Molecular mechanisms underlying the formation of star simulated food processing: A dynamic structural analys

Carbohydrate Polymers 244, 116464 DOI: 10.1016/j.carbpol.2020.116464

Citation Report

#	Article	IF	CITATIONS
1	Effect of pH on formation of starch complexes with lauric acid and \hat{l}^2 -lactoglobulin. LWT - Food Science and Technology, 2020, 132, 109915.	5.2	12
2	Effect of protein types on structure and digestibility of starch-protein-lipids complexes. LWT - Food Science and Technology, 2020, 134, 110175.	5.2	47
3	New insight into the interactions among starch, lipid and protein in model systems with different starches. Food Hydrocolloids, 2021, 112, 106323.	10.7	41
4	Effects of Debranching on the Formation of Maize Starch–Lauric Acidâ^îî²-Lactoglobulin Complexes. Journal of Agricultural and Food Chemistry, 2021, 69, 9086-9093.	5.2	10
5	Effect of Extrusion on the Crystalline Structure of Starch during RS5 Formation. Polysaccharides, 2021, 2, 187-201.	4.8	9
6	The impact of various exogenous type starch on the structural properties and dispersion stability of autoclaved lotus seed starch. International Journal of Biological Macromolecules, 2021, 175, 49-57.	7.5	13
7	Controlling starch digestibility and glycaemic response in maize-based foods. Journal of Cereal Science, 2021, 99, 103222.	3.7	12
8	Characteristics of A/B-type starch-wheat germ oil complexes and their effects on noodle texture. LWT - Food Science and Technology, 2021, 144, 111251.	5.2	9
9	Starch-lipid interaction alters the molecular structure and ultimate starch bioavailability: A comprehensive review. International Journal of Biological Macromolecules, 2021, 182, 626-638.	7.5	44
10	Effects of proteins on the structure, physicochemical properties, and in vitro digestibility of wheat starch-lauric acid complexes under various cooking methods. International Journal of Biological Macromolecules, 2021, 182, 1112-1119.	7.5	11
11	Combination treatment of bamboo shoot dietary fiber and dynamic high-pressure microfluidization on rice starch: Influence on physicochemical, structural, and in vitro digestion properties. Food Chemistry, 2021, 350, 128724.	8.2	35
12	Modifying the internal structures of steamed rice cakes by emulsifiers for promoted textural and sensory properties. Food Chemistry, 2021, 354, 129469.	8.2	14
13	Functional and nutritional properties of roasted semolina porridge with ghee and monoglyceride. Food Bioscience, 2021, 42, 101156.	4.4	1
14	Carboxy groups in fatty acids facilitate the formation and thermal stability of starchâ€fatty acids complexes. International Journal of Food Science and Technology, 2021, 56, 6667-6673.	2.7	2
15	The influence of acid hydrolysis on physicochemical properties of starch-oleic acid mixtures and generation of radicals. Food Hydrocolloids, 2021, 118, 106780.	10.7	4
16	New insight into starch retrogradation: The effect of short-range molecular order in gelatinized starch. Food Hydrocolloids, 2021, 120, 106921.	10.7	51
17	Effect of protein-fatty acid interactions on the formation of starch-lipid-protein complexes. Food Chemistry, 2021, 364, 130390.	8.2	23
18	Effect of a novel shell material—Starch-protein-fatty acid ternary nanoparticles on loading levels and in vitro release of curcumin. International Journal of Biological Macromolecules, 2021, 192, 471-478	7.5	6

CITATION REPORT

#	Article	IF	CITATIONS
19	Octenyl Succinate Modification of Starch Enhances the Formation of Starch–Lipid Complexes. Journal of Agricultural and Food Chemistry, 2021, 69, 14938-14950.	5.2	18
20	An insight into the physicochemical characterisation of starch-lipid complex and its importance in food industry. Food Reviews International, 2023, 39, 4198-4212.	8.4	4
21	Changes of starch during thermal processing of foods: Current status and future directions. Trends in Food Science and Technology, 2022, 119, 320-337.	15.1	41
22	Binary Interactions and Starch Bioavailability: Critical in Limiting Glycemic Response. Biochemistry, 0, ,	1.2	0
23	Tailormade Wheat Arabinoxylan Reveals the Role of Substitution in Regulating Gelatinization and Retrogradation Behavior of Wheat Starch. Journal of Agricultural and Food Chemistry, 2022, 70, 1659-1669.	5.2	6
24	Understanding the structure, digestibility, texture and flavor attributes of rice noodles complexation with xanthan and dodecyl gallate. Food Hydrocolloids, 2022, 127, 107538.	10.7	19
25	High-amylose starch: Structure, functionality and applications. Critical Reviews in Food Science and Nutrition, 2023, 63, 8568-8590.	10.3	12
26	Production of buckwheat starch-myristic acid complexes and effect of reaction conditions on the physicochemical properties, X-ray pattern and FT-IR spectra. International Journal of Biological Macromolecules, 2022, 207, 978-989.	7.5	7
27	Combination Mechanism and Structural Properties of Complexes between Lipid and Small Granule Starch Isolated from <i>Agriophyllum squarrosum</i> (L.) Moq. Seeds. Starch/Staerke, 0, , 2100215.	2.1	0
28	Effect of oil modification on the multiscale structure and gelatinization properties of crosslinked starch and their relationship with the texture and microstructure of surimi/starch composite gels. Food Chemistry, 2022, 391, 133236.	8.2	13
29	Construction of hydrophobic lauric acid film on aluminum alloy and its corrosion resistance mechanism. Surface and Interface Analysis, 0, , .	1.8	4
30	Starch-lauric acid complex-stabilised Pickering emulsion gels enhance the thermo-oxidative resistance of flaxseed oil. Carbohydrate Polymers, 2022, 292, 119715.	10.2	21
31	Impact of starch–lipid complexes on oil absorption of starch and its mechanism. Journal of the Science of Food and Agriculture, 2023, 103, 83-91.	3.5	1
32	Effect of Debranching and Differential Ethanol Precipitation on the Formation and Fermentation Properties of Maize Starch–Lipid Complexes. Journal of Agricultural and Food Chemistry, 2022, 70, 9132-9142.	5.2	11
33	Changes and Formation of Residual Starch in <i>Zaopei</i> during the Fermentation Process of Strongâ€Flavor <i>Baijiu</i> . Starch/Staerke, 2022, 74, .	2.1	1
34	Effect of V-type crystallinity and starch particle structure on the oil loading capacity and anti-oxidation. Carbohydrate Polymers, 2022, 297, 120015.	10.2	11
35	Mechanisms Underlying the Formation of Amylose– Lauric Acidâ^îî²-Lactoglobulin Complexes: Experimental and Molecular Dynamics Studies. Journal of Agricultural and Food Chemistry, 2022, 70, 10635-10643.	5.2	16
36	Complexation temperature regulation of the ordered structure of "empty―V-type starch. Carbohydrate Polymers, 2022, 298, 120086.	10.2	19

	Сітатіс	CITATION REPORT	
#	Article	IF	Citations
37	Structure, physicochemical properties and in vitro digestibility of extruded starch-lauric acid complexes with different amylose contents. Food Hydrocolloids, 2023, 136, 108239.	10.7	22
38	Influence of ultrasonic-microwave power on the structure and in vitro digestibility of lotus seed starch-glycerin monostearin complexes after retrogradation. International Journal of Biological Macromolecules, 2023, 228, 59-67.	7.5	7
39	Effects of NaCl and sucrose on the structural and functional properties of debranched quinoa starch-oleic acid complexes under baking. International Journal of Biological Macromolecules, 2023, 226, 1588-1596.	7.5	1
40	BUCKWHEAT STARCH-MYRISTIC ACID COMPLEX FORMATION: EFFECT OF REACTION TEMPERATURE AND MYRISTIC ACID CONCENTRATION ON DIGESTIBILITY PROPERTIES. Gıda, 0, , 1169-1180.	0.4	0
41	Effects of microwave and conventional heating on physicochemical, digestive, and structural properties of debranched quinoa starchâ€oleic acid complexes with different water addition. Journal of the Science of Food and Agriculture, 2023, 103, 2146-2154.	3.5	3
42	Dragon Fruit Peel Extract Enriched-Biocomposite Wrapping Film: Characterization and Application on Coconut Milk Candy. Polymers, 2023, 15, 404.	4.5	3
43	Different starch varieties influence the complexing state and digestibility of the resulting starch-lipid complexes. Food Hydrocolloids, 2023, 141, 108679.	10.7	12
44	More simple, efficient and accurate food research promoted by intermolecular interaction approaches: A review. Food Chemistry, 2023, 416, 135726.	8.2	7
45	Encapsulation of ascorbyl palmitate in maize granular starch through an irradiation–hydrothermal method. Radiation Physics and Chemistry, 2023, 208, 110939.	2.8	0
46	Development of phytoglycogen-derived core–shell–corona nanoparticles complexed with conjugated linoleic acid. Food and Function, 2023, 14, 6376-6384.	4.6	1
47	Preparation of starchâ€lipid complexes under wet grinding and its mechanism analysis. Cereal Chemistry, 0, , .	2.2	0
48	Effect of amylose content and crystal type on the structure and digestibility of starch-fatty acid complex nanoparticle. Food Structure, 2023, 37, 100336.	4.5	1
49	Impacts of fatty acid type on binding state, fine structure, and in vitro digestion of debranched starch-fatty acid complexes with different debranching degrees. Carbohydrate Polymers, 2023, 318, 121107.	10.2	2
50	Polyphenols from pigmented quinoa as potential modulators of maize starch digestion: Role of the starch-polyphenol inclusion and non-inclusion complexes. Food Hydrocolloids, 2023, 144, 108975.	10.7	6
51	Multiscale structures, physicochemical properties, and in vitro digestibility of oat starch complexes co-gelatinized with jicama non-starch polysaccharides. Food Hydrocolloids, 2023, 144, 108983.	10.7	6
52	Impact of lignin on the starch accumulation, composition, and pasting properties of cassava. LWT - Food Science and Technology, 2023, 184, 115073.	5.2	3
53	The Effect of Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment on the Nutritional and Physicochemical Characteristics of Various Legumes. Foods, 2023, 12, 3260.	4.3	0
54	A review of green methods used in starch–polyphenol interactions: physicochemical and digestion aspects. Food and Function, 2023, 14, 8071-8100.	4.6	2

#	Article	IF	CITATIONS
56	Amylose complexation with diacylglycerols involves multiple intermolecular interaction mechanisms. Food Hydrocolloids, 2024, 146, 109251.	10.7	1
57	Effects of different sources of proteins on the formation of starch-lipid-protein complexes. International Journal of Biological Macromolecules, 2023, 253, 126853.	7.5	2
58	Crystallinity determination of amylose-fatty acid complex in gelatinized rice starch-fatty acid mixtures using Terahertz spectroscopy. Food Hydrocolloids, 2024, 146, 109279.	10.7	4
59	Effects of oil and heating on the physicochemical and microstructural properties of gluten-starch dough. Food Chemistry, 2024, 436, 137571.	8.2	2
60	New insights into the interaction between bamboo shoot polysaccharides and lotus root starch during gelatinization, retrogradation, and digestion of starch. International Journal of Biological Macromolecules, 2024, 254, 127877.	7.5	0
61	Structure and in vitro digestibility of amylose–lipid complexes formed by an extrusion-debranching-complexing strategy. Food Chemistry, 2024, 437, 137950.	8.2	1
62	Revisiting the Formation of Starch–Monoglyceride–Protein Complexes: Effects of Octenyl Succinic Anhydride Modification. Journal of Agricultural and Food Chemistry, 2023, 71, 19033-19044.	5.2	0
63	Stabilization and release of thymol in pre-formed V-type starch: A comparative study with traditional method. Carbohydrate Polymers, 2024, 328, 121712.	10.2	3
64	A comprehensive review on instant rice: Preparation methodology, characterization, and quality attributes. , 2024, 4, 100581.		0
65	Effect of milling and defatting treatment on texture and digestion properties of oat rice. Food Chemistry: X, 2024, 21, 101135.	4.3	0
66	The influence of short-range molecular order in gelatinized starch on the formation of starch-lauric acid complexes. International Journal of Biological Macromolecules, 2024, 260, 129526.	7.5	0
67	Effects of heat moisture treatment on the structure and digestibility of high amylose starch-lauric acid complexes. Food Hydrocolloids, 2024, 151, 109803.	10.7	0
68	Incorporating edible oil during cooking tailors the microstructure and quality features of brown rice following heat moisture treatment. Food Research International, 2024, 180, 114069.	6.2	0
69	Effect of high-pressure homogenization on maize starch-stearic acid and maize starch-stearic acid-whey protein complexes. Frontiers in Sustainable Food Systems, 0, 8, .	3.9	0
70	Effects of Starchâ€Lipid Complexes on Quality and Starch Digestibility of Wheat Noodles. Starch/Staerke, 0, , .	2.1	0
71	Interaction between amylose, fatty acid, and βâ€lactoglobulin to study multiple biomacromolecules selfâ€assembly and application. Aggregate, 0, , .	9.9	0
72	Effects of hydrocolloids on mechanical properties, viscoelastic and microstructural properties of starch-based modeling clay. International Journal of Biological Macromolecules, 2024, 266, 130963.	7.5	0