Type I and Type III Interferons – Induction, Signaling COVID-19

Cell Host and Microbe 27, 870-878 DOI: 10.1016/j.chom.2020.05.008

Citation Report

#	Article	IF	CITATIONS
1	The Role of Type I Interferons in the Pathogenesis and Treatment of COVID-19. Frontiers in Immunology, 2020, 11, 595739.	2.2	90
2	Syncytia formation by SARSâ€CoVâ€2â€infected cells. EMBO Journal, 2020, 39, e106267.	3.5	361
3	Severe COVID-19: what have we learned with the immunopathogenesis?. Advances in Rheumatology, 2020, 60, 50.	0.8	53
4	Evasion of Type I Interferon by SARS-CoV-2. Cell Reports, 2020, 33, 108234.	2.9	742
5	Toward Understanding Molecular Bases for Biological Diversification of Human Coronaviruses: Present Status and Future Perspectives. Frontiers in Microbiology, 2020, 11, 2016.	1.5	11
6	SARS-CoV-2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Increased by a Naturally Occurring Elongation Variant. Cell Reports, 2020, 32, 108185.	2.9	345
7	Presentation, Treatment Response and Short-Term Outcomes in Paediatric Multisystem Inflammatory Syndrome Temporally Associated with SARS-CoV-2 (PIMS-TS). Journal of Clinical Medicine, 2020, 9, 3293.	1.0	56
8	Three-Dimensional Human Alveolar Stem Cell Culture Models Reveal Infection Response to SARS-CoV-2. Cell Stem Cell, 2020, 27, 905-919.e10.	5.2	195
9	An aberrant STAT pathway is central to COVID-19. Cell Death and Differentiation, 2020, 27, 3209-3225.	5.0	224
10	Association of immune checkpoint inhibitors with respiratory infections: A review. Cancer Treatment Reviews, 2020, 90, 102109.	3.4	9
11	Implications of Sex Differences in Immunity for SARS-CoV-2 Pathogenesis and Design of Therapeutic Interventions. Immunity, 2020, 53, 487-495.	6.6	127
12	Infections of the lung: a predictive, preventive and personalized perspective through the lens of evolution, the emergence of SARS-CoV-2 and its pathogenesis. EPMA Journal, 2020, 11, 581-601.	3.3	11
13	Tocilizumab: The Key to Stop Coronavirus Disease 2019 (COVID-19)-Induced Cytokine Release Syndrome (CRS)?. Frontiers in Medicine, 2020, 7, 571597.	1.2	10
14	The Role of Structure in the Biology of Interferon Signaling. Frontiers in Immunology, 2020, 11, 606489.	2.2	77
15	Immunogenetic Association Underlying Severe COVID-19. Vaccines, 2020, 8, 700.	2.1	30
16	Pediatric Inflammatory Multisystem Syndrome and Rheumatic Diseases During SARS-CoV-2 Pandemic. Frontiers in Pediatrics, 2020, 8, 605807.	0.9	34
17	COVID-19: The Emerging Immunopathological Determinants for Recovery or Death. Frontiers in Microbiology, 2020, 11, 588409.	1.5	19
18	Context Is Key: Delineating the Unique Functions of IFNα and IFNβ in Disease. Frontiers in Immunology, 2020, 11, 606874.	2.2	18

#	Article	IF	CITATIONS
19	Cholesterol 25â€Hydroxylase inhibits <scp>SARS</scp> oVâ€2 and other coronaviruses by depleting membrane cholesterol. EMBO Journal, 2020, 39, e106057.	3.5	203
20	Coronavirus Disease 2019: A Brief Review of the Clinical Manifestations and Pathogenesis to the Novel Management Approaches and Treatments. Frontiers in Oncology, 2020, 10, 572329.	1.3	7
21	Microglial responses to peripheral type 1 interferon. Journal of Neuroinflammation, 2020, 17, 340.	3.1	35
22	Approaches and Challenges in SARS-CoV-2 Vaccine Development. Cell Host and Microbe, 2020, 28, 364-370.	5.1	98
23	Molecular Underpinnings of Severe Coronavirus Disease 2019. JAMA - Journal of the American Medical Association, 2020, 324, 638.	3.8	11
24	Approaching coronavirus disease 2019: Mechanisms of action of repurposed drugs with potential activity against SARS-CoV-2. Biochemical Pharmacology, 2020, 180, 114169.	2.0	26
25	Retrospective Multicenter Cohort Study Shows Early Interferon Therapy Is Associated with Favorable Clinical Responses in COVID-19 Patients. Cell Host and Microbe, 2020, 28, 455-464.e2.	5.1	258
26	Nonâ€steroidal antiâ€inflammatory drugs, prostaglandins, and COVIDâ€19. British Journal of Pharmacology, 2020, 177, 4899-4920.	2.7	73
27	A Message from the Human Placenta: Structural and Immunomodulatory Defense against SARS-CoV-2. Cells, 2020, 9, 1777.	1.8	56
28	A putative role for the tobacco mosaic virus in smokers' resistance to COVID-19. Medical Hypotheses, 2020, 143, 110153.	0.8	12
29	COVID-19 update: The race to therapeutic development. Drug Resistance Updates, 2020, 53, 100733.	6.5	49
30	Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. Journal of Experimental Medicine, 2020, 217, .	4.2	357
31	SARS-CoV-2 Is Restricted by Zinc Finger Antiviral Protein despite Preadaptation to the Low-CpG Environment in Humans. MBio, 2020, 11, .	1.8	106
32	COVID-19: Infection or Autoimmunity. Frontiers in Immunology, 2020, 11, 2055.	2.2	41
33	Antiviral Activity of Type I, II, and III Interferons Counterbalances ACE2 Inducibility and Restricts SARS-CoV-2. MBio, 2020, 11, .	1.8	139
34	Coronavirus Antiviral Research Database (CoV-RDB): An Online Database Designed to Facilitate Comparisons between Candidate Anti-Coronavirus Compounds. Viruses, 2020, 12, 1006.	1.5	60
35	Favorable outcomes after COVID-19 infection in multiple sclerosis patients treated with cladribine tablets. Multiple Sclerosis and Related Disorders, 2020, 46, 102469.	0.9	18
36	In vivo antiviral host transcriptional response to SARS-CoV-2 by viral load, sex, and age. PLoS Biology, 2020, 18, e3000849.	2.6	225

#	Article	IF	CITATIONS
37	The current landscape of coronavirus-host protein–protein interactions. Journal of Translational Medicine, 2020, 18, 319.	1.8	66
38	SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nature Immunology, 2020, 21, 1327-1335.	7.0	743
39	Antagonism of Type I Interferon by Severe Acute Respiratory Syndrome Coronavirus 2. Journal of Interferon and Cytokine Research, 2020, 40, 543-548.	0.5	31
40	Paediatric inflammatory multisystem syndrome temporally associated with COVID-19: a new virus and a new case presentation. BMJ Case Reports, 2020, 13, e238531.	0.2	3
41	Rationale for COVID-19 Treatment by Nebulized Interferon-β-1b–Literature Review and Personal Preliminary Experience. Frontiers in Pharmacology, 2020, 11, 592543.	1.6	11
42	Enhancement of the IFN-β-induced host signature informs repurposed drugs for COVID-19. Heliyon, 2020, 6, e05646.	1.4	18
43	A Network-Based Analysis Reveals the Mechanism Underlying Vitamin D in Suppressing Cytokine Storm and Virus in SARS-CoV-2 Infection. Frontiers in Immunology, 2020, 11, 590459.	2.2	46
44	Emerging Molecular Prospective of SARS-CoV-2: Feasible Nanotechnology Based Detection and Inhibition. Frontiers in Microbiology, 2020, 11, 2098.	1.5	9
45	Perspective: Reducing SARS-CoV2 Infectivity and Its Associated Immunopathology. Frontiers in Immunology, 2020, 11, 581076.	2.2	6
46	Integrate structural analysis, isoform diversity, and interferon-inductive propensity of ACE2 to predict SARS-CoV2 susceptibility in vertebrates. Heliyon, 2020, 6, e04818.	1.4	13
47	Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children. Nature Reviews Immunology, 2020, 20, 453-454.	10.6	284
49	Are we fully exploiting type I Interferons in today's fight against COVID-19 pandemic?. Cytokine and Growth Factor Reviews, 2020, 54, 43-50.	3.2	19
50	Pathogenesis of COVID-19 from the Perspective of the Damage-Response Framework. MBio, 2020, 11, .	1.8	54
51	Can BCG vaccine protect against COVIDâ€19 via trained immunity and tolerogenesis?. BioEssays, 2021, 43, e2000200.	1.2	9
52	Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 2021, 19, 141-154.	13.6	3,334
53	DockCoV2: a drug database against SARS-CoV-2. Nucleic Acids Research, 2021, 49, D1152-D1159.	6.5	42
54	Why COVID-19 is less frequent and severe in children: a narrative review. World Journal of Pediatrics, 2021, 17, 10-20.	0.8	57
55	Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nature Reviews Nephrology, 2021, 17, 46-64.	4.1	444

#	Article	IF	CITATIONS
56	The role of kallikrein-kinin and renin-angiotensin systems in COVID-19 infection. Peptides, 2021, 135, 170428.	1.2	19
57	SARSâ€CoVâ€2â€mediated immune system activation and potential application in immunotherapy. Medicinal Research Reviews, 2021, 41, 1167-1194.	5.0	37
58	Interferon-inducer antivirals: Potential candidates to combat COVID-19. International Immunopharmacology, 2021, 91, 107245.	1.7	32
59	Therapeutic drugs for SARS-CoV-2 treatment: Current state and perspective. International Immunopharmacology, 2021, 90, 107228.	1.7	24
60	A Prototype QSP Model of the Immune Response to SARSâ€CoVâ€2 for Community Development. CPT: Pharmacometrics and Systems Pharmacology, 2021, 10, 18-29.	1.3	16
61	COVID19- clinical presentation and therapeutic considerations. Biochemical and Biophysical Research Communications, 2021, 538, 125-131.	1.0	26
62	The deregulated immune reaction and cytokines release storm (CRS) in COVID-19 disease. International Immunopharmacology, 2021, 90, 107225.	1.7	75
63	COVID-19: neonatal–perinatal perspectives. Journal of Perinatology, 2021, 41, 940-951.	0.9	62
64	HEPN RNases – an emerging class of functionally distinct RNA processing and degradation enzymes. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 88-108.	2.3	6
65	Hypertension delays viral clearance and exacerbates airway hyperinflammation in patients with COVID-19. Nature Biotechnology, 2021, 39, 705-716.	9.4	129
66	Biomarkers for the clinical development of antiviral therapies. Cytometry Part B - Clinical Cytometry, 2021, 100, 19-32.	0.7	2
67	The effect of environmental pollution on immune evasion checkpoints of SARS-CoV-2. Environmental Toxicology and Pharmacology, 2021, 81, 103520.	2.0	13
68	SARS-CoV-2 membrane glycoprotein M antagonizes the MAVS-mediated innate antiviral response. Cellular and Molecular Immunology, 2021, 18, 613-620.	4.8	143
69	Systems pharmacological study illustrates the immune regulation, anti-infection, anti-inflammation, and multi-organ protection mechanism of Qing-Fei-Pai-Du decoction in the treatment of COVID-19. Phytomedicine, 2021, 85, 153315.	2.3	100
70	Tongue as a first-line immune organ?. Protein and Cell, 2021, 12, 162-164.	4.8	4
71	Influenza, but not SARS oVâ€2, infection induces a rapid interferon response that wanes with age and diminished tissueâ€resident memory CD8 ⁺ T cells. Clinical and Translational Immunology, 2021, 10, e1242.	1.7	25
73	Macrophage Activation and Cytokine Release Syndrome in COVID-19: Current Updates and Analysis of Repurposed and Investigational Anti-Cytokine Drugs. Drug Research, 2021, 71, 173-179.	0.7	8
74	Search, Identification, and Design of Effective Antiviral Drugs Against Pandemic Human Coronaviruses. Advances in Experimental Medicine and Biology, 2021, 1322, 219-260.	0.8	5

#	Article	IF	CITATIONS
75	A distinct innate immune signature marks progression from mild to severe COVID-19. Cell Reports Medicine, 2021, 2, 100166.	3.3	102
76	Extreme phenotypes approach to investigate host genetics and COVID-19 outcomes. Genetics and Molecular Biology, 2021, 44, e20200302.	0.6	6
77	Can NLRP3 inhibitors improve on dexamethasone for the treatment of COVID-19?. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100048.	1.7	6
78	Rapidly Deployable Mouse Models of SARS-CoV-2 Infection Add Flexibility to the COVID-19 Toolbox. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 7-9.	1.4	3
80	Comparison of Five Serological Assays for the Detection of SARS-CoV-2 Antibodies. Diagnostics, 2021, 11, 78.	1.3	14
81	Similarities and Dissimilarities of COVID-19 and Other Coronavirus Diseases. Annual Review of Microbiology, 2021, 75, 19-47.	2.9	52
83	Vaccine Development and Immune Responses in COVID-19: Lessons from the Past. , 2021, , 149-185.		1
84	A Novel Pathway Network Analytics Method Based on Graph Theory. Lecture Notes in Computer Science, 2021, , 45-55.	1.0	0
85	The Immune Response and Effectiveness of COVID-19 Therapies. Advances in Experimental Medicine and Biology, 2021, 1321, 115-126.	0.8	6
86	Severe Acute Respiratory Syndrome Coronavirus 2: Manifestations of Disease and Approaches to Treatment and Prevention in Humans. Comparative Medicine, 2021, 71, 342-358.	0.4	3
87	Understanding the implications of SARS-CoV-2 re-infections on immune response milieu, laboratory tests and control measures against COVID-19. Heliyon, 2021, 7, e05951.	1.4	15
88	Roles of Type I and III Interferons in COVID-19. Yonsei Medical Journal, 2021, 62, 381.	0.9	17
89	Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Cellular and Molecular Immunology, 2021, 18, 539-555.	4.8	179
90	Protective Immune Trajectories in Early Viral Containment of Non-Pneumonic SARS-CoV-2 Infection. SSRN Electronic Journal, 0, , .	0.4	3
91	Smoking Products Suppress Type I IFN During SARS-Cov-2 Infection. E3S Web of Conferences, 2021, 292, 03095.	0.2	0
94	Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free Fatty Acid Pocket of the SARS oVâ€2 Spike Protein**. Angewandte Chemie - International Edition, 2021, 60, 7098-7110.	7.2	77
95	Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. Emergent Materials, 2021, 4, 75-99.	3.2	81
96	The COVID-19 Pandemic: an Appraisal of its Impact on Human Immunodeficiency Virus Infection and Pre-Eclampsia. Current Hypertension Reports, 2021, 23, 9.	1.5	10

щ		IF	CITATION
# 97	ARTICLE Ageâ€related differences in the immune response could contribute to determine the spectrum of severity of COVIDâ€19. Immunity, Inflammation and Disease, 2021, 9, 331-339.	lF 1.3	CITATIONS
98	Interferon-beta offers promising avenues to COVID-19 treatment: a systematic review and meta-analysis of clinical trial studies. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 829-838.	1.4	37
99	Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free Fatty Acid Pocket of the SARS oVâ€2 Spike Protein**. Angewandte Chemie, 2021, 133, 7174-7186.	1.6	6
100	COVID-19 and immunity: <i>quo vadis</i> ?. International Immunology, 2021, 33, 507-513.	1.8	5
103	Cardiac manifestations, treatment characteristics, and outcomes of paediatric inflammatory multisystem syndrome temporally associated with severe acute respiratory syndrome coronavirus-2: A systematic review. Progress in Pediatric Cardiology, 2021, 63, 101365.	0.2	8
104	SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO. Cell Reports, 2021, 34, 108761.	2.9	174
105	SARS-CoV-2 nsp12 attenuates type I interferon production by inhibiting IRF3 nuclear translocation. Cellular and Molecular Immunology, 2021, 18, 945-953.	4.8	97
106	Downregulation of Membrane-bound Angiotensin Converting Enzyme 2 (ACE2) Receptor has a Pivotal Role in COVID-19 Immunopathology. Current Drug Targets, 2021, 22, 254-281.	1.0	27
110	Innate Receptor Activation Patterns Involving TLR and NLR Synergisms in COVID-19, ALI/ARDS and Sepsis Cytokine Storms: A Review and Model Making Novel Predictions and Therapeutic Suggestions. International Journal of Molecular Sciences, 2021, 22, 2108.	1.8	70
113	Early humoral defence: Contributing to confining COVIDâ€19 to conducting airways?. Scandinavian Journal of Immunology, 2021, 93, e13024.	1.3	10
115	The intersection of COVID-19 and autoimmunity: What is our current understanding?. Pathogens and Immunity, 2021, 6, 31-54.	1.4	20
117	Insight into the emerging role of SARS-CoV-2 nonstructural and accessory proteins in modulation of multiple mechanisms of host innate defense. Bosnian Journal of Basic Medical Sciences, 2021, 21, 515-527.	0.6	4
118	SARS-CoV-2 Triggers an MDA-5-Dependent Interferon Response Which Is Unable To Control Replication in Lung Epithelial Cells. Journal of Virology, 2021, 95, .	1.5	168
119	Endogenous IFNβ expression predicts outcome in critical patients with COVID-19. Lancet Microbe, The, 2021, 2, e235-e236.	3.4	7
120	Ribosome-Profiling Reveals Restricted Post Transcriptional Expression of Antiviral Cytokines and Transcription Factors during SARS-CoV-2 Infection. International Journal of Molecular Sciences, 2021, 22, 3392.	1.8	22
121	A novel cell culture system modeling the SARS-CoV-2 life cycle. PLoS Pathogens, 2021, 17, e1009439.	2.1	102
122	Extrapulmonary manifestations of COVID-19 in children: a comprehensive review and pathophysiological considerations. Jornal De Pediatria, 2021, 97, 116-139.	0.9	46
123	Modern opportunities of interferons in treatment of children with COVID-19. Meditsinskiy Sovet, 2021, , 59-65.	0.1	2

#	Article	IF	CITATIONS
124	High dimensional profiling identifies specific immune types along the recovery trajectories of critically ill COVID19 patients. Cellular and Molecular Life Sciences, 2021, 78, 3987-4002.	2.4	13
126	Interindividual immunogenic variants: Susceptibility to coronavirus, respiratory syncytial virus and influenza virus. Reviews in Medical Virology, 2021, 31, e2234.	3.9	12
128	Immune responses to SARS-CoV-2 infection in Humans and ACE2 humanized mice. Fundamental Research, 2021, 1, 124-130.	1.6	5
129	Risk of SARS-CoV-2 reinfection after natural infection. Lancet, The, 2021, 397, 1161-1163.	6.3	53
130	IFN signaling and neutrophil degranulation transcriptional signatures are induced during SARS-CoV-2 infection. Communications Biology, 2021, 4, 290.	2.0	74
131	Association of administration of IFN- $\hat{l}\pm$ with mortality among patients hospitalized with coronavirus disease 2019. Future Virology, 2021, 16, 201-209.	0.9	1
133	Peginterferon Lambda-1a for treatment of outpatients with uncomplicated COVID-19: a randomized placebo-controlled trial. Nature Communications, 2021, 12, 1967.	5.8	107
134	SARS-CoV-2 - SYNOPTIC CHART OF THE MAIN CHARACTERISTICS OF VIRUS, PATHOGENESIS, IMMUNE RESPONSE, IMMUNOPROPHYLAXIS. Roumanian Archives of Microbiology and Immunology, 2021, 80, 51-80.	0.1	1
135	Plasmacytoid Dendritic Cells Depletion and Elevation of IFN-Î ³ Dependent Chemokines CXCL9 and CXCL10 in Children With Multisystem Inflammatory Syndrome. Frontiers in Immunology, 2021, 12, 654587.	2.2	39
136	Revisiting Pleiotropic Effects of Type I Interferons: Rationale for Its Prophylactic and Therapeutic Use Against SARS-CoV-2. Frontiers in Immunology, 2021, 12, 655528.	2.2	19
137	Clinical Characteristics of Paediatric Hyperinflammatory Syndrome in the Era of Corona Virus Disease 2019 (COVID-19). Indian Journal of Clinical Biochemistry, 2021, 36, 404-415.	0.9	4
138	A 2-Benzylmalonate Derivative as STAT3 Inhibitor Suppresses Tumor Growth in Hepatocellular Carcinoma by Upregulating β-TrCP E3 Ubiquitin Ligase. International Journal of Molecular Sciences, 2021, 22, 3354.	1.8	4
142	Associations between COVID-19 and skin conditions identified through epidemiology and genomic studies. Journal of Allergy and Clinical Immunology, 2021, 147, 857-869.e7.	1.5	45
143	Leveraging the antiviral type I interferon system as a first line of defense against SARS-CoV-2 pathogenicity. Immunity, 2021, 54, 557-570.e5.	6.6	153
146	Reply to Dorgham et al., "Considering Personalized Interferon Beta Therapy for COVID-19― Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	0
148	COVID-19 Treatment Guidelines: Do They Really Reflect Best Medical Practices to Manage the Pandemic?. Infectious Disease Reports, 2021, 13, 259-284.	1.5	27
149	Natural mucosal barriers and COVID-19 in children. JCI Insight, 2021, 6, .	2.3	124
150	SARS-CoV-2 Spike Targets USP33-IRF9 Axis via Exosomal miR-148a to Activate Human Microglia. Frontiers in Immunology, 2021, 12, 656700.	2.2	49

#	Article	IF	CITATIONS
151	IFN Stimulates ACE2 Expression in Pediatric Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 515-518.	1.4	11
152	Singleâ€cell analyses reveal SARSâ€CoVâ€2 interference with intrinsic immune response in the human gut. Molecular Systems Biology, 2021, 17, e10232.	3.2	78
153	Simeprevir Potently Suppresses SARS-CoV-2 Replication and Synergizes with Remdesivir. ACS Central Science, 2021, 7, 792-802.	5.3	59
154	Type I and III IFN-mediated antiviral actions counteracted by SARS-CoV-2 proteins and host inherited factors. Cytokine and Growth Factor Reviews, 2021, 58, 55-65.	3.2	11
155	Type I Interferon Production of Plasmacytoid Dendritic Cells under Control. International Journal of Molecular Sciences, 2021, 22, 4190.	1.8	40
156	SARS-CoV-2 infection: The role of PD-1/PD-L1 and CTLA-4 axis. Life Sciences, 2021, 270, 119124.	2.0	57
158	Çocuklarda Covid 19 İlişkili Multisistem İnflamatuar Sendrom Patofizyolojisi. Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi, 0, , .	0.0	0
159	The use of intranasal interferon for prevention and treatment of acute respiratory infections. Aktualʹnaâ Infektologiâ, 2021, 9, 17-23.	0.1	0
162	Dual Nature of Type I Interferons in SARS-CoV-2-Induced Inflammation. Trends in Immunology, 2021, 42, 312-322.	2.9	86
163	Differential Signaling and Virus Production in Calu-3 Cells and Vero Cells upon SARS-CoV-2 Infection. Biomolecules and Therapeutics, 2021, 29, 273-281.	1.1	36
164	Experimental and natural evidence of SARS-CoV-2-infection-induced activation of type I interferon responses. IScience, 2021, 24, 102477.	1.9	49
165	Type I and III interferon responses in SARS-CoV-2 infection. Experimental and Molecular Medicine, 2021, 53, 750-760.	3.2	187
166	Low incidence of COVID-19 severe complications in a large cohort of children with sickle cell disease: a protective role for basal interferon-1 activation?. Haematologica, 2021, 106, 2746-2748.	1.7	6
167	Pharmacological activation of STING blocks SARS-CoV-2 infection. Science Immunology, 2021, 6, .	5.6	123
168	Depleting plasmacytoid dendritic cells reduces local type I interferon responses and disease activity in patients with cutaneous lupus. Science Translational Medicine, 2021, 13, .	5.8	50
169	Peginterferon lambda for the treatment of outpatients with COVID-19: a phase 2, placebo-controlled randomised trial. Lancet Respiratory Medicine,the, 2021, 9, 498-510.	5.2	180
170	A diamidobenzimidazole STING agonist protects against SARS-CoV-2 infection. Science Immunology, 2021, 6, .	5.6	96
171	Immunological Subpopulations Within Critically Ill COVID-19 Patients. Chest, 2021, 159, 1706-1708.	0.4	1

#	Article	IF	CITATIONS
172	Diagnosing SARS-CoV-2 with Antigen Testing, Transcription-Mediated Amplification and Real-Time PCR. Journal of Clinical Medicine, 2021, 10, 2404.	1.0	19
173	Promising Immunotherapies against COVIDâ€19. Advanced Therapeutics, 2021, 4, 2100044.	1.6	4
175	SARSâ€CoVâ€2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIGâ€I/MDAâ€5–MAVS, TLR3–TRIF, and cGAS–STING signaling pathways. Journal of Medical Virology, 2021, 5376-5389.	, 23,	153
177	Overview of SARS-CoV-2 infection in adults living with HIV. Lancet HIV,the, 2021, 8, e294-e305.	2.1	129
178	Circulating Type I Interferon Levels and COVID-19 Severity: A Systematic Review and Meta-Analysis. Frontiers in Immunology, 2021, 12, 657363.	2.2	34
179	Innate immune sensing of coronavirus and viral evasion strategies. Experimental and Molecular Medicine, 2021, 53, 723-736.	3.2	130
180	Multisystem inflammatory syndrome in children during the coronavirus disease pandemic of 2019: a review of clinical features and acute phase management. Journal of Anesthesia, 2021, 35, 563-570.	0.7	5
181	Interferon Inducer IFI35 Regulates RIG-I-Mediated Innate Antiviral Response through Mutual Antagonism with Influenza Virus Protein NS1. Journal of Virology, 2021, 95, .	1.5	15
182	Comprehensive Comparison of RNA-Seq Data of SARS-CoV-2, SARS-CoV and MERS-CoV Infections: Alternative Entry Routes and Innate Immune Responses. Frontiers in Immunology, 2021, 12, 656433.	2.2	11
183	Histomorphological patterns of regional lymph nodes in COVID-19 lungs. Der Pathologe, 2021, 42, 89-97.	0.7	19
184	Adipocyte inflammation and pathogenesis of viral pneumonias: an overlooked contribution. Mucosal Immunology, 2021, 14, 1224-1234.	2.7	16
186	Type I, II, and III Interferon Signatures Correspond to Coronavirus Disease 2019 Severity. Journal of Infectious Diseases, 2021, 224, 777-782.	1.9	26
188	Nasopharyngeal Type-I Interferon for Immediately Available Prophylaxis Against Emerging Respiratory Viral Infections. Frontiers in Immunology, 2021, 12, 660298.	2.2	8
189	Severe COVID-19 in pediatric age: an update on the role of the anti-rheumatic agents. Pediatric Rheumatology, 2021, 19, 68.	0.9	7
190	Therapeutic Targeting of Transcription Factors to Control the Cytokine Release Syndrome in COVID-19. Frontiers in Pharmacology, 2021, 12, 673485.	1.6	10
191	Human Defensins Inhibit SARS-CoV-2 Infection by Blocking Viral Entry. Viruses, 2021, 13, 1246.	1.5	35
192	Innate Immune Response to SARS-CoV-2 Infection: From Cells to Soluble Mediators. International Journal of Molecular Sciences, 2021, 22, 7017.	1.8	43
193	Potential Therapeutic Targets and Vaccine Development for SARS-CoV-2/COVID-19 Pandemic Management: A Review on the Recent Update. Frontiers in Immunology, 2021, 12, 658519.	2.2	63

#	Article	IF	CITATIONS
195	A combination treatment of IFN-α2b and IFN-γ accelerates viral clearance and control inflammatory response in COVID-19: Preliminary results of a randomized controlled trial. Annals of Antivirals and Antiretrovirals, 2021, , 001-014.	0.5	2
196	Cellular nucleic acid–binding protein is essential for type I interferon–mediated immunity to RNA virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
197	Activation of cGAS/STING pathway upon paramyxovirus infection. IScience, 2021, 24, 102519.	1.9	25
198	The Role of Coronavirus RNA-Processing Enzymes in Innate Immune Evasion. Life, 2021, 11, 571.	1.1	12
199	Multisystem Inflammatory Syndrome in Children Associated with COVID-19: An Interim Review. Journal of Pediatric Infectious Diseases, 0, 16, .	0.1	0
200	Severe COVID-19 Recovery Is Associated with Timely Acquisition of a Myeloid Cell Immune-Regulatory Phenotype. Frontiers in Immunology, 2021, 12, 691725.	2.2	36
202	Critical Determinants of Cytokine Storm and Type I Interferon Response in COVID-19 Pathogenesis. Clinical Microbiology Reviews, 2021, 34, .	5.7	141
203	Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy. Journal of Medicinal Chemistry, 2022, 65, 955-982.	2.9	48
205	A Hepatitis B Virus-Derived Peptide Can Inhibit Infection of Human Lung Cells with SARS-CoV-2 in a Type-1 Interferon-Dependent Manner. Viruses, 2021, 13, 1227.	1.5	3
206	SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2. Immunity, 2021, 54, 1304-1319.e9.	6.6	115
207	Efficacy of CytoSorb in a Pediatric Case of Severe Multisystem Infammatory Syndrome (MIS-C): A Clinical Case Report. Frontiers in Pediatrics, 2021, 9, 676298.	0.9	10
208	COVID-19 and cytokine storm syndrome: are there lessons from macrophage activation syndrome?. Translational Research, 2021, 232, 1-12.	2.2	45
210	An Impaired Inflammatory and Innate Immune Response in COVID-19. Molecules and Cells, 2021, 44, 384-391.	1.0	13
212	Rapid, reliable, and reproducible cell fusion assay to quantify SARS-Cov-2 spike interaction with hACE2. PLoS Pathogens, 2021, 17, e1009683.	2.1	18
213	SARS-CoV-2 Nonstructural Protein 1 Inhibits the Interferon Response by Causing Depletion of Key Host Signaling Factors. Journal of Virology, 2021, 95, e0026621.	1.5	72
215	SARS-CoV-2 Antiviral Therapy. Clinical Microbiology Reviews, 2021, 34, e0010921.	5.7	64
216	High rate of HSV-1 reactivation in invasively ventilated COVID-19 patients: Immunological findings. PLoS ONE, 2021, 16, e0254129.	1.1	30
217	SARSâ€CoVâ€2 sensing by RIGâ€I and MDA5 links epithelial infection to macrophage inflammation. EMBO	3.5	144

#	Article	IF	CITATIONS
218	Supramolecular Cylinders Target Bulge Structures in the 5′ UTR of the RNA Genome of SARSâ€CoVâ€⊋ and Inhibit Viral Replication**. Angewandte Chemie - International Edition, 2021, 60, 18144-18151.	7.2	12
219	ACE2-lentiviral transduction enables mouse SARS-CoV-2 infection and mapping of receptor interactions. PLoS Pathogens, 2021, 17, e1009723.	2.1	28
220	COVID-19 in Children: Expressions of Type I/II/III Interferons, TRIM28, SETDB1, and Endogenous Retroviruses in Mild and Severe Cases. International Journal of Molecular Sciences, 2021, 22, 7481.	1.8	37
221	The preparation of N-IgY targeting SARS-CoV-2 and its immunomodulation to IFN-Î ³ production in vitro. International Immunopharmacology, 2021, 96, 107797.	1.7	13
222	Innate Immunity in Children and the Role of ACE2 Expression in SARS-CoV-2 Infection. Pediatric Reports, 2021, 13, 363-382.	0.5	18
223	Supramolecular Cylinders Target Bulge Structures in the 5′ UTR of the RNA Genome of SARS oVâ€₂ and Inhibit Viral Replication**. Angewandte Chemie, 2021, 133, 18292-18299.	1.6	3
225	Immunity and Viral Infections: Modulating Antiviral Response via CRISPR–Cas Systems. Viruses, 2021, 13, 1373.	1.5	9
226	COVID-19 virtual patient cohort suggests immune mechanisms driving disease outcomes. PLoS Pathogens, 2021, 17, e1009753.	2.1	61
227	The Many Faces of JAKs and STATs Within the COVID-19 Storm. Frontiers in Immunology, 2021, 12, 690477.	2.2	18
228	The RNA sensor MDA5 detects SARS-CoV-2 infection. Scientific Reports, 2021, 11, 13638.	1.6	93
230	Commentary: Why Haven't We Found an Effective Treatment for COVID-19?. Frontiers in Immunology, 2021, 12, 714175.	2.2	2
231	SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and impairs mucociliary clearance. Nature Communications, 2021, 12, 4354.	5.8	154
232	Host factors facilitating SARS oVâ€2 virus infection and replication in the lungs. Cellular and Molecular Life Sciences, 2021, 78, 5953-5976.	2.4	19
233	Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nature Reviews Immunology, 2021, 21, 475-484.	10.6	434
234	Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell. Cell Reports, 2021, 36, 109364.	2.9	109
235	The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduction and Targeted Therapy, 2021, 6, 255.	7.1	355
238	Insights into the modulation of the interferon response and NAD+ in the context of COVID-19. International Reviews of Immunology, 2021, , 1-11.	1.5	7
240	The early interferon catches the SARS-CoV-2. Journal of Experimental Medicine, 2021, 218, .	4.2	8

#	Article	IF	CITATIONS
241	Early nasal type I IFN immunity against SARS-CoV-2 is compromised in patients with autoantibodies against type I IFNs. Journal of Experimental Medicine, 2021, 218, .	4.2	85
242	COVID-19 as a mediator of interferon deficiency and hyperinflammation: Rationale for the use of JAK1/2 inhibitors in combination with interferon. Cytokine and Growth Factor Reviews, 2021, 60, 28-45.	3.2	21
243	Intranasal type I interferon treatment is beneficial only when administered before clinical signs onset in the SARS-CoV-2 hamster model. PLoS Pathogens, 2021, 17, e1009427.	2.1	38
244	Study of HLA-A, -B, -C, -DRB1 and -DQB1 polymorphisms in COVID-19 patients. Journal of Microbiology, Immunology and Infection, 2022, 55, 421-427.	1.5	15
245	Hypothesis: Neuroglia Activation Due to Increased Peripheral and CNS Proinflammatory Cytokines/Chemokines with Neuroinflammation May Result in Long COVID. Neuroglia (Basel,) Tj ETQq0 0 0 rgBT	/Ovvarlock	2 1004Tf 50 577
247	AHR signaling is induced by infection with coronaviruses. Nature Communications, 2021, 12, 5148.	5.8	38
249	Humoral and Cell-Mediated Immune Response in Colostrum from Women Diagnosed Positive for SARS-CoV-2. Breastfeeding Medicine, 2021, 16, 987-994.	0.8	16
250	Immunosuppression in Glomerular Diseases: Implications for SARS-CoV-2 Vaccines and COVID-19. Glomerular Diseases, 2021, 1, 277-293.	0.2	4
251	Quantitative circular flow immunoassays with trained object recognition to detect antibodies to SARS-CoV-2 membrane glycoprotein. Biochemical and Biophysical Research Communications, 2021, 565, 8-13.	1.0	3
252	COVID-19, corticosteroids and public health: a reappraisal. Public Health, 2021, 197, 48-55.	1.4	7
253	Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. Nature Biotechnology, 2022, 40, 319-324.	9.4	229
255	Decoding the dynamics of multilayered stochastic antiviral IFN-I responses. Trends in Immunology, 2021, 42, 824-839.	2.9	29
256	SARS-CoV-2 Nsp5 Demonstrates Two Distinct Mechanisms Targeting RIG-I and MAVS To Evade the Innate Immune Response. MBio, 2021, 12, e0233521.	1.8	57
257	The Suppressor of Cytokine Signalling family of proteins and their potential impact on COVIDâ€19 disease progression. Reviews in Medical Virology, 2022, 32, e2300.	3.9	11
259	Inhibition of SARS-CoV-2 Infection by Human Defensin HNP1 and Retrocyclin RC-101. Journal of Molecular Biology, 2022, 434, 167225.	2.0	19
260	A Combination Adjuvant for the Induction of Potent Antiviral Immune Responses for a Recombinant SARS-CoV-2 Protein Vaccine. Frontiers in Immunology, 2021, 12, 729189.	2.2	23
261	The role of type I interferon in the treatment of COVIDâ€19. Journal of Medical Virology, 2022, 94, 63-81.	2.5	52
262	Vaccines Against SARS-CoV-2 in Psoriasis Patients on Immunosuppressive Therapy: Implications of Vaccination Nationwide Campaign on Clinical Practice in Italy. Dermatology and Therapy, 2021, 11, 1889-1903	1.4	6

#	Article	IF	CITATIONS
263	Adaptive immune determinants of viral clearance and protection in mouse models of SARS-CoV-2. Science Immunology, 2021, 6, eabl4509.	5.6	141
264	High Prevalence of Pre-Existing Liver Abnormalities Identified Via Autopsies in COVID-19: Identification of a New Silent Risk Factor?. Diagnostics, 2021, 11, 1703.	1.3	3
265	The interferon landscape along the respiratory tract impacts the severity of COVID-19. Cell, 2021, 184, 4953-4968.e16.	13.5	165
266	Interferon β, an enhancer of the innate immune response against SARS-CoV-2 infection. Microbial Pathogenesis, 2021, 158, 105105.	1.3	6
268	Mechanisms of Antiviral Immune Evasion of SARS-CoV-2. Journal of Molecular Biology, 2022, 434, 167265.	2.0	72
269	On Deep Landscape Exploration of COVID-19 Patients Cells and Severity Markers. Frontiers in Immunology, 2021, 12, 705646.	2.2	9
270	The immune response to SARS-CoV-2 and COVID-19 immunopathology – Current perspectives. Pulmonology, 2021, 27, 423-437.	1.0	118
271	Forms and Methods for Interferon's Encapsulation. Pharmaceutics, 2021, 13, 1533.	2.0	9
272	Pediatric COVID-19: Immunopathogenesis, Transmission and Prevention. Vaccines, 2021, 9, 1002.	2.1	16
273	Neutrophils and lymphopenia, an unknown axis in severe COVID-19 disease. PLoS Pathogens, 2021, 17, e1009850.	2.1	22
274	COVID19db: a comprehensive database platform to discover potential drugs and targets of COVID-19 at whole transcriptomic scale. Nucleic Acids Research, 2022, 50, D747-D757.	6.5	27
275	A hitchhiker's guide through the COVID-19 galaxy. Clinical Immunology, 2021, 232, 108849.	1.4	3
276	SARS-CoV-2 Spike protein enhances ACE2 expression via facilitating Interferon effects in bronchial epithelium. Immunology Letters, 2021, 237, 33-41.	1.1	19
277	The MAVS Immune Recognition Pathway in Viral Infection and Sepsis. Antioxidants and Redox Signaling, 2021, 35, 1376-1392.	2.5	24
278	Differential plasmacytoid dendritic cell phenotype and type I Interferon response in asymptomatic and severe COVID-19 infection. PLoS Pathogens, 2021, 17, e1009878.	2.1	52
279	Host proviral and antiviral factors for SARS-CoV-2. Virus Genes, 2021, 57, 475-488.	0.7	11
280	Prompt Reduction in CRP, IL-6, IFN-γ, IP-10, and MCP-1 and a Relatively Low Basal Ratio of Ferritin/CRP Is Possibly Associated With the Efficacy of Tocilizumab Monotherapy in Severely to Critically III Patients With COVID-19. Frontiers in Medicine, 2021, 8, 734838.	1.2	13
281	Clinical Patterns and Morphology of COVID-19 Dermatology. Dermatologic Clinics, 2021, 39, 487-503.	1.0	14

#	Article	IF	CITATIONS
282	Immunomodulation and immunotherapeutics of COVID-19. Clinical Immunology, 2021, 231, 108842.	1.4	7
283	HantavirusesDB: Vaccinomics and RNA-based therapeutics database for the potentially emerging human respiratory pandemic agents. Microbial Pathogenesis, 2021, 160, 105161.	1.3	4
284	Gut probiotic Lactobacillus rhamnosus attenuates PDE4B-mediated interleukin-6 induced by SARS-CoV-2 membrane glycoprotein. Journal of Nutritional Biochemistry, 2021, 98, 108821.	1.9	13
285	The Abstruse Side of Type I Interferon Immunotherapy for COVID-19 Cases with Comorbidities. Journal of Respiration, 2021, 1, 49-59.	0.4	5
286	Novel coronavirus disease (COVID-19) pandemic: A recent mini review. Computational and Structural Biotechnology Journal, 2021, 19, 612-623.	1.9	35
287	Immune evasion of SARS-CoV-2 from interferon antiviral system. Computational and Structural Biotechnology Journal, 2021, 19, 4217-4225.	1.9	49
288	Mechanisms of infection by SARS-CoV-2, inflammation and potential links with the microbiome. Future Virology, 2021, 16, 43-57.	0.9	10
289	Proteomic Signature of Host Response to SARS-CoV-2 Infection in the Nasopharynx. Molecular and Cellular Proteomics, 2021, 20, 100134.	2.5	25
290	COVID-19: disease, or no disease? - that is the question. It's the dose stupid!. Microbes and Infection, 2021, 23, 104779.	1.0	7
292	The hygiene hypothesis, the COVID pandemic, and consequences for the human microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	100
293	Neurobiology of SARS-CoV-2 interactions with the peripheral nervous system: implications for COVID-19 and pain. Pain Reports, 2021, 6, e885.	1.4	83
294	Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling. Signal Transduction and Targeted Therapy, 2020, 5, 299.	7.1	232
295	Unpuzzling COVID-19: tissue-related signaling pathways associated with SARS-CoV-2 infection and transmission. Clinical Science, 2020, 134, 2137-2160.	1.8	68
296	SARS-CoV-2 reinfection and implications for vaccine development. Human Vaccines and Immunotherapeutics, 2020, 16, 3061-3073.	1.4	54
297	Innate immunology in COVID-19—a living review. Part I: viral entry, sensing and evasion. Oxford Open Immunology, 2020, 1, iqaa004.	1.2	7
298	The single-cell landscape of immunological responses of CD4+ T cells in HIV versus severe acute respiratory syndrome coronavirus 2. Current Opinion in HIV and AIDS, 2021, 16, 36-47.	1.5	6
327	ls innate immunity our best weapon for flattening the curve?. Journal of Clinical Investigation, 2020, 130, 3954-3956.	3.9	11
328	SARS-CoV-2 meta-interactome suggests disease-specific, autoimmune pathophysiologies and therapeutic targets. F1000Research, 2020, 9, 992.	0.8	10

#	Article	IF	CITATIONS
329	Cardiovascular impact of COVID-19 with a focus on children: A systematic review. World Journal of Clinical Cases, 2020, 8, 5250-5283.	0.3	78
330	Evaluation of the automated cartridge-based ARIES SARS-CoV-2 Assay (RUO) against automated Cepheid Xpert Xpress SARS-CoV-2 PCR as gold standard. European Journal of Microbiology and Immunology, 2020, 10, 156-164.	1.5	12
331	Evaluation of the Xiamen AmonMed Biotechnology rapid diagnostic test COVID-19 lgM/lgG test kit (Colloidal gold). European Journal of Microbiology and Immunology, 2020, 10, 178-185.	1.5	5
332	Mouse Model of SARS-CoV-2 Reveals Inflammatory Role of Type I Interferon Signaling. SSRN Electronic Journal, 2020, , 3628297.	0.4	3
333	Delayed severe cytokine storm and immune cell infiltration in SARS-CoV-2-infected aged Chinese rhesus macaques. Zoological Research, 2020, 41, 503-516.	0.9	60
334	Prospects for Using the ELISPOT Technological Platform as Part of Anti-Epidemic Measures Against the New Coronavirus Infection COVID-19. BIOpreparations Prevention Diagnosis Treatment, 2020, 20, 146-158.	0.2	8
335	COVID‑19 in China: From epidemiology to treatment (Review). Experimental and Therapeutic Medicine, 2020, 20, 1-1.	0.8	4
336	Interferon therapy for COVID-19 and emerging infections: Prospects and concerns. Cleveland Clinic Journal of Medicine, 2020, , .	0.6	22
337	ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. ELife, 2020, 9, .	2.8	266
338	Topics of thrombosis with COVID-19—from a viewpoint of infectious disease specialist—. Japanese Journal of Thrombosis and Hemostasis, 2021, 32, 628-631.	0.1	0
339	When Immunity Kills: The Lessons of SARS-CoV-2 Outbreak. Frontiers in Immunology, 2021, 12, 692598.	2.2	7
340	ADAR Editing in Viruses: An Evolutionary Force to Reckon with. Genome Biology and Evolution, 2021, 13, .	1.1	23
341	Review: Development of SARS-CoV-2 immuno-enhanced COVID-19 vaccines with nano-platform. Nano Research, 2022, 15, 2196-2225.	5.8	8
342	Repositioning Ivermectin for Covid-19 treatment: Molecular mechanisms of action against SARS-CoV-2 replication. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166294.	1.8	28
343	Immune memory from SARS-CoV-2 infection in hamsters provides variant-independent protection but still allows virus transmission. Science Immunology, 2021, 6, eabm3131.	5.6	37
345	Profiling of lung SARS-CoV-2 and influenza virus infection dissects virus-specific host responses and gene signatures. European Respiratory Journal, 2022, 59, 2101881.	3.1	37
346	Blood Transcriptomes of Anti-SARS-CoV-2 Antibody-Positive Healthy Individuals Who Experienced Asymptomatic Versus Clinical Infection. Frontiers in Immunology, 2021, 12, 746203.	2.2	10
347	Microvascular Skin Manifestations Caused by COVID-19. Hamostaseologie, 2021, 41, 387-396.	0.9	6

#	ARTICLE	IF	CITATIONS
348	Sterols, Oxysterols, and Accessible Cholesterol: Signalling for Homeostasis, in Immunity and During Development. Frontiers in Physiology, 2021, 12, 723224.	1.3	11
349	Lessons in self-defence: inhibition of virus entry by intrinsic immunity. Nature Reviews Immunology, 2022, 22, 339-352.	10.6	66
351	Cancer and Covid-19: Collectively catastrophic. Cytokine and Growth Factor Reviews, 2022, 63, 78-89.	3.2	10
352	COVID19 Disease Map, a computational knowledge repository of virus–host interaction mechanisms. Molecular Systems Biology, 2021, 17, e10387.	3.2	53
354	Traditional Chinese Medicine, Qingfei Paidu Decoction and Xuanfei Baidu Decoction, Inhibited Cytokine Production via NF-κB Signaling Pathway in Macrophages: Implications for Coronavirus Disease 2019 (COVID-19) Therapy. Frontiers in Pharmacology, 2021, 12, 722126.	1.6	14
358	Insights into COVID-19 Vaccine Development Based on Immunogenic Structural Proteins of SARS-CoV-2, Host Immune Responses, and Herd Immunity. Cells, 2021, 10, 2949.	1.8	26
359	Interferon-alpha or -beta facilitates SARS-CoV-2 pulmonary vascular infection by inducing ACE2. Angiogenesis, 2022, 25, 225-240.	3.7	27
363	Myeloid dysregulation and therapeutic intervention in COVID-19. Seminars in Immunology, 2021, 55, 101524.	2.7	9
364	Interferons in Pain and Infections: Emerging Roles in Neuro-Immune and Neuro-Glial Interactions. Frontiers in Immunology, 2021, 12, 783725.	2.2	36
365	Hemin as a novel candidate for treating COVID-19 via heme oxygenase-1 induction. Scientific Reports, 2021, 11, 21462.	1.6	20
367	Covid-19: features of the pathogenesis of the disease and targets for immunotherapeutic effects. Meditsinskii Akademicheskii Zhurnal, 2020, 20, 75-88.	0.2	0
368	Devil's tools: SARS-CoV-2 antagonists against innate immunity. Current Research in Virological Science, 2021, 2, 100013.	1.8	19
369	Atypical Prolonged Viral Shedding With Intra-Host SARS-CoV-2 Evolution in a Mildly Affected Symptomatic Patient. Frontiers in Medicine, 2021, 8, 760170.	1.2	16
370	A Bacterial Cell-Based Assay To Study SARS-CoV-2 Protein-Protein Interactions. MBio, 2021, , e0293621.	1.8	1
371	SARS-CoV-2 inhibits induction of the MHC class I pathway by targeting the STAT1-IRF1-NLRC5 axis. Nature Communications, 2021, 12, 6602.	5.8	104
372	Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nature Medicine, 2022, 28, 201-211.	15.2	132
373	Effect of Angiotensin-Converting-Enzyme Inhibitor and Angiotensin II Receptor Antagonist Treatment on ACE2 Expression and SARS-CoV-2 Replication in Primary Airway Epithelial Cells. Frontiers in Pharmacology, 2021, 12, 765951.	1.6	5
374	A stem-loop RNA RIG-I agonist protects against acute and chronic SARS-CoV-2 infection in mice. Journal of Experimental Medicine, 2022, 219, .	4.2	46

#	Article	IF	CITATIONS
375	Impact of Chronic HIV Infection on SARS-CoV-2 Infection, COVID-19 Disease and Vaccines. Current HIV/AIDS Reports, 2022, 19, 5-16.	1.1	9
376	An Overview of Recent Insights into the Response of TLR to SARS-CoV-2 Infection and the Potential of TLR Agonists as SARS-CoV-2 Vaccine Adjuvants. Viruses, 2021, 13, 2302.	1.5	32
377	Peripheral innate and adaptive immune cells during <scp>COVID</scp> â€19: Functional neutrophils, proâ€inflammatory monocytes, and halfâ€dead lymphocytes. Cytometry Part B - Clinical Cytometry, 2022, 102, 153-167.	0.7	14
378	Single-cell landscape of peripheral immune responses to fatal SFTS. Cell Reports, 2021, 37, 110039.	2.9	19
380	Why Females Do Better: The X Chromosomal TLR7 Gene-Dose Effect in COVID-19. Frontiers in Immunology, 2021, 12, 756262.	2.2	35
382	Co-Regulation of Protein Coding Genes by Transcription Factor and Long Non-Coding RNA in SARS-CoV-2 Infected Cells: An In Silico Analysis. Non-coding RNA, 2021, 7, 74.	1.3	5
383	Pathogenesis of Respiratory Viral and Fungal Coinfections. Clinical Microbiology Reviews, 2022, 35, e0009421.	5.7	64
384	Transcriptional Profiling and Machine Learning Unveil a Concordant Biosignature of Type I Interferon-Inducible Host Response Across Nasal Swab and Pulmonary Tissue for COVID-19 Diagnosis. Frontiers in Immunology, 2021, 12, 733171.	2.2	20
385	Vaccines and Antiviral Developments for SARS-CoV-2 in the Emergence of the COVID-19 Pandemic. RSC Drug Discovery Series, 2021, , 45-60.	0.2	0
386	Alveolar macrophages: novel therapeutic targets for respiratory diseases. Expert Reviews in Molecular Medicine, 2021, 23, e18.	1.6	10
387	All hands on deck: SARS-CoV-2 proteins that block early anti-viral interferon responses. Current Research in Virological Science, 2021, 2, 100015.	1.8	26
388	The cGAS–STING pathway drives type I IFN immunopathology in COVID-19. Nature, 2022, 603, 145-151.	13.7	272
389	Postmortem high-dimensional immune profiling of severe COVID-19 patients reveals distinct patterns of immunosuppression and immunoactivation. Nature Communications, 2022, 13, 269.	5.8	16
390	Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature, 2022, 603, 587-598.	13.7	216
391	Beyond Good and Evil: Molecular Mechanisms of Type I and III IFN Functions. Journal of Immunology, 2022, 208, 247-256.	0.4	27
392	Myeloid cell nuclear differentiation antigen controls the pathogen-stimulated type I interferon cascade in human monocytes by transcriptional regulation of IRF7. Nature Communications, 2022, 13, 14.	5.8	18
393	Immune Profiling of COVID-19 in Correlation with SARS and MERS. Viruses, 2022, 14, 164.	1.5	11
394	A Journey into the Clinical Relevance of Heme Oxygenase 1 for Human Inflammatory Disease and Viral Clearance: Why Does It Matter on the COVID-19 Scene?. Antioxidants, 2022, 11, 276.	2.2	12

~			<u> </u>	
CĽ	ΓΑΤΙ	ION.	REPC	DRT

#	Article	IF	CITATIONS
395	Type I interferons and SARS-CoV-2: from cells to organisms. Current Opinion in Immunology, 2022, 74, 172-182.	2.4	49
396	Dynamics of spike-and nucleocapsid specific immunity during long-term follow-up and vaccination of SARS-CoV-2 convalescents. Nature Communications, 2022, 13, 153.	5.8	45
397	Implications of the Immune Polymorphisms of the Host and the Genetic Variability of SARS-CoV-2 in the Development of COVID-19. Viruses, 2022, 14, 94.	1.5	7
398	Onco-immunological Aspect of COVID-19: Current Progress and Perceptions. Coronaviruses, 2022, 03, .	0.2	0
400	Avian cytokines and their receptors. , 2022, , 249-276.		6
401	Ivermectin Prophylaxis Used for COVID-19: A Citywide, Prospective, Observational Study of 223,128 Subjects Using Propensity Score Matching. Cureus, 2022, 14, e21272.	0.2	10
403	Interferon Control of Human Coronavirus Infection and Viral Evasion: Mechanistic Insights and Implications for Antiviral Drug and Vaccine Development. Journal of Molecular Biology, 2022, 434, 167438.	2.0	7
405	Low levels of CIITA and high levels of SOCS1 predict COVID-19 disease severity in children and adults. IScience, 2022, 25, 103595.	1.9	2
406	Hyper-inflammatory responses in COVID-19 and anti-inflammatory therapeutic approaches. BMB Reports, 2022, 55, 11-19.	1.1	7
408	Strategies for fighting pandemic virus infections: Integration of virology and drug delivery. Journal of Controlled Release, 2022, 343, 361-378.	4.8	11
409	Gasdermin D Inhibits Coronavirus Infection by Promoting the Noncanonical Secretion of Beta Interferon. MBio, 2022, 13, e0360021.	1.8	8
410	Cholesterol metabolism: from lipidomics to immunology. Journal of Lipid Research, 2022, 63, 100165.	2.0	27
412	Woodsmoke particle exposure prior to SARS-CoV-2 infection alters antiviral response gene expression in human nasal epithelial cells in a sex-dependent manner. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L479-L494.	1.3	10
413	Immunoediting in SARS-CoV-2: Mutual relationship between the virus and the host. International Immunopharmacology, 2022, 105, 108531.	1.7	1
414	A Novel Prophylaxis Strategy Using Liposomal Vaccine Adjuvant CAF09b Protects against Influenza Virus Disease. International Journal of Molecular Sciences, 2022, 23, 1850.	1.8	4
415	Microbiota regulation of viral infections through interferon signaling. Trends in Microbiology, 2022, 30, 778-792.	3.5	41
416	Phase separation by the SARS-CoV-2 nucleocapsid protein: Consensus and open questions. Journal of Biological Chemistry, 2022, 298, 101677.	1.6	44
417	SARS-CoV-2-Specific Immune Response and the Pathogenesis of COVID-19. International Journal of Molecular Sciences, 2022, 23, 1716.	1.8	107

#	Article	IF	CITATIONS
418	Nasalferon, a new nasal formulation of IFNα2b, modulates cellular and molecular elements associated with an antiviral response in mucosa and blood. Clinical Immunology Communications, 2022, 2, 39-45.	0.5	2
419	Neurological manifestations found in children with multisystem inflammatory syndrome. Experimental and Therapeutic Medicine, 2022, 23, 261.	0.8	14
420	SARS-CoV-2-mediated evasion strategies for antiviral interferon pathways. Journal of Microbiology, 2022, 60, 290-299.	1.3	24
421	Myeloid cell interferon responses correlate with clearance of SARS-CoV-2. Nature Communications, 2022, 13, 679.	5.8	30
422	Specific anti-SARS-CoV-2 S1 IgY-scFv is a promising tool for recognition of the virus. AMB Express, 2022, 12, 18.	1.4	10
423	Oral famotidine versus placebo in non-hospitalised patients with COVID-19: a randomised, double-blind, data-intense, phase 2 clinical trial. Gut, 2022, 71, 879-888.	6.1	24
424	SARS-CoV-2 infection causes intestinal cell damage: Role of interferon's imbalance. Cytokine, 2022, 152, 155826.	1.4	11
425	Modeling SARS-CoV-2 Infection in Mice Using Lentiviral hACE2 Vectors Infers Two Modes of Immune Responses to SARS-CoV-2 Infection. Viruses, 2022, 14, 11.	1.5	0
426	The mechanisms of action of ivermectin against SARS-CoV-2—an extensive review. Journal of Antibiotics, 2022, 75, 60-71.	1.0	37
427	SARS-CoV-2 spreads through cell-to-cell transmission. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	145
428	Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Membrane (M) and Spike (S) Proteins Antagonize Host Type I Interferon Response. Frontiers in Cellular and Infection Microbiology, 2021, 11, 766922.	1.8	26
429	Synergistic Interferon-Alpha-Based Combinations for Treatment of SARS-CoV-2 and Other Viral Infections. Viruses, 2021, 13, 2489.	1.5	20
430	SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. ELife, 2021, 10, .	2.8	215
431	Profiling transcription factor sub-networks in type I interferon signaling and in response to SARS-CoV-2 infection. Computational and Mathematical Biophysics, 2021, 9, 273-288.	0.6	2
432	Cell specific peripheral immune responses predict survival in critical COVID-19 patients. Nature Communications, 2022, 13, 882.	5.8	19
433	Exploiting natural antiviral immunity for the control of pandemics: Lessons from Covid-19. Cytokine and Growth Factor Reviews, 2022, 63, 23-33.	3.2	7
434	Executable network of SARS-CoV-2-host interaction predicts drug combination treatments. Npj Digital Medicine, 2022, 5, 18.	5.7	5
436	Protective immune trajectories in early viral containment of non-pneumonic SARS-CoV-2 infection. Nature Communications, 2022, 13, 1018.	5.8	16

#	Article	IF	CITATIONS
437	Lack of association between pandemic chilblains and SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18
438	A Systematic Review of the Global Intervention for SARS-CoV-2 Combating: From Drugs Repurposing to Molnupiravir Approval. Drug Design, Development and Therapy, 2022, Volume 16, 685-715.	2.0	30
439	Uncovering Novel Viral Innate Immune Evasion Strategies: What Has SARS-CoV-2 Taught Us?. Frontiers in Microbiology, 2022, 13, 844447.	1.5	4
440	Increased Sensitivity of SARS-CoV-2 to Type III Interferon in Human Intestinal Epithelial Cells. Journal of Virology, 2022, 96, e0170521.	1.5	17
445	Distinct Cellular Immune Responses to SARS-CoV-2 in Pregnant Women. Journal of Immunology, 2022, 208, 1857-1872.	0.4	16
446	Organ manifestations of COVID-19: what have we learned so far (not only) from autopsies?. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2022, 481, 139-159.	1.4	28
447	The Impact of Onset Age on Eosinophils in Kawasaki Disease. Biomedicines, 2022, 10, 835.	1.4	7
448	Multi-Omics Integration Reveals Only Minor Long-Term Molecular and Functional Sequelae in Immune Cells of Individuals Recovered From COVID-19. Frontiers in Immunology, 2022, 13, 838132.	2.2	10
449	Mono- and combinational drug therapies for global viral pandemic preparedness. IScience, 2022, 25, 104112.	1.9	19
451	Gut Microbiota might act as a potential therapeutic pathway in COVID-19. Current Pharmaceutical Biotechnology, 2022, 23, .	0.9	1
452	Cellular, Antibody and Cytokine Pathways in Children with Acute SARS-CoV-2 Infection and MIS-C—Can We Match the Puzzle?. Antibodies, 2022, 11, 25.	1.2	11
453	The effect of immunization with inactivated SARS-CoV-2 vaccine (CoronaVac) and/or SARS-CoV-2 infection on antibody levels, plasmablasts, long-lived-plasma-cells, and IFN-γ release by natural killer cells. Vaccine, 2022, 40, 2619-2625.	1.7	6
454	Human enteric viruses autonomously shape inflammatory bowel disease phenotype through divergent innate immunomodulation. Science Immunology, 2022, 7, eabn6660.	5.6	38
455	Risk factors, immune response and wholeâ€genome sequencing of SARSâ€CoVâ€2 in a cruise ship outbreak in Norway. International Journal of Infectious Diseases, 2022, 118, 10-20.	1.5	6
456	A simple, robust flow cytometry-based whole blood assay for investigating sex differential interferon alpha production by plasmacytoid dendritic cells. Journal of Immunological Methods, 2022, 504, 113263.	0.6	4
457	Detection of A-to-I RNA Editing in SARS-COV-2. Genes, 2022, 13, 41.	1.0	24
458	SARS-CoV-2-Encoded MiRNAs Inhibit Host Type I Interferon Pathway and Mediate Allelic Differential Expression of Susceptible Gene. Frontiers in Immunology, 2021, 12, 767726.	2.2	17
459	Presence of Anti-MDA5 Antibody and Its Value for the Clinical Assessment in Patients With COVID-19: A Retrospective Cohort Study. Frontiers in Immunology, 2021, 12, 791348.	2.2	39

		CITATION REPO	ORT	
#	Article	I	IF	CITATIONS
460	Rare variants in Toll-like receptor 7 results in functional impairment and downregulation of cytokine-mediated signaling in COVID-19 patients. Genes and Immunity, 2022, 23, 51-56.	:	2.2	41
461	An update on host immunity correlates and prospects of re-infection in COVID-19. Internat Reviews of Immunology, 2022, 41, 367-392.	ional	1.5	9
462	Why Does the Severity of COVID-19 Differ With Age?. Pediatric Infectious Disease Journal, e36-e45.	2022, 41,	1.1	49
466	SARS-CoV-2 Infection: A Possible Risk Factor for Incidence and Recurrence of Cancers. Inter Journal of Hematology-Oncology and Stem Cell Research, 0, , .	rnational	0.3	4
467	Inducible CRISPR activation screen for interferon-stimulated genes identifies OAS1 as a SA restriction factor. PLoS Pathogens, 2022, 18, e1010464.	₹S-CoV-2	2.1	24
468	Nasally delivered interferon-ĥ» protects mice against infection by SARS-CoV-2 variants inclu Omicron. Cell Reports, 2022, 39, 110799.	ding	2.9	39
470	Implications of SARS-CoV-2 Infection in Systemic Juvenile Idiopathic Arthritis. International Molecular Sciences, 2022, 23, 4268.	Journal of	1.8	10
471	Surviving the Storm: Cytokine Biosignature in SARS-CoV-2 Severity Prediction. Vaccines, 20	022, 10, 614.	2.1	10
472	SARS-CoV-2 spike protein–induced cell fusion activates the cGAS-STING pathway and the response. Science Signaling, 2022, 15, eabg8744.	interferon	1.6	54
485	SARS-CoV-2 Infection: Host Response, Immunity, and Therapeutic Targets. Inflammation, 2 1430-1449.	022, 45,	1.7	16
486	Hyper-inflammatory responses in COVID-19 and anti-inflammatory therapeutic approaches Reports, 2021, , .	BMB	1.1	0
488	Treatment of Moderate to Severe Psoriasis during the COVID-19 Pandemic: Lessons Learne Opportunities. Journal of Clinical Medicine, 2022, 11, 2422.	d and	1.0	0
489	Immunouniverse of SARS-CoV-2. Immunological Medicine, 2022, 45, 186-224.	:	1.4	8
491	HDAC Inhibition as Potential Therapeutic Strategy to Restore the Deregulated Immune Res Severe COVID-19. Frontiers in Immunology, 2022, 13, 841716.	ponse in	2.2	15
494	Airway epithelial interferon response to SARS-CoV-2 is inferior to rhinovirus and heterologor rhinovirus infection suppresses SARS-CoV-2 replication. Scientific Reports, 2022, 12, 6972.		1.6	12
495	Infectious Bronchitis Virus Nsp14 Degrades JAK1 to Inhibit the JAK-STAT Signaling Pathway Viruses, 2022, 14, 1045.	in HD11 Cells.	1.5	7
496	SARS-CoV-2: overview of immune response, insights into vaccine platforms and their challe Exploration of Immunology, 0, , 245-263.	nges.	1.7	0
497	How SARS-CoV-2 dodges immune surveillance and facilitates infection: an analytical review Review of Anti-Infective Therapy, 2022, 20, 1119-1127.	. Expert	2.0	1

#	Article	IF	CITATIONS
498	Dysregulated Interferon Response and Immune Hyperactivation in Severe COVID-19: Targeting STATs as a Novel Therapeutic Strategy. Frontiers in Immunology, 2022, 13, .	2.2	29
501	Gene Set Enrichment Analysis Reveals That Fucoidan Induces Type I IFN Pathways in BMDC. Nutrients, 2022, 14, 2242.	1.7	5
503	COVID-19 and its impact on cancer, HIV, and mentally ill patients. , 2022, , 95-137.		1
504	Body temperature variation controls pre-mRNA processing and transcription of antiviral genes and SARS-CoV-2 replication. Nucleic Acids Research, 2022, 50, 6769-6785.	6.5	6
505	Immune system changes in those with hypertension when infected with SARS-CoV-2. Cellular Immunology, 2022, 378, 104562.	1.4	2
506	Potential therapeutic effects of Ivermectin in COVID-19. Experimental Biology and Medicine, 2022, 247, 1388-1396.	1.1	2
507	Individual and Synergistic Anti-Coronavirus Activities of SOCS1/3 Antagonist and Interferon α1 Peptides. Frontiers in Immunology, 0, 13, .	2.2	6
508	Conjunctival epithelial cells resist productive SARS-CoV-2 infection. Stem Cell Reports, 2022, 17, 1699-1713.	2.3	5
509	Cytokines and microRNAs in SARS-CoV-2: What do we know?. Molecular Therapy - Nucleic Acids, 2022, 29, 219-242.	2.3	18
510	Host-directed immunotherapy of viral and bacterial infections: past, present and future. Nature Reviews Immunology, 2023, 23, 121-133.	10.6	71
511	A diminished immune response underlies age-related SARS-CoV-2 pathologies. Cell Reports, 2022, 39, 111002.	2.9	20
512	In silico drug repurposing against SARS-CoV-2 using an integrative transcriptomic profiling approach: Hydrocortisone and Benzhydrocodone as potential drug candidates against COVID-19. Infection, Genetics and Evolution, 2022, 103, 105318.	1.0	3
513	Lungs—Inflammatory and respiratory system. , 2022, , 231-242.		0
514	Toll-Like Receptor Signaling in Severe Acute Respiratory Syndrome Coronavirus 2-Induced Innate Immune Responses and the Potential Application Value of Toll-Like Receptor Immunomodulators in Patients With Coronavirus Disease 2019. Frontiers in Microbiology, 0, 13, .	1.5	18
515	Modeling recapitulates the heterogeneous outcomes of SARS-CoV-2 infection and quantifies the differences in the innate immune and CD8 T-cell responses between patients experiencing mild and severe symptoms. PLoS Pathogens, 2022, 18, e1010630.	2.1	14
517	Genetic polymorphisms in TLR3, IL10 and CD209 influence the risk of BK polyomavirus infection after kidney transplantation. Scientific Reports, 2022, 12, .	1.6	4
518	Additional Evidence for Commonalities between COVID-19 and Radiation Injury: Novel Insight into COVID-19 Candidate Drugs. Radiation Research, 2022, 198, .	0.7	4
520	Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, e1-18.	1.4	3

#	Article	IF	CITATIONS
521	Dengue and COVID-19: two sides of the same coin. Journal of Biomedical Science, 2022, 29, .	2.6	16
522	Differential chromatin accessibility in peripheral blood mononuclear cells underlies COVID-19 disease severity prior to seroconversion. Scientific Reports, 2022, 12, .	1.6	8
523	Overview of the immunological mechanism underlying severe fever with thrombocytopenia syndrome (Review). International Journal of Molecular Medicine, 2022, 50, .	1.8	11
524	A comprehensive evaluation of the immune system response and type-I Interferon signaling pathway in hospitalized COVID-19 patients. Cell Communication and Signaling, 2022, 20, .	2.7	19
525	Prevalence and Mechanisms of Mucus Accumulation in COVID-19 Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 1336-1352.	2.5	28
526	Understanding the epigenetic mechanisms in SARS CoV-2 infection and potential therapeutic approaches. Virus Research, 2022, 318, 198853.	1.1	11
527	Porcine epidemic diarrhea virus strain FJzz1 infection induces type I/III IFNs production through RLRs and TLRs-mediated signaling. Frontiers in Immunology, 0, 13, .	2.2	0
528	Bioinformatics analysis of potential common pathogenic mechanisms for COVID-19 infection and primary Sjogren's syndrome. Frontiers in Immunology, 0, 13, .	2.2	8
529	Deactylation by SIRT1 enables liquid–liquid phase separation of IRF3/IRF7 in innate antiviral immunity. Nature Immunology, 2022, 23, 1193-1207.	7.0	22
530	Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. International Journal of Molecular Sciences, 2022, 23, 8122.	1.8	7
531	Inflammatory pathways in COVIDâ \in 19: Mechanism and therapeutic interventions. MedComm, 2022, 3, .	3.1	17
532	Clinical implications of host genetic variation and susceptibility to severe or critical COVID-19. Genome Medicine, 2022, 14, .	3.6	28
533	Human coronaviruses disassemble processing bodies. PLoS Pathogens, 2022, 18, e1010724.	2.1	9
534	Lidocaine reinforces the anti-inflammatory action of dexamethasone on myeloid and epithelial cells activated by inflammatory cytokines or SARS-CoV-2 infection. Biomedical Journal, 2022, , .	1.4	3
535	Self-assembling short immunostimulatory duplex RNAs with broad-spectrum antiviral activity. Molecular Therapy - Nucleic Acids, 2022, 29, 923-940.	2.3	7
536	Impaired activation of transposable elements in <scp>SARS oV</scp> â€2 infection. EMBO Reports, 2022, 23, .	2.0	9
538	USP22 controls type III interferon signaling and SARS-CoV-2 infection through activation of STING. Cell Death and Disease, 2022, 13, .	2.7	9
539	Roles and functions of SARS-CoV-2 proteins in host immune evasion. Frontiers in Immunology, 0, 13, .	2.2	53

ITATION RE

#	Article	IF	CITATIONS
540	Review of human interferons and the potential of their use in the complex therapy of a new coronavirus infection COVID-19. Nevrologiya, Neiropsikhiatriya, Psikhosomatika, 2022, 14, 38-44.	0.2	0
541	Importancia de los Interferones en la respuesta inmune antiviral contra SARS-CoV-2. Revista De La Universidad Industrial De Santander Salud, 2022, 54, .	0.0	0
542	Respiratory and systemic monocytes, dendritic cells, and myeloidâ€derived suppressor cells in COVIDâ€19: Implications for disease severity. Journal of Internal Medicine, 2023, 293, 130-143.	2.7	16
543	Interferon Î \pm -2b spray shortened viral shedding time of SARS-CoV-2 Omicron variant: An open prospective cohort study. Frontiers in Immunology, 0, 13, .	2.2	2
544	Initial activation of STAT2 induced by IAV infection is critical for innate antiviral immunity. Frontiers in Immunology, 0, 13, .	2.2	2
545	SARS-CoV-2 Non-Structural Proteins and Their Roles in Host Immune Evasion. Viruses, 2022, 14, 1991.	1.5	19
546	More tools for our toolkit: The application of HEL-299 cells and dsRNA-nanoparticles to study human coronaviruses in vitro. Virus Research, 2022, 321, 198925.	1.1	4
547	SARS-CoV-2 and the Nucleus. International Journal of Biological Sciences, 2022, 18, 4731-4743.	2.6	11
548	COVID-19 and the potential of Janus family kinase (JAK) pathway inhibition: A novel treatment strategy. Frontiers in Medicine, 0, 9, .	1.2	4
549	Regular Use of Ivermectin as Prophylaxis for COVID-19 Led Up to a 92% Reduction in COVID-19 Mortality Rate in a Dose-Response Manner: Results of a Prospective Observational Study of a Strictly Controlled Population of 88,012 Subjects. Cureus, 2022, , .	0.2	2
550	Distinct Molecular Mechanisms Characterizing Pathogenesis of SARS-CoV-2. Journal of Microbiology and Biotechnology, 2022, 32, 1073-1085.	0.9	2
551	Potential Therapeutic Role of Mesenchymal-Derived Stem Cells as an Alternative Therapy to Combat COVID-19 through Cytokines Storm. Cells, 2022, 11, 2686.	1.8	1
552	The multifaceted roles of NLRP3-modulating proteins in virus infection. Frontiers in Immunology, 0, 13,	2.2	10
553	Identification of methylation signatures and rules for predicting the severity of SARS-CoV-2 infection with machine learning methods. Frontiers in Microbiology, 0, 13, .	1.5	2
555	COVID-19 vs. Cancer Immunosurveillance: A Game of Thrones within an Inflamed Microenviroment. Cancers, 2022, 14, 4330.	1.7	4
556	Developing dendritic cell for SARS-CoV-2 vaccine: Breakthrough in the pandemic. Frontiers in Immunology, 0, 13, .	2.2	2
557	Impaired immune response drives age-dependent severity of COVID-19. Journal of Experimental Medicine, 2022, 219, .	4.2	26
558	Regulation of cGAS Activity and Downstream Signaling. Cells, 2022, 11, 2812.	1.8	7

#	Article	IF	CITATIONS
559	Nineteen months into the pandemic, what have we learned about <scp>COVID</scp> â€19â€related outcomes in patients with psoriasis?. Journal of Cosmetic Dermatology, 2022, 21, 6549-6553.	0.8	2
560	Efficacy of <i>Lactococcus lactis</i> strain plasma (LC-Plasma) in easing symptoms in patients with mild COVID-19: protocol for an exploratory, multicentre, double-blinded, randomised controlled trial (PLATEAU study). BMJ Open, 2022, 12, e061172.	0.8	1
561	Quantitative proteomic analysis of SARS-CoV-2 infection of primary human airway ciliated cells and lung epithelial cells demonstrates the effectiveness of SARS-CoV-2 innate immune evasion. Wellcome Open Research, 0, 7, 224.	0.9	2
562	COVID-19: imbalanced cell-mediated immune response drives to immunopathology. Emerging Microbes and Infections, 2022, 11, 2393-2404.	3.0	9
563	Correlation between Type I Interferon Associated Factors and COVID-19 Severity. International Journal of Molecular Sciences, 2022, 23, 10968.	1.8	9
564	COVIDâ€19 immunopathology: From acute diseases to chronic sequelae. Journal of Medical Virology, 2023, 95, .	2.5	24
565	Antiviral activity of mink interferon alpha expressed in the yeast Pichia pastoris. Frontiers in Veterinary Science, 0, 9, .	0.9	0
566	SARS-CoV-2 variants Alpha, Beta, Delta and Omicron show a slower host cell interferon response compared to an early pandemic variant. Frontiers in Immunology, 0, 13, .	2.2	7
567	IFI44 is an immune evasion biomarker for SARS-CoV-2 and Staphylococcus aureus infection in patients with RA. Frontiers in Immunology, 0, 13, .	2.2	12
569	Evaluation of the Costs and Outcomes of COVID-19 Therapeutic Regimens in Hospitalized Patients in Shiraz. Iranian Journal of Science and Technology, Transaction A: Science, 0, , .	0.7	0
570	Inflammasome Genetic Variants Are Associated with Protection to Clinical Severity of COVID-19 among Patients from Rio de Janeiro, Brazil. BioMed Research International, 2022, 2022, 1-15.	0.9	3
571	Cytokine storm-calming property of the isoquinoline alkaloids in Coptis chinensis Franch. Frontiers in Pharmacology, 0, 13, .	1.6	6
572	Molecular insights into onset of autoimmunity in SARS oVâ€2 infected patients. Rheumatology & Autoimmunity, 2022, 2, 198-202.	0.3	4
575	Discovering Common Pathogenic Mechanisms of COVID-19 and Parkinson Disease: An Integrated Bioinformatics Analysis. Journal of Molecular Neuroscience, 2022, 72, 2326-2337.	1.1	4
576	Restoration of dendritic cell homeostasis and Type I/Type III interferon levels in convalescent COVID-19 individuals. BMC Immunology, 2022, 23, .	0.9	6
577	CD169-mediated restrictive SARS-CoV-2 infection of macrophages induces pro-inflammatory responses. PLoS Pathogens, 2022, 18, e1010479.	2.1	15
578	Excessive negative regulation of type I interferon disrupts viral control in individuals with Down syndrome. Immunity, 2022, 55, 2074-2084.e5.	6.6	15
579	Early immune markers of clinical, virological, and immunological outcomes in patients with COVID-19: a multi-omics study. ELife, 0, 11, .	2.8	7

	CITATION RE	CITATION REPORT	
# 580	ARTICLE Inosine: A broad-spectrum anti-inflammatory against SARS-CoV-2 infection-induced acute lung injury via suppressing TBK1 phosphorylation. Journal of Pharmaceutical Analysis, 2023, 13, 11-23.	IF 2.4	Citations 3
581	Pseudorabies virus-induced expression and antiviral activity of type I or type III interferon depend on the type of infected epithelial cell. Frontiers in Immunology, 0, 13, .	2.2	1
582	A Comprehensive Review on the Efficacy of Several Pharmacologic Agents for the Treatment of COVID-19. Life, 2022, 12, 1758.	1.1	9
583	Leukocyte metabolism in obese type 2 diabetic individuals associated with COVID-19 severity. Frontiers in Microbiology, 0, 13, .	1.5	1
584	COVID-DSNet: A novel deep convolutional neural network for detection of coronavirus (SARS-CoV-2) cases from CT and Chest X-Ray images. Artificial Intelligence in Medicine, 2022, 134, 102427.	3.8	16
585	II. COVID-19: How Far Has the Pathogenesis been Elucidated?. The Journal of the Japanese Society of Internal Medicine, 2021, 110, 2355-2360.	0.0	0
586	A persistent neutrophil-associated immune signature characterizes post–COVID-19 pulmonary sequelae. Science Translational Medicine, 2022, 14, .	5.8	43
587	Gut microbiome and anti-viral immunity in COVID-19. Critical Reviews in Food Science and Nutrition, 0, , 1-16.	5.4	5
588	Immune-profiling of SARS-CoV-2 viremic patients reveals dysregulated innate immune responses. Frontiers in Immunology, 0, 13, .	2.2	1
589	Severe Coronavirus disease (COVID)-19: from pathogenesis to therapy. Shock, 0, Publish Ahead of Print,	1.0	0
590	SARS oVâ€2 modulation of RIGâ€lâ€MAVS signaling: Potential mechanisms of impairment on host antiviral immunity and therapeutic approaches. , 2022, 1, .		3
591	Immune phenotypes that are associated with subsequent COVID-19 severity inferred from post-recovery samples. Nature Communications, 2022, 13, .	5.8	12
592	Innate immunity, cytokine storm, and inflammatory cell death in COVID-19. Journal of Translational Medicine, 2022, 20, .	1.8	29
593	Molecular Function of cGAS-STING in SARS-CoV-2: A Novel Approach to COVID-19 Treatment. BioMed Research International, 2022, 2022, 1-10.	0.9	3
594	Integrative transcriptome analysis of SARS-CoV-2 human-infected cells combined with deep learning algorithms identifies two potential cellular targets for the treatment of coronavirus disease. Brazilian Journal of Microbiology, 0, , .	0.8	1
595	Longitudinal transcriptional analysis of peripheral blood leukocytes in COVID-19 convalescent donors. Journal of Translational Medicine, 2022, 20, .	1.8	6
596	Potential role of <scp>AIM2</scp> inflammasome in <scp>SARSâ€CoV</scp> â€2 infection. Scandinavian Journal of Immunology, 2023, 97, .	1.3	2
597	Guanylate-binding protein 1 restricts avian coronavirus infectious bronchitis virus-infected HD11 cells. Poultry Science, 2023, 102, 102398.	1.5	2

#	Article	IF	CITATIONS
598	Differential peripheral blood mononuclear cell reactivity against SARS-CoV-2 proteins in naÃ ⁻ ve and previously infected subjects following COVID-19 vaccination. Clinical Immunology Communications, 2022, 2, 172-176.	0.5	3
600	Cellular APOBEC3A deaminase drives mutations in the SARS-CoV-2 genome. Nucleic Acids Research, 2023, 51, 783-795.	6.5	21
602	Transiently heritable fates and quorum sensing drive early IFN-I response dynamics. ELife, 0, 12, .	2.8	5
603	The race to understand immunopathology in COVID-19: Perspectives on the impact of quantitative approaches to understand within-host interactions. ImmunoInformatics, 2023, 9, 100021.	1.2	1
604	Exploring the Role of Immune System and Inflammatory Cytokines in SARS-CoV-2 Induced Lung Disease: A Narrative Review. Biology, 2023, 12, 177.	1.3	11
605	Dynamic activity in cis-regulatory elements of leukocytes identifies transcription factor activation and stratifies COVID-19 severity in ICU patients. Cell Reports Medicine, 2023, 4, 100935.	3.3	2
606	Upper respiratory tract mucosal immunity for SARS-CoV-2 vaccines. Trends in Molecular Medicine, 2023, 29, 255-267.	3.5	17
607	Immunologic Interplay Between HIV/AIDS and COVID-19: Adding Fuel to the Flames?. Current HIV/AIDS Reports, 2023, 20, 51-75.	1.1	9
608	Efficacy of interferon alpha for the treatment of hospitalized patients with COVID-19: A meta-analysis. Frontiers in Immunology, 0, 14, .	2.2	10
610	Isolation and characterization of the mink interferon-epsilon gene and its antiviral activity. Frontiers in Veterinary Science, 0, 9, .	0.9	0
611	Cutaneous manifestations in elderly patients with confirmed coronavirus disease 2019 and the disease outcomes: A systematic review. Journal of Dermatology, 2023, 50, 679-691.	0.6	0
612	Type I and III interferons are good markers to monitor COVID-19 pathophysiology. Cytokine, 2023, 165, 156172.	1.4	3
614	Severe COVID-19 patients have impaired plasmacytoid dendritic cell-mediated control of SARS-CoV-2. Nature Communications, 2023, 14, .	5.8	16
616	SARSâ€CoVâ€2 NSP7 inhibits type I and III IFN production by targeting the RIGâ€I/MDA5, TRIF, and STING signaling pathways. Journal of Medical Virology, 2023, 95, .	2.5	14
617	ADP-Ribosylation in Antiviral Innate Immune Response. Pathogens, 2023, 12, 303.	1.2	2
618	Assessment of the Interferon-Lambda-3 Polymorphism in the Antibody Response to COVID-19 in Older Adults Seropositive for CMV. Vaccines, 2023, 11, 480.	2.1	0
619	Regulating the microenvironment with nanomaterials: Potential strategies to ameliorate COVID-19. Acta Pharmaceutica Sinica B, 2023, 13, 3638-3658.	5.7	2
620	Peginterferon lambda for the treatment of hospitalized patients with mild COVID-19: A pilot phase 2 randomized placebo-controlled trial. Frontiers in Medicine, 0, 10, .	1.2	0

#	Article	IF	CITATIONS
621	Structural-based design of HD-TAC7 PROteolysis TArgeting chimeras (PROTACs) candidate transformations to abrogate SARS-CoV-2 infection. Journal of Biomolecular Structure and Dynamics, 2023, 41, 14566-14581.	2.0	2
622	COVID-19 Biogenesis and Intracellular Transport. International Journal of Molecular Sciences, 2023, 24, 4523.	1.8	7
623	Treating COVID-19: Targeting the Host Response, Not the Virus. Life, 2023, 13, 712.	1.1	2
625	New insights for infection mechanism and potential targets of COVID-19: Three Chinese patent medicines and three Chinese medicine formulas as promising therapeutic approaches. Chinese Herbal Medicines, 2023, 15, 157-168.	1.2	3
626	Cellular and Molecular Mechanisms of Pathogenic and Protective Immune Responses to SARS-CoV-2 and Implications of COVID-19 Vaccines. Vaccines, 2023, 11, 615.	2.1	2
629	Immune and ionic mechanisms mediating the effect of dexamethasone in severe COVID-19. Frontiers in Immunology, 0, 14, .	2.2	4
630	Prospective Roles of Tumor Necrosis Factor-Alpha (TNF-α) in COVID-19: Prognosis, Therapeutic and Management. International Journal of Molecular Sciences, 2023, 24, 6142.	1.8	17
631	Adaptive immune response to BNT162b2 mRNA vaccine in immunocompromised adolescent patients. Frontiers in Immunology, 0, 14, .	2.2	1
632	Post-acute sequelae of COVID-19 is characterized by diminished peripheral CD8+β7 integrin+ T cells and anti-SARS-CoV-2 IgA response. Nature Communications, 2023, 14, .	5.8	12
633	The Role of Cytokines in Cholesterol Accumulation in Cells and Atherosclerosis Progression. International Journal of Molecular Sciences, 2023, 24, 6426.	1.8	5
634	Interferon-lambda: New functions on intestinal symptoms in COVID-19. World Journal of Gastroenterology, 0, 29, 1942-1954.	1.4	2
635	Interferons and Resistance Mechanisms in Tumors and Pathogen-Driven Diseases—Focus on the Major Histocompatibility Complex (MHC) Antigen Processing Pathway. International Journal of Molecular Sciences, 2023, 24, 6736.	1.8	1
636	Therapeutic Effectiveness of Interferon-α2b against COVID-19 with Community-Acquired Pneumonia: The Ukrainian Experience. International Journal of Molecular Sciences, 2023, 24, 6887.	1.8	4
637	Analysis of the Differential Expression and Antiviral Activity of Porcine Interferon- \hat{I}_{\pm} In Vitro. International Journal of Peptide Research and Therapeutics, 2023, 29, .	0.9	1
638	SARS-CoV-2 infection aggravates cigarette smoke-exposed cell damage in primary human airway epithelia. Virology Journal, 2023, 20, .	1.4	4
639	Cytoplasmic DNAs: Sources, sensing, and roles in the development of lung inflammatory diseases and cancer. Frontiers in Immunology, 0, 14, .	2.2	1
640	Potential of Interleukin (IL)-12 Group as Antivirals: Severe Viral Disease Prevention and Management. International Journal of Molecular Sciences, 2023, 24, 7350.	1.8	3
641	Immune correlates of protection for SARS-CoV-2, Ebola and Nipah virus infection. Frontiers in Immunology, 0, 14, .	2.2	7

#	Article	IF	CITATIONS
642	Plasmacytoid dendritic cells stimulated with Lactococcus lactis strain Plasma produce soluble factors to suppress SARS-CoV-2 replication. Biochemical and Biophysical Research Communications, 2023, 662, 26-30.	1.0	1
664	Cladribine Tablets Mode of Action, Learning from the Pandemic: A Narrative Review. Neurology and Therapy, 0, , .	1.4	1
703	The Potential of Bacteriophages in Treating Covid-19-Associated Secondary Infections. , 2023, , 547-579.		0
710	CHITV: an updated combination treatment regimen for COVID-19. , 2024, , 2743-2751.		0