Shortlisting SARS oVâ€2 Peptides for Targeted Stud Acquisition Tandem Mass Spectrometry Data

Proteomics

20, e2000107

DOI: 10.1002/pmic.202000107

Citation Report

#	Article	IF	Citations
1	Detection, Mapping, and Proteotyping of SARS-CoV-2 Coronavirus with High Resolution Mass Spectrometry. ACS Infectious Diseases, 2020, 6, 3269-3276.	1.8	34
2	A comprehensive overview of proteomics approach for COVID 19: new perspectives in target therapy strategies. Journal of Proteins and Proteomics, 2020, 11, 223-232.	1.0	14
3	Proteotyping SARS-CoV-2 Virus from Nasopharyngeal Swabs: A Proof-of-Concept Focused on a 3 Min Mass Spectrometry Window. Journal of Proteome Research, 2020, 19, 4407-4416.	1.8	90
4	Perspective on Proteomics for Virus Detection in Clinical Samples. Journal of Proteome Research, 2020, 19, 4380-4388.	1.8	30
5	Development of a Parallel Reaction Monitoring Mass Spectrometry Assay for the Detection of SARS-CoV-2 Spike Glycoprotein and Nucleoprotein. Analytical Chemistry, 2020, 92, 13813-13821.	3.2	47
6	The proteomics contribution to the counter-bioterrorism toolbox in the post-COVID-19 era. Expert Review of Proteomics, 2020, 17, 507-511.	1.3	5
7	A rapid and sensitive method to detect SARS-CoV-2 virus using targeted-mass spectrometry. Journal of Proteins and Proteomics, 2020, 11, 159-165.	1.0	45
8	Shortlisting SARSâ€CoVâ€2 Peptides for Targeted Studies from Experimental Dataâ€Dependent Acquisition Tandem Mass Spectrometry Data. Proteomics, 2020, 20, e2000107.	1.3	64
9	Shotgun proteomics analysis of SARS-CoV-2-infected cells and how it can optimize whole viral particle antigen production for vaccines. Emerging Microbes and Infections, 2020, 9, 1712-1721.	3.0	62
10	SARSâ€CoVâ€2â€mediated immune system activation and potential application in immunotherapy. Medicinal Research Reviews, 2021, 41, 1167-1194.	5.0	37
11	Proteomics in the COVIDâ€19 Battlefield: First Semester Checkâ€Up. Proteomics, 2021, 21, 2000198.	1.3	18
12	Specific and Rapid SARS-CoV-2 Identification Based on LC-MS/MS Analysis. ACS Omega, 2021, 6, 3525-3534.	1.6	16
13	A concise discussion on the potential spectral tools for the rapid COVID-19 detection. Results in Chemistry, 2021, 3, 100138.	0.9	3
14	An overview of proteomic methods for the study of â€~cytokine storms'. Expert Review of Proteomics, 2021, 18, 83-91.	1.3	3
16	Open Science Resources for the Mass Spectrometry-Based Analysis of SARS-CoV-2. Journal of Proteome Research, 2021, 20, 1464-1475.	1.8	11
17	A SARS-CoV-2 Peptide Spectral Library Enables Rapid, Sensitive Identification of Virus Peptides in Complex Biological Samples. Journal of Proteome Research, 2021, 20, 2187-2194.	1.8	5
18	Application of spectral library prediction for parallel reaction monitoring of viral peptides. Proteomics, 2021, 21, 2000226.	1.3	3
19	Resourcing, annotating, and analysing synthetic peptides of SARSâ€CoVâ€2 for immunopeptidomics and other immunological studies. Proteomics, 2021, 21, e2100036.	1.3	7

#	ARTICLE	IF	CITATIONS
20	Heterogeneity of SARS-CoV-2 virus produced in cell culture revealed by shotgun proteomics and supported by genome sequencing. Analytical and Bioanalytical Chemistry, 2021, 413, 7265-7275.	1.9	7
22	Mass spectrometryâ€based proteomic platforms for better understanding of SARSâ€CoVâ€2 induced pathogenesis and potential diagnostic approaches. Proteomics, 2021, 21, e2000279.	1.3	19
23	A rigorous evaluation of optimal peptide targets for MS-based clinical diagnostics of Coronavirus Disease 2019 (COVID-19). Clinical Proteomics, 2021, 18, 15.	1.1	7
24	Cov-MS: A Community-Based Template Assay for Mass-Spectrometry-Based Protein Detection in SARS-CoV-2 Patients. Jacs Au, 2021, 1, 750-765.	3.6	29
26	Unleashing immuno-mass spectrometry superpowers to detect SARS-CoV-2. EBioMedicine, 2021, 69, 103480.	2.7	2
27	Toxin-like peptides in plasma,ÂurineÂand faecalÂsamples from COVID-19 patients. F1000Research, 2021, 10, 550.	0.8	16
28	Metabolomics in the Diagnosis and Prognosis of COVID-19. Frontiers in Genetics, 2021, 12, 721556.	1.1	54
29	A rapid and reliable liquid chromatography/mass spectrometry method for SARS-CoV-2 analysis from gargle solutions and saliva. Analytical and Bioanalytical Chemistry, 2021, 413, 6503-6511.	1.9	14
30	Mass spectrometry-based proteomics in basic and translational research of SARS-CoV-2 coronavirus and its emerging mutants. Clinical Proteomics, 2021, 18, 19.	1.1	12
31	Identification of Unique Peptides for SARS-CoV-2 Diagnostics and Vaccine Development by an In Silico Proteomics Approach. Frontiers in Immunology, 2021, 12, 725240.	2.2	12
32	Mass spectrometry analytical responses to the SARS-CoV2 coronavirus in review. TrAC - Trends in Analytical Chemistry, 2021, 142, 116328.	5.8	31
33	Progress in understanding COVID-19: insights from the omics approach. Critical Reviews in Clinical Laboratory Sciences, 2021, 58, 242-252.	2.7	13
38	Toxin-like peptides in plasma,ÂurineÂand faecalÂsamples from COVID-19 patients. F1000Research, 0, 10, 550.	0.8	3
39	Rapid and sensitive detection of SARS-CoV-2 infection using quantitative peptide enrichment LC-MS analysis. ELife, 2021, 10, .	2.8	20
40	Human bronchial-pulmonary proteomics in coronavirus disease 2019 (COVID-19) pandemic: applications and implications. Expert Review of Proteomics, 2021, 18, 925-938.	1.3	2
41	Coupling immuno-magnetic capture with LC–MS/MS(MRM) as a sensitive, reliable, and specific assay for SARS-CoV-2 identification from clinical samples. Analytical and Bioanalytical Chemistry, 2022, 414, 1949-1962.	1.9	8
43	Review of Liquid Chromatography-Mass Spectrometry-Based Proteomic Analyses of Body Fluids to Diagnose Infectious Diseases. International Journal of Molecular Sciences, 2022, 23, 2187.	1.8	6
44	Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry Analysis for the Direct Detection of SARS-CoV-2 in Nasopharyngeal Swabs. Analytical Chemistry, 2022, 94, 4218-4226.	3.2	10

#	Article	IF	CITATIONS
45	Unheeded SARS-CoV-2 proteins? A deep look into negative-sense RNA. Briefings in Bioinformatics, 2022, 23, .	3.2	15
46	SARS-CoV-2 spike antigen quantification by targeted mass spectrometry of a virus-based vaccine. Journal of Virological Methods, 2022, 303, 114498.	1.0	2
48	Mass Spectrometry Approaches for SARS-CoV-2 Detection: Harnessing for Application in Food and Environmental Samples. Viruses, 2022, 14, 872.	1.5	3
49	Profiling SARS-CoV-2 Infection by High-Throughput Shotgun Proteomics. Methods in Molecular Biology, 2022, 2452, 167-182.	0.4	0
50	A fast and sensitive absolute quantification assay for the detection of SARS-CoV-2 peptides using parallel reaction monitoring mass spectrometry. Journal of Proteomics, 2022, 265, 104664.	1.2	1
51	Mass spectrometry detection of monkeypox virus: Comprehensive coverage for ranking the most responsive peptide markers. Proteomics, 2023, 23, .	1.3	9
52	Simultaneous monitoring of eight human respiratory viruses including SARS-CoV-2 using liquid chromatography-tandem mass spectrometry. Scientific Reports, 2022, 12, .	1.6	1
53	Advances in rapid detection of SARS-CoV-2 by mass spectrometry. TrAC - Trends in Analytical Chemistry, 2022, 157, 116759.	5.8	5
54	Proteomicsâ€based mass spectrometry profiling of SARSâ€CoVâ€2 infection from human nasopharyngeal samples. Mass Spectrometry Reviews, 2024, 43, 193-229.	2.8	2
55	Evaluation of Variant-Specific Peptides for Detection of SARS-CoV-2 Variants of Concern. Journal of Proteome Research, 2022, 21, 2443-2452.	1.8	3
56	Proteomic insights into SARS-CoV-2 infection mechanisms, diagnosis, therapies and prognostic monitoring methods. Frontiers in Immunology, $0,13,.$	2.2	6
57	Cov ² MS: An Automated and Quantitative Matrix-Independent Assay for Mass Spectrometric Measurement of SARS-CoV-2 Nucleocapsid Protein. Analytical Chemistry, 2022, 94, 17379-17387.	3.2	2
58	Proteomic understanding of SARS-CoV-2 infection and COVID-19: Biological, diagnostic, and therapeutic perspectives., 2023,, 61-85.		0
59	Mechanisms, Techniques and Devices of Airborne Virus Detection: A Review. International Journal of Environmental Research and Public Health, 2023, 20, 5471.	1.2	2
64	Applications of Mass Spectrometry in the Characterization, Screening, Diagnosis, and Prognosis of COVID-19. Advances in Experimental Medicine and Biology, 2024, , 33-61.	0.8	0