How to Obtain a Nasopharyngeal Swab Specimen

New England Journal of Medicine 383, e14 DOI: 10.1056/nejmc2015949

Citation Report

#	Article	IF	CITATIONS
1	The Yield and Consistency of the Detection of SARS-CoV-2 in Multiple Respiratory Specimens. Open Forum Infectious Diseases, 2020, 7, ofaa379.	0.4	6
2	COVID-19 and upper respiratory tract: Collecting swab specimens from patients inhaling corticosteroids. Journal of Allergy and Clinical Immunology, 2020, 146, 1457.	1.5	Ο
3	3D-printed simulator for nasopharyngeal swab collection for COVID-19. European Archives of Oto-Rhino-Laryngology, 2021, 278, 2649-2651.	0.8	14
4	Strategies to overcome limitations in Otolaryngology residency training during the COVID-19 pandemic. European Archives of Oto-Rhino-Laryngology, 2020, 277, 3503-3506.	0.8	25
5	Prolonged Course of COVID-19-Associated Pneumonia in a B-Cell Depleted Patient After Rituximab. Frontiers in Oncology, 2020, 10, 1578.	1.3	44
6	Safety procedures for exercise testing in the scenario of COVID-19: a position statement of the SocietÃ Italiana Scienze Motorie e Sportive. Sport Sciences for Health, 2020, 16, 601-607.	0.4	13
7	Changes in the use of Otorhinolaryngology Emergency Department during the COVID-19 pandemic: report from Lombardy, Italy. European Archives of Oto-Rhino-Laryngology, 2020, 277, 3525-3528.	0.8	12
8	Could a mannequin simplify rhinopharyngeal swab collection in COVID 19 patients?. European Archives of Oto-Rhino-Laryngology, 2020, 277, 2947-2948.	0.8	6
9	Protection Effectiveness of a Building-Integrated COVID-19 Sampling Station That Uses a Sealed Acrylic Window as a Physical Barrier. Annals of Emergency Medicine, 2020, 76, 376-377.	0.3	8
10	COVID-19: Discovery, diagnostics and drug development. Journal of Hepatology, 2021, 74, 168-184.	1.8	302
11	Using 3D-printed nose models in nasopharyngeal swab training. Oral Oncology, 2021, 113, 105033.	0.8	8
12	3D printing of nasopharyngeal swabs for COVID-19 diagnose: Past and current trends. Materials Today: Proceedings, 2021, 44, 1361-1368.	0.9	27
13	Design of a Low-Cost Miniature Robot to Assist the COVID-19 Nasopharyngeal Swab Sampling. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 289-293.	2.1	48
14	Optimization of COVID-19 testing accuracy with nasal anatomy education. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2021, 42, 102777.	0.6	15
15	Is naso-pharyngeal swab always safe for SARS-CoV-2 testing? An unusual, accidental foreign body swallowing. Clinical Journal of Gastroenterology, 2021, 14, 44-47.	0.4	14
16	Diagnosis of SARS-CoV-2 in children: accuracy of nasopharyngeal swab compared to nasopharyngeal aspirate. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 1155-1160.	1.3	5
17	Lessons Learned From an Analysis of the Emergency Medical Services' COVID-19 Drive-Through Testing Facilities in Israel. Disaster Medicine and Public Health Preparedness, 2022, 16, 2091-2096.	0.7	4
18	Rapid visual detection of SARS-CoV-2 by colorimetric loop-mediated isothermal amplification. BioTechniques, 2021, 70, 218-225.	0.8	12

#	Article	lF	CITATIONS
19	A Prospective Evaluation of the Analytical Performance of GENECUBE® HQ SARS-CoV-2 and GENECUBE® FLU A/B. Molecular Diagnosis and Therapy, 2021, 25, 495-504.	1.6	18
20	One-Year Update on Salivary Diagnostic of COVID-19. Frontiers in Public Health, 2021, 9, 589564.	1.3	20
21	Nucleic Acid Testing of SARS-CoV-2. International Journal of Molecular Sciences, 2021, 22, 6150.	1.8	42
22	COVID-19 Biomarkers and Advanced Sensing Technologies for Point-of-Care (POC) Diagnosis. Bioengineering, 2021, 8, 98.	1.6	28
23	Low utilisation of bronchoscopy to assess COVID-19 respiratory infection: a multicenter experience. BMJ Open Respiratory Research, 2021, 8, e000962.	1.2	7
24	New style for nasopharyngeal swab with a mask: image-evaluation. International Journal of Infectious Diseases, 2021, 109, 112-113.	1.5	0
25	Validation of a direct-to-PCR COVID-19 detection protocol utilizing mechanical homogenization: A model for reducing resources needed for accurate testing. PLoS ONE, 2021, 16, e0256316.	1.1	6
26	Specific approaches to patients affected by dementia and covid-19 in nursing homes: the role of the geriatrician. Ageing Research Reviews, 2021, 69, 101373.	5.0	9
28	Efficacy of SG Shield in reducing droplet contamination during collection of oropharyngeal swab culture specimens. Singapore Medical Journal, 2021, , .	0.3	0
29	Diagnostic performance of different sampling approaches for SARS-CoV-2 RT-PCR testing: a systematic review and meta-analysis. Lancet Infectious Diseases, The, 2021, 21, 1233-1245.	4.6	185
30	Less Exposure for Health Care Workers, More Comfort for Patients During COVID-19 Swab Testing. Workplace Health and Safety, 2021, , 216507992110453.	0.7	0
31	Complications Associated With Nasopharyngeal COVID-19 Testing: An Analysis of the MAUDE Database and Literature Review. American Journal of Rhinology and Allergy, 2022, 36, 281-284.	1.0	10
33	Evaluation of Nasopharyngeal Swab Collection Techniques for Nucleic Acid Recovery and Participant Experience: Recommendations for COVID-19 Diagnostics. Open Forum Infectious Diseases, 2020, 7, ofaa488.	0.4	21
35	Chronic ACE Inhibitor use is Associated with Decreased Odds of Severe Disease in Patients with COVID-19. Anatolian Journal of Cardiology, 2020, 24, 21-29.	0.5	36
36	Assessment and treatment of older individuals with COVID 19 multi-system disease: Clinical and ethical implications. Acta Biomedica, 2020, 91, 150-168.	0.2	18
37	Negative nasopharyngeal swabs in COVID-19 pneumonia: the experience of an Italian Emergengy Department (Piacenza) during the first month of the Italian epidemic. Acta Biomedica, 2020, 91, e2020024.	0.2	5
38	Standard Operating Procedure for Specimen Collection, Packaging and Transport for Diagnosis of SARS-COV-2. Journal of the Nepal Medical Association, 2020, 58, 627-629.	0.1	11
39	The hospitalized patient with COVID-19 on the medical ward: Cleveland Clinic approach to management. Cleveland Clinic Journal of Medicine, 2020, , .	0.6	4

#	Article	IF	CITATIONS
40	Natural spring water gargle samples as an alternative to nasopharyngeal swabs for SARSâ€CoVâ€2 detection using a laboratoryâ€developed test. Journal of Medical Virology, 2022, 94, 985-993.	2.5	9
41	The hidden dangers of SARSâ \in CoV â \in 2 testingâ \in $^{ }$. Advances in Digestive Medicine, 0, , .	0.1	0
43	Operationalizing COVID-19 testing: Who, what, when, where, why, and how. Cleveland Clinic Journal of Medicine, 2021, , .	0.6	1
44	latrogenic cerebrospinal fluid leak after repeated nasal swab tests for COVID-19: illustrative case. Journal of Neurosurgery Case Lessons, 2021, 2, .	0.1	4
45	COVID-19: Implications, Reactions and Future Directions. Turkish Archives of Otorhinolaryngology, 2020, 58, 122-126.	0.8	2
47	COVID-19 and Diabetes: A Comprehensive Review of Angiotensin Converting EnzymeÂ2, Mutual Effects and Pharmacotherapy. Frontiers in Endocrinology, 2021, 12, 772865.	1.5	15
48	Assessment of SARS-CoV-2 viral loads in combined nasal-and-throat swabs collected from COVID-19 individuals under the Universal Community Testing Programme in Hong Kong. Journal of Virological Methods, 2022, 300, 114396.	1.0	5
49	Surface and Air Contamination With Severe Acute Respiratory Syndrome Coronavirus 2 From Hospitalized Coronavirus Disease 2019 Patients in Toronto, Canada, March–May 2020. Journal of Infectious Diseases, 2022, 225, 768-776.	1.9	20
50	Nasopharyngeal Swabs vs. Nasal Aspirates for Respiratory Virus Detection: A Systematic Review. Pathogens, 2021, 10, 1515.	1.2	4
51	Differentiating COVID-19 and dengue from other febrile illnesses in co-epidemics: Development and internal validation of COVIDENGUE scores. Travel Medicine and Infectious Disease, 2022, 45, 102232.	1.5	0
52	Bromhexine Hydrochloride Prophylaxis of COVID-19 for Medical Personnel: A Randomized Open-Label Study. Interdisciplinary Perspectives on Infectious Diseases, 2022, 2022, 1-7.	0.6	11
53	A Community Study of SARS-CoV-2 Detection by RT-PCR in Saliva: A Reliable and Effective Method. Viruses, 2022, 14, 313.	1.5	10
54	3Dâ€printed simulator for nasopharyngeal swab collection for COVIDâ€19. Infectious Diseases Now, 2022, ,	0.7	0
55	Performance of anterior nares and tongue swabs for nucleic acid, Nucleocapsid, and Spike antigen testing for detecting SARS-CoV-2 against nasopharyngeal PCR and viral culture. International Journal of Infectious Diseases, 2022, 117, 287-294.	1.5	7
56	Complications of Nasopharyngeal Swabs and Safe Procedures for COVID-19 Testing Based on Anatomical Knowledge. Journal of Korean Medical Science, 2022, 37, e88.	1.1	12
57	Sample-to-answer, extraction-free, real-time RT-LAMP test for SARS-CoV-2 in nasopharyngeal, nasal, and saliva samples: Implications and use for surveillance testing. PLoS ONE, 2022, 17, e0264130.	1.1	18
58	Innovative and Integrated Contact Tracing: Indian Health Service, Arizona, December 2020–January 2021. Public Health Reports, 2022, 137, 51S-55S.	1.3	2
59	A prospective clinical evaluation of the diagnostic accuracy of the SARS-CoV-2 rapid antigen test using anterior nasal samples. Journal of Infection and Chemotherapy, 2022, 28, 780-785.	0.8	7

CITATION REPORT

	CITATION	Report	
# 60	ARTICLE SARS-CoV-2 Diagnostics Based on Nucleic Acids Amplification: From Fundamental Concepts to	IF 1.8	CITATIONS
61	Applications and Beyond. Frontiers in Cellular and Infection Microbiology, 2022, 12, 799678. Evaluation of saliva self-collection devices for SARS-CoV-2 diagnostics. BMC Infectious Diseases, 2022,	1.3	9
62	22, 284. A prospective evaluation of diagnostic performance of a combo rapid antigen test QuickNavi-Flu+COVID19 Ag. Journal of Infection and Chemotherapy, 2022, 28, 840-843.	0.8	17
63	Clinical Performance of the cobas Liat SARS-CoV-2 & amp; Influenza A/B Assay in Nasal Samples. Molecular Diagnosis and Therapy, 2022, 26, 323-331.	1.6	8
64	Diagnostic performance of oral swab specimen for SARS-CoV-2 detection with rapid point-of-care lateral flow antigen test. Scientific Reports, 2022, 12, 7355.	1.6	8
65	COVID salivary diagnostics: A comparative technical study. Journal of Medical Virology, 2022, 94, 4277-4286.	2.5	5
66	Use of MALDI-TOF mass spectrometry for virus identification: a review. Analyst, The, 2022, 147, 3131-3154.	1.7	10
67	Assessment of the frequency of coughing and sneezing triggered by nasopharyngeal swabbing in the pandemic setting. Scientific Reports, 2022, 12, .	1.6	2
68	Investigation of SARS-CoV-2 in Postmortem Ocular Tissues and Evaluation of Its Effects on Corneal Donation. Cornea, 2022, Publish Ahead of Print, .	0.9	1
69	Predictors of intensive care unit admission and mortality in SARS-CoV-2 infection: A cross sectional study at a tertiary care hospital. Annals of Medicine and Surgery, 2022, 80, .	0.5	0
70	A comparison of conventional and advanced electroanalytical methods to detect SARS-CoV-2 virus: A concise review. Chemosphere, 2022, 307, 135645.	4.2	3
72	Diagnostic performance of patient selfâ€collected oral swab (tongue and cheek) in comparison to healthâ€care worker collected nasopharyngeal swab for Severe Acute Respiratory Syndrome Coronavirusâ€2 detection. Apmis, 0, , .	0.9	0
73	Performance of saline and water gargling for SARS-CoV-2 reverse transcriptase PCR testing: a systematic review and meta-analysis. European Respiratory Review, 2022, 31, 220014.	3.0	1
74	Saliva sample for detection of SARS-CoV-2: A possible alternative for mass testing. PLoS ONE, 2022, 17, e0275201.	1.1	1
75	SARS-CoV-2 detection methods: A comprehensive review. Saudi Journal of Biological Sciences, 2022, 29, 103465. A study on the performance and cost-effectiveness of robots in replacing manual nucleic acid	1.8	22
76 77	collection method: Experience from the COVID-19 pandemic. PLoS ONE, 2022, 17, e0276782. Analytical performance of the rapid qualitative antigen kit for the detection of SARS-CoV-2 during widespread circulation of the Omicron variant. Journal of Infection and Chemotherapy, 2023, 29,	0.8	1
78	257-262. Evaluation of Non-Invasive Gargle Lavage Sampling for the Detection of SARS-CoV-2 Using rRT-PCR or Antigen Assay. Viruses, 2022, 14, 2829.	1.5	1

#	Article	IF	CITATIONS
80	Cross-Sectional Study on Lateral Skull Radiographs to Design a New Nasopharyngeal Swab for Simplified COVID-19 and Respiratory Infections Diagnostic Testing in Children. Journal of Clinical Medicine, 2023, 12, 213.	1.0	0
81	Comparative Performance of Serological (IgM/IgG) and Molecular Testing (RT-PCR) of COVID-19 in Three Private Universities in Cameroon during the Pandemic. Viruses, 2023, 15, 407.	1.5	0
82	Head-to-head comparison of nasal and nasopharyngeal sampling using SARS-CoV-2 rapid antigen testing in Lesotho. PLoS ONE, 2023, 18, e0278653.	1.1	1
83	Prospective study of three saliva qualitative antigen testing kits for the detection of SARS-CoV-2 among mainly symptomatic patients in Japan. Journal of Infection and Chemotherapy, 2023, , .	0.8	0
84	Comparative evaluation of saliva and nasopharyngeal swab for SARS-CoV-2 detection using RT-qPCR among COVID-19 suspected patients at Jigjiga, Eastern Ethiopia. PLoS ONE, 2023, 18, e0282976.	1.1	2
85	A simplified nasopharyngeal swab collection procedure for minimizing patient discomfort while retaining sample quality. Frontiers in Public Health, 0, 11, .	1.3	0