Association, 2022, 88, 508-523.	0.9	20
111	Optimizing utilization of point source and atmospheric carbon dioxide as a feedstock in electrochemical CO2 reduction. IScience, 2022, 25, 104270.	1.9	7
112	Sodium-ion battery from sea salt: a review. Materials for Renewable and Sustainable Energy, 2022, 11, 71-89.	1.5	13
113	Customer engagement strategies in retail electricity markets: A comprehensive and comparative review. Energy Research and Social Science, 2022, 90, 102611.	3.0	25
114	Evaluation of the Victorian Healthy Homes Program: protocol for a randomised controlled trial. BMJ Open, 2022, 12, e053828.	0.8	0
116	Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland. Energies, 2022, 15, 3159.	1.6	8
117	A Summary of Environmental Monitoring Recommendations for Marine Energy Development That Considers Life Cycle Sustainability. Journal of Marine Science and Engineering, 2022, 10, 586.	1.2	3
118	How to avoid unjust energy transitions: insights from the Ruhr region. Energy, Sustainability and Society, 2022, 12, .	1.7	15
119	Towards a CO2-neutral steel industry: Justice aspects of CO2 capture and storage, biomass- and green hydrogen-based emission reductions. Energy Research and Social Science, 2022, 88, 102598.	3.0	26
120	How just are just transition plans? Perceptions of decarbonisation and low-carbon energy transitions among peat workers in Ireland. Energy Research and Social Science, 2022, 88, 102616.	3.0	16
121	Business as not usual: A systematic literature review of social entrepreneurship, social innovation, and energy poverty to accelerate the just energy transition. Energy Research and Social Science, 2022, 90, 102624.	3.0	17
122	The energy futures we want: A research and policy agenda for energy transitions. Energy Research and Social Science, 2022, 89, 102639.	3.0	51
123	Does the solar PV program enhance the social empowerment of China's rural poor?. Energy, 2022, 253, 124084.	4.5	3
124	The grassroots are always greener: Community-based organizations as innovators of shared solar energy in the United States. Energy Research and Social Science, 2022, 90, 102628.	3.0	7
125	Energy Justice, Decarbonization, and the Clean Energy Transformation. Annual Review of Resource Economics, 2022, 14, 647-668.	1.5	6
127	Who's fighting for justice?: advocacy in energy justice and just transition scholarship. Environmental Research Letters, 2022, 17, 063006.	2.2	14
128	Disrupting to decarbonise socio-energy systems: The †̃carbon transformation axes' framework. Energy Research and Social Science, 2022, 90, 102657.	3.0	5
129	Participation in domestic energy retrofit programmes: key spatio-temporal drivers. Buildings and Cities, 2022, 3, 356.	1.1	2

#	Article	IF	CITATIONS
130	DC Output Water Droplet Energy Harvester Enhanced by the Triboelectric Effect. ACS Applied Electronic Materials, 2022, 4, 2851-2858.	2.0	5
131	The heterogeneous role of energy policies in the energy transition of Asia–Pacific emerging economies. Nature Energy, 2022, 7, 588-596.	19.8	25
132	Civic engagement and energy transition in the Nordic-Baltic Sea Region: Parametric and nonparametric inquiries. Socio-Economic Planning Sciences, 2023, 87, 101347.	2.5	19
133	Local Governance in Just Energy Transition: Towards a Community-Centric Framework. Sustainability, 2022, 14, 6495.	1.6	7
134	Celebrating Women in Electrochemical Sciences and Engineering (WIESE). ACS Energy Letters, 2022, 7, 2105-2112.	8.8	0
135	Photovoltaicâ€powered supercapacitors for driving overall water splitting: A dualâ€modulated 3D architecture. , 2022, 4, 1262-1273.		21
136	Municipal government adaptive capacity programs for vulnerable populations during the U.S. energy transition. Energy Policy, 2022, 167, 113058.	4.2	4
137	Algorithms for All: Has Digitalization in the Mortgage Market Expanded Access to Homeownership?. SSRN Electronic Journal, 0, , .	0.4	1
138	State Regulation of Energy Transition and Economic Development. Energies, 2022, 15, 4304.	1.6	2
139	Historic drivers of onshore wind power siting and inevitable future trade-offs. Environmental Research Letters, 2022, 17, 074018.	2.2	13
140	Positive energy district stakeholder perceptions and measures for energy vulnerability mitigation. Applied Energy, 2022, 322, 119477.	5.1	11
141	Just transitions for industrial decarbonisation: A framework for innovation, participation, and justice. Renewable and Sustainable Energy Reviews, 2022, 167, 112699.	8.2	27
142	Drivers and energy justice implications of renewable energy project siting in the United States. Journal of Environmental Policy and Planning, 2023, 25, 258-272.	1.5	4
143	Forecasting Crude Oil Consumption in Poland Based on LSTM Recurrent Neural Network. Energies, 2022, 15, 4885.	1.6	11
144	Busting the myths around public investment in clean energy. Nature Energy, 2022, 7, 563-565.	19.8	11
145	Residents Against Dirty Energy: using energy justice to understand the role of local activism in shaping low-carbon transitions. Local Environment, 2022, 27, 946-967.	1.1	2
146	What Does the Circular Household of the Future Look Like? An Expert-Based Exploration. Land, 2022, 11, 1062.	1.2	3
147	Understanding the complexity of existing fossil fuel power plant decarbonization. IScience, 2022, 25, 104758.	1.9	6

#	Article	IF	CITATIONS
148	Just energy transitions? Energy policy and the adoption of clean energy technology by households in Sweden. Energy Research and Social Science, 2022, 91, 102727.	3.0	2
149	Developing future retail electricity markets with a customer-centric focus. Energy Policy, 2022, 168, 113147.	4.2	4
150	A social science perspective on conflicts in the energy transition: An introduction to the special issue. Utilities Policy, 2022, 78, 101396.	2.1	1
151	Energy transition management towards a low-carbon world. Frontiers of Engineering Management, 2022, 9, 499-503.	3.3	15
152	Transport equity considerations in electric vehicle charging research: a scoping review. Transport Reviews, 2023, 43, 330-355.	4.7	9
153	The costs of replacing coal plant jobs with local instead of distant wind and solar jobs across the United States. IScience, 2022, 25, 104817.	1.9	5
154	Portions in portfolios: Understanding public preferences for electricity production using compositional survey data in the United States. Energy Research and Social Science, 2022, 91, 102759.	3.0	1
155	Inequality and the future of electric mobility in 36 U.S. Cities: An innovative methodology and comparative assessment. Energy Research and Social Science, 2022, 91, 102760.	3.0	4
156	Solar adoption inequality in the U.S.: Trend, magnitude, and solar justice policies. Energy Policy, 2022, 169, 113163.	4.2	13
157	Net GHG emissions and air quality outcomes from different residential building electrification pathways within a California disadvantaged community. Sustainable Cities and Society, 2022, 86, 104128.	5.1	3
158	Optimizing equity in energy policy interventions: A quantitative decision-support framework for energy justice. Applied Energy, 2022, 325, 119771.	5.1	20
159	Defining coastal resilience in the Great Lakes: A systematic review and critical comparison. Journal of Great Lakes Research, 2022, 48, 1361-1374.	0.8	3
160	Challenges and opportunities in decarbonizing the U.S. energy system. Renewable and Sustainable Energy Reviews, 2022, 169, 112939.	8.2	35
161	Of cooks, crooks and slum-dwellers: Exploring the lived experience of energy and mobility poverty in Mexico's informal settlements. World Development, 2023, 161, 106093.	2.6	12
162	Quantum Dot-based Luminescent Solar Concentrators Fabricated through the Ultrasonic Spray-Coating Method. ACS Applied Materials & amp; Interfaces, 2022, 14, 41013-41021.	4.0	9
163	Spatiotemporal Interaction and Socioeconomic Determinants of Rural Energy Poverty in China. International Journal of Environmental Research and Public Health, 2022, 19, 10851.	1.2	2
164	Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach. Energies, 2022, 15, 6578.	1.6	9
165	Energy Transition Narratives in Spain: A Case Study of As Pontes. Sustainability, 2022, 14, 11177.	1.6	2

#	Article	IF	CITATIONS
166	Mapping county-level vulnerability to the energy transition in US fossil fuel communities. Scientific Reports, 2022, 12, .	1.6	21
167	US cities increasingly integrate justice into climate planning and create policy tools for climate justice. Nature Communications, 2022, 13, .	5.8	16
168	Achieving Ultrahigh-Rate and Low-Temperature Sodium Storage of FePS ₃ via In Situ Construction of Graphitized Porous N-Doped Carbon. ACS Applied Materials & Interfaces, 2022, 14, 42048-42056.	4.0	7
169	Diverse Pathways for Power Sector Decarbonization in Texas Yield Health Cobenefits but Fail to Alleviate Air Pollution Exposure Inequities. Environmental Science & Technology, 2022, 56, 13274-13283.	4.6	7
170	Satellite Data Applications for Sustainable Energy Transitions. Frontiers in Sustainability, 0, 3, .	1.3	6
171	Machine Learning in the Development of Adsorbents for Clean Energy Application and Greenhouse Gas Capture. Advanced Science, 2022, 9, .	5.6	8
172	Photovoltaic Materials and Their Path toward Cleaner Energy. Global Challenges, 2023, 7, .	1.8	2
173	Enabling an equitable energy transition through inclusive research. Nature Energy, 2023, 8, 1-4.	19.8	16
174	State of Climate Action 2022. , 0, , .		18
175	Will peak talent arrive before peak oil or peak demand?: Exploring whether career choices of highly skilled workers will accelerate the transition to renewable energy. Energy Research and Social Science, 2022, 93, 102834.	3.0	5
176	Who benefits from household energy transition? A cost-benefit analysis based on household survey data in China. China Economic Review, 2023, 77, 101878.	2.1	2
177	Multi-criteria evaluation of the effectiveness of energy policy in Central and Eastern European countries in a long-term perspective. Energy Strategy Reviews, 2022, 44, 100973.	3.3	18
178	Hydrogen justice. Environmental Research Letters, 2022, 17, 115006.	2.2	17
179	Frontlining energy justice: Visioning principles for energy transitions from community-based organizations in the United States. Energy Research and Social Science, 2022, 94, 102855.	3.0	10
180	International Energy Politics in an Age of Climate Change. Annual Review of Political Science, 2023, 26, 79-96.	3.5	3
181	Carbon-Nitride-Based Materials for Advanced Lithium–Sulfur Batteries. Nano-Micro Letters, 2022, 14,	14.4	19
182	Impacts of renewable energy on climate vulnerability: A global perspective for energy transition in a climate adaptation framework. Science of the Total Environment, 2023, 859, 160175.	3.9	19
183	Advancing the state of energy equity metrics. Electricity Journal, 2022, 35, 107208.	1.3	6

		CITATION RE	PORT	
#	ARTICLE		IF	Citations
184	Measuring the low-carbon energy transition in Chinese cities. IScience, 2023, 26, 1058	303.	1.9	22
185	Responsible sourcing for energy transitions: Discussing academic narratives of responsible through the lens of natural resources justice. Journal of Environmental Management, 2 116711.	sible sourcing 023, 326,	3.8	9
186	Can we optimise for justice? Reviewing the inclusion of energy justice in energy system models. Energy Research and Social Science, 2023, 95, 102913.	ו optimisation	3.0	9
187	Conceptualizing the patterns of land use conflicts in wind energy development: Towar and implications for practice. Energy Research and Social Science, 2023, 95, 102907.	ds a typology	3.0	14
188	Managing the distributional effects of climate policies: A narrow path to a just transition Economics, 2023, 205, 107689.	on. Ecological	2.9	6
189	Policy Dilemmas and Solutions to the Successful Energy Transition. , 2022, , 1-25.			0
190	New Techniques for Assessing Critical Raw Material Aspects in Energy and Other Tech Environmental Science & Technology, 2022, 56, 17236-17245.	10logies.	4.6	7
191	Exploring the Nonlinear Relationship between Renewable Energy Consumption and Ec in the Context of Global Climate Change. International Journal of Environmental Resea Health, 2022, 19, 15647.	onomic Growth rch and Public	1.2	2
192	Flexible Loads Scheduling Algorithms for Renewable Energy Communities. Energies, 20)22, 15, 8875.	1.6	3
193	Specialty grand challenge: Energy transitions, human dimensions, and society. , 0, 1, .			17
194	Temperature―and Ambient Pressureâ€Independent Sensing of Hydrogen in Fluids Us Interferometers Incorporated in Optical Fibers. Advanced Materials Technologies, 202	ing Cascaded 3, 8, .	3.0	4
195	Energy transition research: A bibliometric mapping of current findings and direction fo research. Cleaner Production Letters, 2022, 3, 100026.	r future	1.2	19
196	Energy transition minerals and their intersection with land-connected peoples. Nature 2023, 6, 203-211.	Sustainability,	11.5	47
197	Decarbonization, population disruption and resource inventories in the global energy t Nature Communications, 2022, 13, .	ransition.	5.8	18
199	Air pollution disparities and equality assessments of US national decarbonization strat Communications, 2022, 13, .	egies. Nature	5.8	21
200	Green Transformation: Applying Statistical Data Analysis to A Systematic Literature Re 2023, 16, 253.	view. Energies,	1.6	0
201	Financial Development, Human Capital and Energy Transition: A Global Comparative A Electronic Journal, 0, , .	nalysis. SSRN	0.4	4
202	Editorial: The role of fiscal decentralization in achieving environmental sustainability in and emerging economies. Frontiers in Environmental Science, 0, 10, .	developing	1.5	3

# 203	ARTICLE Characterization of vulnerable communities in terms of the benefits and burdens of the energy transition in Pacific Northwest cities, Journal of Cleaner Production, 2023, 393, 135949	IF 4.6	Citations
204	Insights from the management of offshore energy resources: Toward an ecosystem-services based management approach for deep-ocean industries. Frontiers in Marine Science, 0, 9, .	1.2	1
205	Technological diffusion trends suggest a more equitable future for rooftop solar in the United States. Environmental Research Letters, 0, , .	2.2	0
206	The transmission ramifications of social and environmental siting considerations on wind energy deployment. Frontiers in Energy Research, 0, 10, .	1.2	0
207	Mapping electric vehicle impacts: greenhouse gas emissions, fuel costs, and energy justice in the United States. Environmental Research Letters, 2023, 18, 014027.	2.2	15
208	Does land conservation raise property taxes? Evidence from New England cities and towns. Journal of Environmental Economics and Management, 2023, 119, 102782.	2.1	1
209	Clean energy justice: Different adoption characteristics of underserved communities in rooftop solar and electric vehicle chargers in Seattle. Energy Research and Social Science, 2023, 96, 102931.	3.0	14
210	Environmental assessment of multiple "cleaner electricity mix―scenarios within just energy and circular economy transitions, in Italy and Europe. Journal of Cleaner Production, 2023, 388, 135891.	4.6	9
211	Energy poverty in the Netherlands at the national and local level: A multi-dimensional spatial analysis. Energy Research and Social Science, 2023, 96, 102892.	3.0	16
212	Solar for renters: Investigating investor perspectives of barriers and policies. Energy Policy, 2023, 174, 113417.	4.2	2
213	Assessing the Energy Equity Benefits of Energy Storage Solutions. , 2022, , .		1
214	The evolving energy landscapes of coal: Windows on the past and influences on the future. Moravian Geographical Reports, 2022, 30, 228-236.	0.7	1
215	Quantifying the importance of feed-in tariffs to wind power development in China. Environmental Science and Pollution Research, 2023, 30, 37791-37804.	2.7	3
216	Mapping regional vulnerability in Europe's energy transition: development and application of an indicator to assess declining employment in four carbon-intensive industries. Climatic Change, 2023, 176, .	1.7	7
217	The justice and policy implications of clean energy transition in Africa. Frontiers in Environmental Science, 0, 11, .	1.5	7
218	Assessing the Effectiveness of Air Quality Improvements in Polish Cities Aspiring to Be Sustainably Smart. Smart Cities, 2023, 6, 510-530.	5.5	4
219	Local Energy Markets: From Concepts to Reality. Lecture Notes in Energy, 2023, , 1-38.	0.2	2
220	Effect of the COVID-19 Pandemic on the Brazilian Energy Sector. The Latin American Studies Book Series, 2023, , 245-258.	0.1	0

#	Article	IF	CITATIONS
221	Towards more robust energy policy metrics: Proposing a dashboard and blueprint to tackle complexity. Energy Research and Social Science, 2023, 99, 103066.	3.0	2
222	Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration. Renewable Energy, 2023, 207, 177-193.	4.3	41
223	Clean, green, and just? Community perspectives on the renewable energy transition in a New England city. , 2023, 6, 100188.		0
224	Flexible phase change organogel with visualization function for human heat harvesting. Composites Part A: Applied Science and Manufacturing, 2023, 169, 107540.	3.8	0
225	Recent progress and challenges of Zn anode modification materials in aqueous Zn-ion batteries. Coordination Chemistry Reviews, 2023, 485, 215142.	9.5	31
226	Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge. Energy, 2023, 273, 127252.	4.5	3
227	Equitable reverse auctions supporting household energy investments. Energy Policy, 2023, 177, 113548.	4.2	6
228	"l earned the right to build the next American car― How autoworkers and communities confront electric vehicles. Energy Research and Social Science, 2023, 99, 103065.	3.0	3
229	Changes in inequality for solar panel uptake by Australian homeowners. Ecological Economics, 2023, 209, 107851.	2.9	2
230	Meta-analysis of the role of equity dimensions in household solar panel adoption. Ecological Economics, 2023, 206, 107754.	2.9	8
231	The social impacts of resource extraction for the clean energy transition: A qualitative news media analysis. The Extractive Industries and Society, 2023, 13, 101213.	0.7	1
232	Reducing global inequality to secure human wellbeing and climate safety: a modelling study. Lancet Planetary Health, The, 2023, 7, e147-e154.	5.1	14
233	Policy prescriptions to address energy and transport poverty in the United Kingdom. Nature Energy, 2023, 8, 273-283.	19.8	22
234	Greening recovery $\hat{a} \in $ Overcoming policy incoherence for sustainability transformations. Environmental Policy and Governance, 0, , .	2.1	0
235	Anticipating the impacts of light-duty vehicle electrification on the U.S. automotive service workforce. Environmental Research Letters, 2023, 18, 031002.	2.2	1
236	Examining energy inequality under the rapid residential energy transition in China through household surveys. Nature Energy, 2023, 8, 251-263.	19.8	17
237	Achieving energy justice and common prosperity through green energy resources. Resources Policy, 2023, 81, 103427.	4.2	8
238	Improved Strategies for Separators in Zincâ€lon Batteries. ChemSusChem, 2023, 16,	3.6	33

#	Article	IF	CITATIONS
239	Interface Engineering for Highly Efficient Organic Solar Cells. Advanced Materials, 0, , .	11.1	40
240	Transforming Türkiye's power system: An assessment of economic, social, and external impacts of an energy transition by 2030. , 2023, 4, 100064.		1
241	Construction of an electrocatalyst with oxygen-vacancy-rich nickel oxyhydroxide self-supported film for urea oxidation reaction. Materials Research Innovations, 2023, 27, 464-471.	1.0	0
242	Two-dimensional borocarbonitrides for photocatalysis and photovoltaics. Journal of Materials Chemistry C, 2023, 11, 3875-3884.	2.7	23
243	Research progress of "rocking chair―type zinc-ion batteries with zinc metal-free anodes. Chinese Chemical Letters, 2023, 34, 108307.	4.8	9
244	Climate Change and Institutions for Future Generations: the Litigation Option. Handbooks in Philosophy, 2023, , 1-17.	0.1	0
245	Communities at Risk for Mobilization: Neoliberal Governance and the (un)Contentious Politics of the Dakota Access Pipeline in Rural Illinois. Journal of Rural Studies, 2023, 99, 134-143.	2.1	1
246	How social imbalance and governance quality shape policy directives for energy transition in the OECD countries?. Energy Economics, 2023, 120, 106642.	5.6	26
247	Green innovation, natural extreme events, and energy transition: Evidence from Asia-Pacific economies. Energy Economics, 2023, 121, 106638.	5.6	13
248	How to Get Coal Country to Vote for Climate Policy: The Effect of a †Just Transition Agreement' on Spanish Election Results. SSRN Electronic Journal, 0, , .	0.4	0
249	Green Jobs in the Energy Sector. Energies, 2023, 16, 3171.	1.6	5
250	Background on Economic Development. , 2023, , 1785-1797.		0
251	Background on Environmental Justice and Racism. , 2023, , 1007-1026.		0
252	In Situ Full-Field Deformation Characterization of Power Module and FEA Model Calibration Based on Stereo Digital Image Methodology. IEEE Transactions on Power Electronics, 2023, 38, 8430-8441.	5.4	1
253	Sustainability Careers. Annual Review of Environment and Resources, 2023, 48, 589-613.	5.6	2
254	How do past global experiences of coal phase-out inform China's domestic approach to a just transition?. Sustainability Science, 2023, 18, 2059-2076.	2.5	11
255	EU climate action through an energy poverty lens. Scientific Reports, 2023, 13, .	1.6	3
256	A low-carbon electricity sector in Europe risks sustaining regional inequalities in benefits and vulnerabilities. Nature Communications, 2023, 14, .	5.8	10

#	Article	IF	CITATIONS
257	Dual-mode electromagnetic energy harvester by Halbach arrays. Energy Conversion and Management, 2023, 286, 117038.	4.4	8
261	Improved strategies for ammonium vanadate-based zinc ion batteries. Nanoscale, 2023, 15, 9589-9604.	2.8	5
262	Policy Dilemmas and Solutions to the Successful Energy Transition. , 2023, , 909-933.		0
273	Commercial rooftop solar in Australia: State of play, innovations, and prospects. , 2023, , 27-48.		0
278	Model-Free Approach to Fair Solar PV Curtailment Using Reinforcement Learning. , 2023, , .		1
296	Climate Change and the Circumstances of Justice. Handbooks in Philosophy, 2023, , 1-17.	0.1	0
301	Towards Sustainable Economics for the Anthropocene. Palgrave Studies in Sustainability, Environment and Macroeconomics, 2023, , 201-231.	0.0	0
303	Energy Transition in Mono-Economies, the Non-Participatory and Effect Mitigating Approach. , 2023, , .		0
310	Just Transitions From Fossil Fuels to a Regenerative and Renewable Future: Challenges and Opportunities. Developments in Corporate Governance and Responsibility, 2023, , 177-201.	0.1	0
318	Sustainability, financial markets, monetary policy and the just energy transition. , 2023, , .		0
332	A framework to centre justice in energy transition innovations. Nature Energy, 0, , .	19.8	0
335	Priorities' Role in Community Solar: Survey-Based Study and Payment Performance Analysis. Springer Proceedings in Energy, 2023, , 185-195.	0.2	0
354	Circular Economy and Energy Transition. , 2023, , 21-34.		0
369	Progress in research on metal-based materials in stabilized Zn anodes. Rare Metals, 2024, 43, 20-40.	3.6	3
389	Climate Change and Institutions for Future Generations: The Litigation Option. Handbooks in Philosophy, 2023, , 1229-1245.	0.1	0
390	Climate Change and the Circumstances of Justice. Handbooks in Philosophy, 2023, , 1065-1081.	0.1	0
395	Developments in desalination need a social sciences perspective. , 2023, 1, 994-995.		1
418	Justice considerations in climate research. Nature Climate Change, 2024, 14, 22-30.	8.1	4

#	Article	IF	CITATIONS
420	Sustainable pathways towards universal renewable electricity access in Africa. Nature Reviews Earth & Environment, 2024, 5, 137-151.	12.2	1
421	Supply, demand and polarization challenges facing US climate policies. Nature Climate Change, 2024, 14, 134-142.	8.1	1
433	An Explainable Al-Based Framework forÂSupporting Decisions inÂEnergy Management. Learning and Analytics in Intelligent Systems, 2024, , 1-27.	0.5	0
459	Place-Based Strategies for Energy Transitions in Apulia: Pilot Experiences, Limitations and Prospects. Lecture Notes in Civil Engineering, 2024, , 523-535.	0.3	0
480	An Analysis of Employment Effect of Projected Clean Energy Transition in India. India Studies in Business and Economics, 2024, , 229-240.	0.2	0