Basic Mechanisms of Diabetic Heart Disease

Circulation Research 126, 1501-1525

DOI: 10.1161/circresaha.120.315913

Citation Report

#	Article	IF	CITATIONS
1	Myocardial Energy Metabolism in Non-ischemic Cardiomyopathy. Frontiers in Physiology, 2020, 11, 570421.	1.3	20
2	Glucose transporters in cardiovascular system in health and disease. Pflugers Archiv European Journal of Physiology, 2020, 472, 1385-1399.	1.3	35
3	Cardiovascular Therapeutic Potential of the Redox Siblings, Nitric Oxide (NO•) and Nitroxyl (HNO), in the Setting of Reactive Oxygen Species Dysregulation. Handbook of Experimental Pharmacology, 2020, 264, 311-337.	0.9	7
4	The Impact of Antidiabetic Therapies on Diastolic Dysfunction and Diabetic Cardiomyopathy. Frontiers in Physiology, 2020, 11, 603247.	1.3	11
5	Cellular Protein Quality Control in Diabetic Cardiomyopathy: From Bench to Bedside. Frontiers in Cardiovascular Medicine, 2020, 7, 585309.	1.1	11
6	Basic Mechanisms of Diabetic Heart Disease. Circulation Research, 2020, 126, 1501-1525.	2.0	279
7	Introduction to the Obesity, Metabolic Syndrome, and CVD Compendium. Circulation Research, 2020, 126, 1475-1476.	2.0	26
8	Targeting longevity genes in the battle against diabetic heart disease – is there a gene delivery fountain of youth?. European Journal of Heart Failure, 2020, 22, 1582-1585.	2.9	0
9	The Cardiac Lipidome in Models of Cardiovascular Disease. Metabolites, 2020, 10, 254.	1.3	21
10	Left atrial function in diabetes: does it help?. Acta Diabetologica, 2021, 58, 131-137.	1.2	19
11	DNMT1 deregulation of SOCS3 axis drivesÂcardiac fibroblastÂactivation in diabetic cardiac fibrosis. Journal of Cellular Physiology, 2021, 236, 3481-3494.	2.0	15
12	Role of O-linked N-acetylglucosamine (O-GlcNAc) modification of proteins in diabetic cardiovascular complications. Current Opinion in Pharmacology, 2021, 57, 1-12.	1.7	30
13	KLF5 Is Induced by FOXO1 and Causes Oxidative Stress and Diabetic Cardiomyopathy. Circulation Research, 2021, 128, 335-357.	2.0	57
14	Interleukinâ€33 alleviates diabetic cardiomyopathy through regulation of endoplasmic reticulum stress and autophagy via insulinâ€like growth factorâ€binding protein 3. Journal of Cellular Physiology, 2021, 236, 4403-4419.	2.0	29
15	Diabetes Attenuates the Contribution of Endogenous Nitric Oxide but Not Nitroxyl to Endothelium Dependent Relaxation of Rat Carotid Arteries. Frontiers in Pharmacology, 2020, 11, 585740.	1.6	7
16	Fisetin protects against streptozotocin-induced diabetic cardiomyopathy in rats by suppressing fatty acid oxidation and inhibiting protein kinase R. Saudi Pharmaceutical Journal, 2021, 29, 27-42.	1.2	19
17	Identification and analysis of circulating long non-coding RNAs with high significance in diabetic cardiomyopathy. Scientific Reports, 2021, 11, 2571.	1.6	10
18	Heart Failure in Diabetes. Circulation Research, 2021, 128, 358-359.	2.0	0

#	Article	IF	CITATIONS
19	Fine-tuning the cardiac O-GlcNAcylation regulatory enzymes governs the functional and structural phenotype of the diabetic heart. Cardiovascular Research, 2022, 118, 212-225.	1.8	47
20	Diabetic phenotype and prognosis of patients with heart failure and preserved ejection fraction in a real life cohort. Cardiovascular Diabetology, 2021, 20, 48.	2.7	24
21	Concurrent diabetes and heart failure: interplay and novel therapeutic approaches. Cardiovascular Research, 2022, 118, 686-715.	1.8	24
22	FoxO1 inhibition alleviates type 2 diabetes-related diastolic dysfunction by increasing myocardial pyruvate dehydrogenase activity. Cell Reports, 2021, 35, 108935.	2.9	26
23	Cardiovascular outcomeÂtrials in Type 2 diabetes: food for thought. Future Cardiology, 2021, 17, 407-410.	0.5	1
24	Cardiac Energy Metabolism in Heart Failure. Circulation Research, 2021, 128, 1487-1513.	2.0	433
25	Nanomedicine for the treatment of diabetes-associated cardiovascular diseases and fibrosis. Advanced Drug Delivery Reviews, 2021, 172, 234-248.	6.6	12
27	Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radical Biology and Medicine, 2021, 169, 317-342.	1.3	73
28	Galangin attenuates diabetic cardiomyopathy through modulating oxidative stress, inflammation and apoptosis in rats. Biomedicine and Pharmacotherapy, 2021, 138, 111410.	2.5	51
29	Adeno-associated viral (AAV) vector-mediated therapeutics for diabetic cardiomyopathy – current and future perspectives. Clinical Science, 2021, 135, 1369-1387.	1.8	8
30	Diastolic dysfunction in a pre-clinical model of diabetes is associated with changes in the cardiac non-myocyte cellular composition. Cardiovascular Diabetology, 2021, 20, 116.	2.7	13
31	GDF11 Alleviates Pathological Myocardial Remodeling in Diabetic Cardiomyopathy Through SIRT1-Dependent Regulation of Oxidative Stress and Apoptosis. Frontiers in Cell and Developmental Biology, 2021, 9, 686848.	1.8	17
32	Fructose Metabolism and Cardiac Metabolic Stress. Frontiers in Pharmacology, 2021, 12, 695486.	1.6	8
33	Sex dependent differences in oxidative stress in the heart of rats with type 2 diabetes. Ukrainian Biochemical Journal, 2021, 93, 75-83.	0.1	2
34	Quercetin improves myocardial redox status in rats with type 2 diabetes. Endocrine Regulations, 2021, 55, 142-152.	0.5	9
35	Lipoprotein Lipase and Its Delivery of Fatty Acids to the Heart. Biomolecules, 2021, 11, 1016.	1.8	16
36	The critical roles of histone deacetylase 3 in the pathogenesis of solid organ injury. Cell Death and Disease, 2021, 12, 734.	2.7	19
37	Effects of Sodiumâ€Glucose Linked Transporter 2 Inhibition With Ertugliflozin on Mitochondrial Function, Energetics, and Metabolic Gene Expression in the Presence and Absence of Diabetes Mellitus in Mice. Journal of the American Heart Association, 2021, 10, e019995.	1.6	39

#	Article	IF	CITATIONS
38	Changes in N6-Methyladenosine Modification Modulate Diabetic Cardiomyopathy by Reducing Myocardial Fibrosis and Myocyte Hypertrophy. Frontiers in Cell and Developmental Biology, 2021, 9, 702579.	1.8	26
39	Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy. Acta Pharmaceutica Sinica B, 2022, 12, 1-17.	5.7	39
40	Diabetes Mellitus and Heart Failure. Journal of Clinical Medicine, 2021, 10, 3682.	1.0	27
41	NAD ⁺ Redox Imbalance in the Heart Exacerbates Diabetic Cardiomyopathy. Circulation: Heart Failure, 2021, 14, e008170.	1.6	33
42	Impact of <scp>BMI</scp> on Left Atrial Strain and Abnormal Atrioventricular Interaction in Patients With Type 2 Diabetes Mellitus: A Cardiac Magnetic Resonance Feature Tracking Study. Journal of Magnetic Resonance Imaging, 2022, 55, 1461-1475.	1.9	8
43	Autotaxin-LPA-LPP3 Axis in Energy Metabolism and Metabolic Disease. International Journal of Molecular Sciences, 2021, 22, 9575.	1.8	10
44	Urolithin A prevents streptozotocin-induced diabetic cardiomyopathy in rats by activating SIRT1. Saudi Journal of Biological Sciences, 2022, 29, 1210-1220.	1.8	13
45	S-Propargyl-Cysteine Attenuates Diabetic Cardiomyopathy in db/db Mice Through Activation of Cardiac Insulin Receptor Signaling. Frontiers in Cardiovascular Medicine, 2021, 8, 737191.	1.1	3
46	Characterisation of the Myocardial Mitochondria Structural and Functional Phenotype in a Murine Model of Diabetic Cardiomyopathy. Frontiers in Physiology, 2021, 12, 672252.	1.3	6
47	Phosphoproteomics analysis of diabetic cardiomyopathy in agingâ€accelerated mice and effects of Dâ€pinitol. Proteomics - Clinical Applications, 2022, 16, e2100019.	0.8	1
48	Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities. Advanced Drug Delivery Reviews, 2021, 176, 113904.	6.6	49
49	Cardiologist's approach to the diabetic patient: No further delay for a paradigm shift. International Journal of Cardiology, 2021, 338, 248-257.	0.8	1
51	Insulin signaling alters antioxidant capacity in the diabetic heart. Redox Biology, 2021, 47, 102140.	3.9	11
52	The relationship between diabetes mellitus and heart rhythm disorders: a focus on common pathophysiological mechanisms and modern treatment strategies. Shidnoevropejskij Zurnal Vnutrisnoi Ta Simejnoi Medicini, 2021, 2021, 22-27.	0.0	1
53	Reprint of: Role of O-linked N-acetylglucosamine (O-GlcNAc) modification of proteins in diabetic cardiovascular complications. Current Opinion in Pharmacology, 2020, 54, 209-220.	1.7	6
54	Bone Morphogenetic Protein 7 Gene Delivery Improves Cardiac Structure and Function in a Murine Model of Diabetic Cardiomyopathy. Frontiers in Pharmacology, 2021, 12, 719290.	1.6	8
55	Impact of Incretin-Based Therapies on Adipokines and Adiponectin. Journal of Diabetes Research, 2021, 2021, 1-9.	1.0	7
56	The adiponectin signalling pathway - A therapeutic target for the cardiac complications of type 2 diabetes?. , 2022, 232, 108008.		19

#	Article	IF	CITATIONS
57	Inhibition of the long nonâ€coding RNA ZFAS1 attenuates ferroptosis by sponging miRâ€150â€5p and activates CCND2 against diabetic cardiomyopathy. Journal of Cellular and Molecular Medicine, 2021, 25, 9995-10007.	1.6	54
58	CORRELATIONS OF CARDIOVASCULAR INDICATORS IN INSULIN-DEPENDENT DIABETES IN CHILDREN. Eastern Ukrainian Medical Journal, 2020, 8, 448-457.	0.0	0
60	Krüppel-like factor (KLF)5: An emerging foe of cardiovascular health. Journal of Molecular and Cellular Cardiology, 2022, 163, 56-66.	0.9	17
61	Construction of 3D hierarchical tissue platforms for modeling diabetes. APL Bioengineering, 2021, 5, 041506.	3.3	3
62	Activation of Silent Information Regulator 6 Signaling Attenuates Myocardial Fibrosis by Reducing TGFβ1-Smad2/3 Signaling in a Type 2 Diabetic Animal Model. Cardiology Discovery, 2022, 2, 6-12.	0.6	1
63	Activated Protein C Ameliorates Diabetic Cardiomyopathy via Modulating OTUB1/YB-1/MEF2B Axis. Frontiers in Cardiovascular Medicine, 2021, 8, 758158.	1.1	8
64	N-Acetyl Cysteine, Selenium, and Ascorbic Acid Rescue Diabetic Cardiac Hypertrophy via Mitochondrial-Associated Redox Regulators. Molecules, 2021, 26, 7285.	1.7	9
65	Multi-omics of a pre-clinical model of diabetic cardiomyopathy reveals increased fatty acid supply impacts mitochondrial metabolic selectivity. Journal of Molecular and Cellular Cardiology, 2022, 164, 92-109.	0.9	4
66	The Contribution of Cardiac Fatty Acid Oxidation to Diabetic Cardiomyopathy Severity. Cells, 2021, 10, 3259.	1.8	20
67	Diabetes modulation of the myocardial infarction-acute kidney injury axis. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H394-H405.	1.5	1
68	Sudden Cardiac Death in Diabetes and Obesity: Mechanisms and Therapeutic Strategies. Canadian Journal of Cardiology, 2022, 38, 418-426.	0.8	18
69	Krill Oil Inhibits NLRP3 Inflammasome Activation in the Prevention of the Pathological Injuries of Diabetic Cardiomyopathy. Nutrients, 2022, 14, 368.	1.7	13
70	Oxidative Stress Signaling Mediated Pathogenesis of Diabetic Cardiomyopathy. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-8.	1.9	27
71	Protective role of hydrogen sulfide against diabetic cardiomyopathy via alleviating necroptosis. Free Radical Biology and Medicine, 2022, 181, 29-42.	1.3	22
72	Glycemic Control and the Heart: The Tale of Diabetic Cardiomyopathy Continues. Biomolecules, 2022, 12, 272.	1.8	11
73	Diabetes mellitus and heart failure: an update on pathophysiology and therapy. Minerva Cardiology and Angiology, 2022, , .	0.4	5
74	Non-Invasive Local Acoustic Therapy Ameliorates Diabetic Heart Fibrosis by Suppressing ACE-Mediated Oxidative Stress and Inflammation in Cardiac Fibroblasts. Cardiovascular Drugs and Therapy, 2022, 36, 413-424.	1.3	5
75	Noble Gases Therapy in Cardiocerebrovascular Diseases: The Novel Stars?. Frontiers in Cardiovascular Medicine, 2022, 9, 802783.	1.1	7

#	Article	IF	CITATIONS
76	Current challenges in the treatment of cardiac fibrosis: Recent insights into the sexâ€specific differences of glucoseâ€lowering therapies on the diabetic heart: IUPHAR Review 33. British Journal of Pharmacology, 2023, 180, 2916-2933.	2.7	6
77	MOTS-c and Exercise Restore Cardiac Function by Activating of NRG1-ErbB Signaling in Diabetic Rats. Frontiers in Endocrinology, 2022, 13, 812032.	1.5	15
78	Role of CCR2-Positive Macrophages in Pathological Ventricular Remodelling. Biomedicines, 2022, 10, 661.	1.4	6
79	THE IMPACT OF SUCCINATE DERIVATIVE PHENSUCCINAL ON MITOCHONDRIAL FUNCTION AND REDOX STATUS IN THE HEART OF RATS WITH TYPE 2 DIABETES. Problemi Endokrinnoi Patologii, 2022, 79, 78-84.	0.0	0
80	Pathophysiology and Treatment of Diabetic Cardiomyopathy and Heart Failure in Patients with Diabetes Mellitus. International Journal of Molecular Sciences, 2022, 23, 3587.	1.8	48
81	Amelioration of endothelial dysfunction by sodium glucose coâ€transporter 2 inhibitors: pieces of the puzzle explaining their cardiovascular protection. British Journal of Pharmacology, 2022, 179, 4047-4062.	2.7	16
82	Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy. Cardiovascular Research, 2023, 119, 668-690.	1.8	11
83	FSTL1-USP10-Notch1 Signaling Axis Protects Against Cardiac Dysfunction Through Inhibition of Myocardial Fibrosis in Diabetic Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 757068.	1.8	13
84	Novel Insights Into the Pathogenesis of Diabetic Cardiomyopathy and Pharmacological Strategies. Frontiers in Cardiovascular Medicine, 2021, 8, 707336.	1.1	6
85	The Impact of Incretin-Based Medications on Lipid Metabolism. Journal of Diabetes Research, 2021, 2021, 1-10.	1.0	12
86	Migrasomes. , 2022, , 193-202.		0
87	The Added Value of Atrial Strain Assessment in Clinical Practice. Diagnostics, 2022, 12, 982.	1.3	7
88	RNA Sequencing of Cardiac in a Rat Model Uncovers Potential Target LncRNA of Diabetic Cardiomyopathy. Frontiers in Genetics, 2022, 13, 848364.	1.1	6
89	Cardiovascular Characteristics of Zucker Fatty Diabetes Mellitus Rats, an Animal Model for Obesity and Type 2 Diabetes. International Journal of Molecular Sciences, 2022, 23, 4228.	1.8	1
90	Quantification of Early Diffuse Myocardial Fibrosis Through 7.0 T Cardiac Magnetic Resonance <scp>T1</scp> Mapping in a Type 1 Diabetic Mellitus Mouse Model. Journal of Magnetic Resonance Imaging, 2023, 57, 167-177.	1.9	2
91	Evaluation of the relationship between diabetic retinopathy and left atrial deformation parameters. Egyptian Heart Journal, 2022, 74, 30.	0.4	1
92	Predicting outcome after cardiac resynchronisation therapy defibrillator implantation: the cardiac resynchronisation therapy defibrillator Futility score. Heart, 2022, 108, 1186-1193.	1.2	4
93	The Impact of Diabetes on Vascular Disease: Progress from the Perspective of Epidemics and Treatments. Journal of Diabetes Research, 2022, 2022, 1-17.	1.0	21

#	Article	IF	CITATIONS
94	Editorial: Translational Approaches for Targeting Cardiovascular Complications of Diabetes. Frontiers in Pharmacology, 2021, 12, 799020.	1.6	0
95	NEAT1: A Novel Long Non-coding RNA Involved in Mediating Type 2 Diabetes and its Various Complications. Current Pharmaceutical Design, 2022, 28, 1342-1350.	0.9	9
96	α-Tubulin acetylation on lysine 40 controls cardiac glucose uptake. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H1032-H1043.	1.5	3
97	ERK/RSK-mediated phosphorylation of Y-box binding protein-1 aggravates diabetic cardiomyopathy by suppressing its interaction with deubiquitinase OTUB1. Journal of Biological Chemistry, 2022, 298, 101989.	1.6	12
98	Protective effects of dexmedetomidine in vital organ injury: crucial roles of autophagy. Cellular and Molecular Biology Letters, 2022, 27, 34.	2.7	14
99	Effect of aerobic exercise as a treatment on type 2 diabetes mellitus with depression-like behavior zebrafish. Life Sciences, 2022, 300, 120578.	2.0	11
100	Galectin-3 Inhibition Ameliorates Streptozotocin-Induced Diabetic Cardiomyopathy in Mice. Frontiers in Cardiovascular Medicine, 2022, 9, 868372.	1.1	7
101	Aerobic Exercise Inhibited P2X7 Purinergic Receptors to Improve Cardiac Remodeling in Mice With Type 2 Diabetes. Frontiers in Physiology, 0, 13, .	1.3	4
102	Muscle satellite cells are impaired in type 2 diabetic mice by elevated extracellular adenosine. Cell Reports, 2022, 39, 110884.	2.9	6
103	Guidelines on models of diabetic heart disease. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H176-H200.	1.5	20
104	Quercetin ameliorated cardiac injury <i>via</i> reducing inflammatory actions and the glycerophospholipid metabolism dysregulation in a diabetic cardiomyopathy mouse model. Food and Function, 2022, 13, 7847-7856.	2.1	10
105	Current landscape of preclinical models of diabetic cardiomyopathy. Trends in Pharmacological Sciences, 2022, 43, 940-956.	4.0	8
106	MicroRNAs as biomarkers for monitoring cardiovascular changes in Type II Diabetes Mellitus (T2DM) and exercise. Journal of Diabetes and Metabolic Disorders, 2022, 21, 1819-1832.	0.8	1
107	Exercise Augments the Effect of SGLT2 Inhibitor Dapagliflozin on Experimentally Induced Diabetic Cardiomyopathy, Possible Underlying Mechanisms. Metabolites, 2022, 12, 635.	1.3	5
108	Heart Involvement in Diabetes mellitus Patients. Family Medicine, 2022, , 81-84.	0.1	0
109	Diabetes Duration and Subclinical Myocardial Injury: The Atherosclerosis Risk in Communities Study (ARIC). Clinical Chemistry, 2022, 68, 1272-1280.	1.5	5
110	Changes in Lipoprotein Lipase in the Heart Following Diabetes Onset. Engineering, 2023, 20, 19-25.	3.2	0
111	Impaired SERCA2a phosphorylation causes diabetic cardiomyopathy through impinging on cardiac contractility and precursor protein processing. , 0, , .		0

#	Article	IF	CITATIONS
112	<scp>GCN5L1</scp> impairs diastolic function in mice exposed to a high fat diet by restricting cardiac pyruvate oxidation. Physiological Reports, 2022, 10, .	0.7	6
113	Palmitate Induces Mitochondrial Energy Metabolism Disorder and Cellular Damage via the PPAR Signaling Pathway in Diabetic Cardiomyopathy. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 0, Volume 15, 2287-2299.	1.1	5
114	Research progress on the relationship between autophagy and chronic complications of diabetes. Frontiers in Physiology, 0, 13, .	1.3	9
115	Missed Opportunities for Screening and Management of Dysglycemia among Patients Presenting with Acute Myocardial Infarction in North India: The Prospective NORIN STEMI Registry. Global Heart, 2022, 17, 54.	0.9	1
116	Naringenin ameliorates myocardial injury in STZ-induced diabetic mice by reducing oxidative stress, inflammation and apoptosis via regulating the Nrf2 and NF-ήB signaling pathways. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	12
117	Perspectives for Forkhead box transcription factors in diabetic cardiomyopathy: Their therapeutic potential and possible effects of salvianolic acids. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	2
118	Integrated bioinformatic analysis reveals immune molecular markers and potential drugs for diabetic cardiomyopathy. Frontiers in Endocrinology, 0, 13, .	1.5	5
119	The Hippo-YAP pathway in various cardiovascular diseases: Focusing on the inflammatory response. Frontiers in Immunology, 0, 13, .	2.2	9
120	A bibliometric analysis of RNA methylation in diabetes mellitus and its complications from 2002 to 2022. Frontiers in Endocrinology, 0, 13, .	1.5	10
121	Fucoxanthin ameliorated myocardial fibrosis in STZ-induced diabetic rats and cell hypertrophy in HG-induced H9c2 cells by alleviating oxidative stress and restoring mitophagy. Food and Function, 2022, 13, 9559-9575.	2.1	12
122	Cellular and molecular mechanisms, genetic predisposition and treatment of diabetes-induced cardiomyopathy. Current Research in Pharmacology and Drug Discovery, 2022, 3, 100126.	1.7	4
123	The Role of Perivascular Fat in the Diagnosis and Prognosis of Atherosclerosis. Cardiometabolic Syndrome Journal, 0, 3, .	1.0	1
124	A Survey on Deep Learning Model for Improved Disease Prediction with Multi Medical Data Sets. , 2022, , .		1
125	Effects of Clucose Fluctuations on Electrocardiogram Readings and the Development of Ventricular Arrhythmia in Diabetic Rats. , 0, Publish Ahead of Print, .		0
126	Dapagliflozin attenuates diabetes-induced diastolic dysfunction and cardiac fibrosis by regulating SGK1 signaling. BMC Medicine, 2022, 20, .	2.3	9
127	Identification of Adipose Tissue as a Reservoir of Macrophages after Acute Myocardial Infarction. International Journal of Molecular Sciences, 2022, 23, 10498.	1.8	2
128	NOX1 promotes myocardial fibrosis and cardiac dysfunction via activating the TLR2/NF-κB pathway in diabetic cardiomyopathy. Frontiers in Pharmacology, 0, 13, .	1.6	1
129	Multifunctional biomaterial platforms for blocking the fibrosis process and promoting cellular restoring effects in myocardial fibrosis therapy. Frontiers in Bioengineering and Biotechnology, 0, 10,	2.0	3

#	Article	IF	CITATIONS
130	NADPH Oxidase Mediates Oxidative Stress and Ventricular Remodeling through SIRT3/FOXO3a Pathway in Diabetic Mice. Antioxidants, 2022, 11, 1745.	2.2	3
131	Understanding the role of glycation in the pathology of various non-communicable diseases along with novel therapeutic strategies. Glycobiology, 2022, 32, 1068-1088.	1.3	8
132	The Molecular Mechanisms of Defective Copper Metabolism in Diabetic Cardiomyopathy. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-16.	1.9	19
133	Fibroblast-specific activation of Rnd3 protects against cardiac remodeling in diabetic cardiomyopathy via suppression of Notch and TGF-β signaling. Theranostics, 2022, 12, 7250-7266.	4.6	15
134	In Vivo Inhibition of miR-34a Modestly Limits Cardiac Enlargement and Fibrosis in a Mouse Model with Established Type 1 Diabetes-Induced Cardiomyopathy, but Does Not Improve Diastolic Function. Cells, 2022, 11, 3117.	1.8	4
135	The Role of Anthocyanin in Modulating Diabetic Cardiovascular Disease and Its Potential to Be Developed as a Nutraceutical. Pharmaceuticals, 2022, 15, 1344.	1.7	10
136	In Vivo Treatment with a Standardized Green Tea Extract Restores Cardiomyocyte Contractility in Diabetic Rats by Improving Mitochondrial Function through SIRT1 Activation. Pharmaceuticals, 2022, 15, 1337.	1.7	4
137	Impact of empagliflozin on left atrial mechanical and conduction functions in patients with type 2 diabetes mellitus. Journal of Clinical Ultrasound, 0, , .	0.4	1
138	Lipoxin and glycation in SREBP signaling: Insight into diabetic cardiomyopathy and associated lipotoxicity. Prostaglandins and Other Lipid Mediators, 2023, 164, 106698.	1.0	1
139	Association of sodium intake with adverse left atrial function and left atrioventricular coupling in Chinese. Journal of Hypertension, 2023, 41, 159-170.	0.3	2
140	A soft and ultrasensitive force sensing diaphragm for probing cardiac organoids instantaneously and wirelessly. Nature Communications, 2022, 13, .	5.8	13
141	Enhanced Mitochondrial Calcium Uptake Suppresses Atrial Fibrillation Associated With Metabolic Syndrome. Journal of the American College of Cardiology, 2022, 80, 2205-2219.	1.2	9
142	Unveiling the Vital Role of Long Non-Coding RNAs in Cardiac Oxidative Stress, Cell Death, and Fibrosis in Diabetic Cardiomyopathy. Antioxidants, 2022, 11, 2391.	2.2	4
143	Bibliometric analysis of the inflammation in diabetic cardiomyopathy. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	1
144	Garlic (<i>Allium sativum L.</i>) in diabetes and its complications: Recent advances in mechanisms of action. Critical Reviews in Food Science and Nutrition, 0, , 1-51.	5.4	2
145	Therapeutic effects of icariin and icariside II on diabetes mellitus and its complications. Critical Reviews in Food Science and Nutrition, 0, , 1-26.	5.4	6
146	Association of peripheral neuropathy with subclinical left ventricular dysfunction in patients with type 2 diabetes. Journal of Diabetes and Its Complications, 2023, 37, 108406.	1.2	1
147	Effectiveness and safety of selected traditional Chinese medicine injections in patients with combined diabetes mellitus and coronary heart disease: A systematic review and network meta-analysis of randomized clinical trials. Frontiers in Pharmacology, 0, 13, .	1.6	1

#	Article	IF	Citations
148	Enhanced protein acetylation initiates fatty acid-mediated inhibition of cardiac glucose transport. American Journal of Physiology - Heart and Circulatory Physiology, 2023, 324, H305-H317.	1.5	6
149	Proteome-wide analysis of lysine β-hydroxybutyrylation in the myocardium of diabetic rat model with cardiomyopathy. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	1
150	Insulin resistance and heart failure with preserved ejection fraction. Pathogenetic and therapeutic crossroads. Diabetes Mellitus, 2023, 25, 535-547.	0.5	0
152	Lysosomal dysfunction in diabetic cardiomyopathy. Frontiers in Aging, 0, 4, .	1.2	3
153	Sex differences in risk of cardiovascular events and mortality with sodium glucose co-transporter-2 inhibitors versus glucagon-like peptide 1 receptor agonists in Australians with type 2 diabetes: a population-based cohort study. The Lancet Regional Health - Western Pacific, 2023, 33, 100692.	1.3	3
154	Bicyclol Alleviates Streptozotocin-induced Diabetic Cardiomyopathy By Inhibiting Chronic InflammationÂAnd Oxidative Stress. Cardiovascular Drugs and Therapy, 0, , .	1.3	1
155	C1q and Tumor Necrosis Factor Related Protein 9 Protects from Diabetic Cardiomyopathy by Alleviating Cardiac Insulin Resistance and Inflammation. Cells, 2023, 12, 443.	1.8	1
156	Triglyceride-glucose index for the detection of subclinical heart failure with preserved ejection fraction in patients with type 2 diabetes. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	2
157	The protective effect of zinc, selenium, and chromium on myocardial fibrosis in the offspring of rats with gestational diabetes mellitus. Food and Function, 2023, 14, 1584-1594.	2.1	4
159	Diagnostic and prognostic biomarkers reflective of cardiac remodelling in diabetes mellitus: A scoping review. Diabetic Medicine, 2023, 40, .	1.2	2
160	Emerging Therapy for Diabetic Cardiomyopathy: From Molecular Mechanism to Clinical Practice. Biomedicines, 2023, 11, 662.	1.4	3
161	Myristate induces mitochondrial fragmentation and cardiomyocyte hypertrophy through mitochondrial E3 ubiquitin ligase MUL1. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	1
162	Lâ€carnitine alleviates cardiac microvascular dysfunction in diabetic cardiomyopathy by enhancing <scp>PINK1â€Parkin</scp> â€dependent mitophagy through the <scp>CPT1aâ€PHB2â€PARL</scp> pathways. A Physiologica, 2023, 238, .	ct a. 8	7
163	Dynamic evolution and mechanism of myocardial glucose metabolism in different functional phenotypes of diabetic cardiomyopathy — a study based on 18ÂF-FDG microPET myocardial metabolic imaging. Diabetology and Metabolic Syndrome, 2023, 15, .	1.2	0
164	Cardioprotective role of A-cycloglycosylated derivative of Rubiadin in diabetic cardiomyopathy in rats. International Immunopharmacology, 2023, 118, 110008.	1.7	0
165	Relaxin elicits renoprotective actions accompanied by increasing bile acid levels in streptozotocin-induced diabetic mice. Biomedicine and Pharmacotherapy, 2023, 162, 114578.	2.5	7
166	Dectin-1 deficiency alleviates diabetic cardiomyopathy by attenuating macrophage-mediated inflammatory response. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2023, 1869, 166710.	1.8	2
168	Pyruvate Dehydrogenase Complex and Glucose Oxidation as a Therapeutic Target in Diabetic Heart Disease. Journal of Lipid and Atherosclerosis, 2023, 12, 47.	1.1	2

#	Article	IF	CITATIONS
169	SGLT2 inhibitor ertugliflozin decreases elevated intracellular sodium, and improves energetics and contractile function in diabetic cardiomyopathy. Biomedicine and Pharmacotherapy, 2023, 160, 114310.	2.5	5
170	Roxadustat, a HIF-PHD inhibitor with exploitable potential on diabetes-related complications. Frontiers in Pharmacology, 0, 14, .	1.6	2
171	The role of aldehyde dehydrogenase 2 in cardiovascular disease. Nature Reviews Cardiology, 2023, 20, 495-509.	6.1	16
172	Cardiac Microvascular Dysfunction and Cardiomyopathy in Diabetes: Is Ferroptosis a Therapeutic Target?. Diabetes, 2023, 72, 313-315.	0.3	1
173	Left ventricular systolic dyssynchrony: a novel imaging marker for early assessment of myocardial damage in Chinese type 2 diabetes mellitus patients with normal left ventricular ejection fraction and normal myocardial perfusion. Journal of Nuclear Cardiology, 2023, 30, 1797-1809.	1.4	0
174	Retinol dehydrogenase 10 reduction mediated retinol metabolism disorder promotes diabetic cardiomyopathy in male mice. Nature Communications, 2023, 14, .	5.8	7
176	Diabetes Induces Cardiac Fibroblast Activation, Promoting a Matrixâ€Preserving Nonmyofibroblast Phenotype, Without Stimulating Pericyte to Fibroblast Conversion. Journal of the American Heart Association, 2023, 12, .	1.6	3
179	Development and validation of a risk prediction model for frailty in patients with diabetes. BMC Geriatrics, 2023, 23, .	1.1	3
180	Aldose reductase inhibition alleviates diabetic cardiomyopathy and is associated with a decrease in myocardial fatty acid oxidation. Cardiovascular Diabetology, 2023, 22, .	2.7	7
181	Elevated Soluble Suppressor of Tumorigenicity 2 Predict Hospital Admissions Due to Major Adverse Cardiovascular Events (MACE). Journal of Clinical Medicine, 2023, 12, 2790.	1.0	1
182	Exploring the Complex Relationship between Diabetes and Cardiovascular Complications: Understanding Diabetic Cardiomyopathy and Promising Therapies. Biomedicines, 2023, 11, 1126.	1.4	9
183	Ferroptosis: roles and molecular mechanisms in diabetic cardiomyopathy. Frontiers in Endocrinology, 0, 14, .	1.5	8
218	Diabetic cardiomyopathy: Early diagnostic biomarkers, pathogenetic mechanisms, and therapeutic interventions. Cell Death Discovery, 2023, 9, .	2.0	5
222	Modulation of the antioxidant defense system against pathophysiological redox imbalance in cardiovascular diseases. , 2023, , 113-129.		0
226	Involvement of mitochondrial dynamics and mitophagy in diabetic endothelial dysfunction and cardiac microvascular injury. Archives of Toxicology, 2023, 97, 3023-3035.	1.9	0