Presence of SARS-Coronavirus-2 RNA in Sewage and Co Prevalence in the Early Stage of the Epidemic in The Ne

Environmental Science and Technology Letters 7, 511-516

DOI: 10.1021/acs.estlett.0c00357

Citation Report

#	Article	IF	CITATIONS
1	Analysis of Fecal Sludges Reveals Common Enteric Pathogens in Urban Maputo, Mozambique. Environmental Science and Technology Letters, 2020, 7, 889-895.	3.9	27
2	Metropolitan wastewater analysis for COVID-19 epidemiological surveillance. International Journal of Hygiene and Environmental Health, 2020, 230, 113621.	2.1	195
3	Covid-19 pandemic and food: Present knowledge, risks, consumers fears and safety. Trends in Food Science and Technology, 2020, 105, 145-160.	7.8	68
4	COVID-19 surveillance in Southeastern Virginia using wastewater-based epidemiology. Water Research, 2020, 186, 116296.	5.3	373
5	Tracking COVID-19 with wastewater. Nature Biotechnology, 2020, 38, 1151-1153.	9.4	229
6	Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology. Environmental Research, 2020, 191, 110092.	3.7	285
7	Frontier review on the propensity and repercussion of SARS-CoV-2 migration to aquatic environment. Journal of Hazardous Materials Letters, 2020, 1, 100001.	2.0	49
8	Occurrence, fates and potential treatment approaches for removal of viruses from wastewater: A review with emphasis on SARS-CoV-2. Journal of Environmental Chemical Engineering, 2020, 8, 104429.	3.3	62
9	High-throughput wastewater analysis for substance use assessment in central New York during the COVID-19 pandemic. Environmental Sciences: Processes and Impacts, 2020, 22, 2147-2161.	1.7	28
10	Potential secondary transmission of SARS-CoV-2 via wastewater. Science of the Total Environment, 2020, 749, 142358.	3.9	42
11	Surveillance of SARS-CoV-2 RNA in wastewater: Methods optimization and quality control are crucial for generating reliable public health information. Current Opinion in Environmental Science and Health, 2020, 17, 82-93.	2.1	126
12	Persistence of SARS-CoV-2 in Water and Wastewater. Environmental Science and Technology Letters, 2020, 7, 937-942.	3.9	318
13	Wastewater-Based Epidemiology to monitor COVID-19 outbreak: Present and future diagnostic methods to be in your radar. Case Studies in Chemical and Environmental Engineering, 2020, 2, 100042.	2.9	49
14	Concentration methods for the quantification of coronavirus and other potentially pandemic enveloped virus from wastewater. Current Opinion in Environmental Science and Health, 2020, 17, 21-28.	2.1	78
15	Temporal Detection and Phylogenetic Assessment of SARS-CoV-2 in Municipal Wastewater. Cell Reports Medicine, 2020, 1, 100098.	3.3	424
16	Viruses in wastewater: occurrence, abundance and detection methods. Science of the Total Environment, 2020, 745, 140910.	3.9	170
17	Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: a surveillance tool for assessing the presence of COVID-19 infected travellers. Journal of Travel Medicine, 2020, 27, .	1.4	146
18	First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Science of the Total Environment, 2020, 737, 140405.	3.9	476

#	Article	IF	CITATIONS
19	Making waves: Wastewater surveillance of SARS-CoV-2 for population-based health management. Water Research, 2020, 184, 116181.	5.3	138
20	The COVID-19 Pandemic and Global Food Security. Frontiers in Veterinary Science, 2020, 7, 578508.	0.9	85
21	Modeling the transmission dynamics of the COVID-19 Pandemic in South Africa. Mathematical Biosciences, 2020, 328, 108441.	0.9	74
22	Preliminary Study of Sars-Cov-2 Occurrence in Wastewater in the Czech Republic. International Journal of Environmental Research and Public Health, 2020, 17, 5508.	1.2	89
23	Wastewater-based epidemiology pilot study to examine drug use in the Western United States. Science of the Total Environment, 2020, 745, 140697.	3.9	38
24	Primary concentration – The critical step in implementing the wastewater based epidemiology for the COVID-19 pandemic: A mini-review. Science of the Total Environment, 2020, 747, 141245.	3.9	94
25	When the fourth water and digital revolution encountered COVID-19. Science of the Total Environment, 2020, 744, 140980.	3.9	53
26	COVID-19: urgent actions, critical reflections and future relevance of †WaSH': lessons for the current and future pandemics. Journal of Water and Health, 2020, 18, 613-630.	1.1	70
27	Sewage analysis as a tool for the COVID-19 pandemic response and management: the urgent need for optimised protocols for SARS-CoV-2 detection and quantification. Journal of Environmental Chemical Engineering, 2020, 8, 104306.	3.3	164
28	The role of wastewater treatment plants as tools for SARS-CoV-2 early detection and removal. Journal of Water Process Engineering, 2020, 38, 101544.	2.6	65
29	Coronaviruses in the Sea. Frontiers in Microbiology, 2020, 11, 1795.	1.5	35
30	Beach Tourism in Times of COVID-19 Pandemic: Critical Issues, Knowledge Gaps and Research Opportunities. International Journal of Environmental Research and Public Health, 2020, 17, 7288.	1.2	64
31	Sentinel Coronavirus environmental monitoring can contribute to detecting asymptomatic SARS-CoV-2 virus spreaders and can verify effectiveness of workplace COVID-19 controls. Microbial Risk Analysis, 2020, 16, 100137.	1.3	23
32	Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nature Biotechnology, 2020, 38, 1164-1167.	9.4	785
33	Control Measures for SARS-CoV-2: A Review on Light-Based Inactivation of Single-Stranded RNA Viruses. Pathogens, 2020, 9, 737.	1.2	71
34	Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic. Nature Sustainability, 2020, 3, 981-990.	11.5	195
35	Wastewater-Based Epidemiology (WBE) and Viral Detection in Polluted Surface Water: A Valuable Tool for COVID-19 Surveillance—A Brief Review. International Journal of Environmental Research and Public Health, 2020, 17, 9251.	1.2	71
36	Reflection on health-environment research in the light of emerging infectious diseases: modelling water quality and health. Current Opinion in Environmental Sustainability, 2020, 46, 8-10.	3.1	1

#	Article	IF	CITATIONS
37	Predicting clinical resistance prevalence using sewage metagenomic data. Communications Biology, 2020, 3, 711.	2.0	37
38	Considerations on water quality and the use of chlorine in times of SARS-CoV-2 (COVID-19) pandemic in the community. Case Studies in Chemical and Environmental Engineering, 2020, 2, 100049.	2.9	48
39	First Rounders: Noubar Afeyan. Nature Biotechnology, 2020, 38, 1153-1153.	9.4	0
40	Systematic Review and Meta-Analysis of the Persistence and Disinfection of Human Coronaviruses and Their Viral Surrogates in Water and Wastewater. Environmental Science and Technology Letters, 2020, 7, 544-553.	3.9	121
41	Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater. Science of the Total Environment, 2020, 739, 139960.	3.9	405
42	Molecular Diagnosis of COVID-19: Challenges and Research Needs. Analytical Chemistry, 2020, 92, 10196-10209.	3.2	294
43	Opportunities and Challenges for Biosensors and Nanoscale Analytical Tools for Pandemics: COVID-19. ACS Nano, 2020, 14, 7783-7807.	7.3	284
44	Antimicrobial Photodynamic Therapy in the Control of COVID-19. Antibiotics, 2020, 9, 320.	1.5	81
45	Snowballing transmission of COVID-19 (SARS-CoV-2) through wastewater: Any sustainable preventive measures to curtail the scourge in low-income countries?. Science of the Total Environment, 2020, 742, 140680.	3.9	88
46	Transmission of SARS-CoV-2 via fecal-oral and aerosols–borne routes: Environmental dynamics and implications for wastewater management in underprivileged societies. Science of the Total Environment, 2020, 743, 140709.	3.9	124
47	Coronavirus disease 2019 (COVID-19) outbreak: some serious consequences with urban and rural water cycle. Npj Clean Water, 2020, 3, .	3.1	118
48	Innovation in wastewater near-source tracking for rapid identification of COVID-19 in schools. Lancet Microbe, The, 2021, 2, e4-e5.	3.4	40
49	Applicability of polyethylene glycol precipitation followed by acid guanidinium thiocyanate-phenol-chloroform extraction for the detection of SARS-CoV-2 RNA from municipal wastewater. Science of the Total Environment, 2021, 756, 143067.	3.9	76
50	Viral, host and environmental factors that favor anthropozoonotic spillover of coronaviruses: An opinionated review, focusing on SARS-CoV, MERS-CoV and SARS-CoV-2. Science of the Total Environment, 2021, 750, 141483.	3.9	22
51	COVID-19 in the environment. Chemosphere, 2021, 263, 127973.	4.2	77
52	SARS-CoV-2 coronavirus in water and wastewater: A critical review about presence and concern. Environmental Research, 2021, 193, 110265.	3.7	150
53	Coronavirus (SARS-CoV-2) in the environment: Occurrence, persistence, analysis in aquatic systems and possible management. Science of the Total Environment, 2021, 765, 142698.	3.9	53
54	Leaving no stone unturned in light of the COVID-19 faecal-oral hypothesis? A water, sanitation and hygiene (WASH) perspective targeting low-income countries. Science of the Total Environment, 2021, 753, 141751.	3.9	93

#	Article	IF	CITATIONS
55	Sources and routes of SARS-CoV-2 transmission in water systems in Africa: Are there any sustainable remedies?. Science of the Total Environment, 2021, 753, 142298.	3.9	34
56	Detection of SARS-CoV-2 in raw and treated wastewater in Germany $\hat{a} \in \mathcal{C}$ Suitability for COVID-19 surveillance and potential transmission risks. Science of the Total Environment, 2021, 751, 141750.	3.9	300
57	The novel SARS-CoV-2 pandemic: Possible environmental transmission, detection, persistence and fate during wastewater and water treatment. Science of the Total Environment, 2021, 765, 142746.	3.9	70
58	SARS-CoV-2 pandemic: a review of molecular diagnostic tools including sample collection and commercial response with associated advantages and limitations. Analytical and Bioanalytical Chemistry, 2021, 413, 49-71.	1.9	110
59	A chronicle of SARS-CoV-2: Seasonality, environmental fate, transport, inactivation, and antiviral drug resistance. Journal of Hazardous Materials, 2021, 405, 124043.	6.5	76
60	Decay of SARS-CoV-2 RNA along the wastewater treatment outfitted with Upflow Anaerobic Sludge Blanket (UASB) system evaluated through two sample concentration techniques. Science of the Total Environment, 2021, 754, 142329.	3.9	67
61	Quantitative analysis of SARS-CoV-2 RNA from wastewater solids in communities with low COVID-19 incidence and prevalence. Water Research, 2021, 188, 116560.	5.3	297
62	Benchmarking virus concentration methods for quantification of SARS-CoV-2 in raw wastewater. Science of the Total Environment, 2021, 755, 142939.	3.9	110
63	Assessment of socioeconomic inequality based on virus-contaminated water usage in developing countries: A review. Environmental Research, 2021, 192, 110309.	3.7	80
64	SARS-CoV-2 has been circulating in northern Italy since December 2019: Evidence from environmental monitoring. Science of the Total Environment, 2021, 750, 141711.	3.9	253
65	SARS-CoV-2 RNA detection and persistence in wastewater samples: An experimental network for COVID-19 environmental surveillance in Padua, Veneto Region (NE Italy). Science of the Total Environment, 2021, 760, 143329.	3.9	75
66	A physicochemical model for rationalizing SARS-CoV-2 concentration in sewage. Case study: The city of Thessaloniki in Greece. Science of the Total Environment, 2021, 755, 142855.	3.9	38
67	Detection of SARS-CoV-2 in wastewater in Japan during a COVID-19 outbreak. Science of the Total Environment, 2021, 758, 143578.	3.9	176
68	Intraday variability of indicator and pathogenic viruses in 1-h and 24-h composite wastewater samples: Implications for wastewater-based epidemiology. Environmental Research, 2021, 193, 110531.	3.7	72
69	Evaluation of viral concentration methods for SARS-CoV-2 recovery from wastewaters. Science of the Total Environment, 2021, 756, 144105.	3.9	98
70	Surveillance of SARS-CoV-2 in sewage and wastewater treatment plants in Mexico. Journal of Water Process Engineering, 2021, 40, 101815.	2.6	68
71	Recovering coronavirus from large volumes of water. Science of the Total Environment, 2021, 762, 143101.	3.9	19
72	SARS-CoV-2 RNA monitoring in wastewater as a potential early warning system for COVID-19 transmission in the community: A temporal case study. Science of the Total Environment, 2021, 761, 144216.	3.9	218

#	Article	IF	CITATIONS
73	Reduction and partitioning of viral and bacterial indicators in a UASB reactor followed by high rate algal ponds treating domestic sewage. Science of the Total Environment, 2021, 760, 144309.	3.9	24
74	Comparing analytical methods to detect SARS-CoV-2 in wastewater. Science of the Total Environment, 2021, 758, 143870.	3.9	117
75	The Gastrointestinal Tract Is an Alternative Route for SARS-CoV-2 Infection in a Nonhuman Primate Model. Gastroenterology, 2021, 160, 1647-1661.	0.6	88
76	Analytical methodologies for the detection of SARS-CoV-2 in wastewater: Protocols and future perspectives. TrAC - Trends in Analytical Chemistry, 2021, 134, 116125.	5.8	88
77	Wastewater surveillance for SARS-CoV-2: Lessons learnt from recent studies to define future applications. Science of the Total Environment, 2021, 759, 143493.	3.9	84
78	SARS-CoV-2 RNA in Wastewater Settled Solids Is Associated with COVID-19 Cases in a Large Urban Sewershed. Environmental Science & amp; Technology, 2021, 55, 488-498.	4.6	286
79	Longitudinal Monitoring of SARS-CoV-2 RNA on High-Touch Surfaces in a Community Setting. Environmental Science and Technology Letters, 2021, 8, 168-175.	3.9	156
80	Where do we stand to oversee the coronaviruses in aqueous and aerosol environment? Characteristics of transmission and possible curb strategies. Chemical Engineering Journal, 2021, 413, 127522.	6.6	15
81	Editorial perspective: Viruses in wastewater: Wading into the knowns and unknowns. Environmental Research, 2021, 196, 110255.	3.7	7
82	Critical Review and Research Needs of Ozone Applications Related to Virus Inactivation: Potential Implications for SARS-CoV-2. Ozone: Science and Engineering, 2021, 43, 2-20.	1.4	31
83	SARS-CoV-2 in water services: Presence and impacts. Environmental Pollution, 2021, 268, 115806.	3.7	50
84	Coronavirus 2 (SARS-CoV-2) in water environments: Current status, challenges and research opportunities. Journal of Water Process Engineering, 2021, 39, 101735.	2.6	19
85	Detection and quantification of SARS-CoV-2 RNA in wastewater and treated effluents: Surveillance of COVID-19 epidemic in the United Arab Emirates. Science of the Total Environment, 2021, 764, 142929.	3.9	129
86	Implications of SARSâ€CoVâ€2 on current and future operation and management of wastewater systems. Water Environment Research, 2021, 93, 502-515.	1.3	18
87	A comprehensive study of COVID-19 in wastewater. , 2021, , 115-144.		1
88	Occurrence of Human Enteric Viruses in Water Sources and Shellfish: A Focus on Africa. Food and Environmental Virology, 2021, 13, 1-31.	1.5	34
89	Presence, detection, and persistence of SARS-CoV-2 in wastewater and the sustainable remedial measures. , 2021, , 91-114.		2
90	Detection of SARS-CoV-2 in wastewater in Halifax, Nova Scotia, Canada, using four RT-qPCR assays. Facets, 2021, 6, 959-965.	1.1	9

#	Article	IF	CITATIONS
91	Standardizing data reporting in the research community to enhance the utility of open data for SARS-CoV-2 wastewater surveillance. Environmental Science: Water Research and Technology, 2021, 7, 1545-1551.	1.2	34
92	Detection of coronavirus in environmental surveillance and risk monitoring for pandemic control. Chemical Society Reviews, 2021, 50, 3656-3676.	18.7	46
93	Potential discharge, attenuation and exposure risk of SARS-CoV-2 in natural water bodies receiving treated wastewater. Npj Clean Water, 2021, 4, .	3.1	20
94	Is it time to consider shreds of epidemiological and environmental evidence associated with high transmission of COVID-19?. Journal of Family Medicine and Primary Care, 2021, 10, 2120.	0.3	1
95	Role of wastewater treatment in COVID-19 control. Water Quality Research Journal of Canada, 2021, 56, 68-82.	1.2	16
96	Wastewater-based Epidemiology for Infectious Diseases: The Foundations and Future Perspectives. Journal of Japan Society on Water Environment, 2021, 44, 125-133.	0.1	0
97	Preparing for Emerging Zoonotic Viruses. , 2021, , 256-266.		11
98	Virus-sampling technologies in different environments. , 2021, , 41-63.		2
99	Molecular diagnostics in the era of COVID-19. Analytical Methods, 2021, 13, 3744-3763.	1.3	10
100	Building-level wastewater surveillance using tampon swabs and RT-LAMP for rapid SARS-CoV-2 RNA detection. Environmental Science: Water Research and Technology, 2021, 8, 173-183.	1.2	31
102	SARS-CoV-2 and COVID-19: A perspective from environmental virology. Genetics and Molecular Biology, 2021, 44, e20200228.	0.6	2
103	Dangerous liaisons? As the COVID-19 wave hits Africa with potential for novel transmission dynamics: a perspective. Zeitschrift Fur Gesundheitswissenschaften, 2022, 30, 1353-1366.	0.8	5
104	Governance of wastewater surveillance systems to minimize the impact of COVID-19 and future epidemics:Cases across Asia-Pacific. , 2021, , 115-126.		2
105	Wastewater discharge and surface water contamination pre- and post- COVID 19—global case studies. , 2021, , 95-102.		1
106	Public Health Benefits and Ethical Aspects in the Collection and Open Sharing of Wastewater-Based Epidemic Data on COVID-19. Data Science Journal, 2021, 20, .	0.6	10
107	Early Warning of COVID-19 in Tokyo via Wastewater-based Epidemiology: How Feasible It Really Is?. Journal of Water and Environment Technology, 2021, 19, 170-183.	0.3	9
108	Early-pandemic wastewater surveillance of SARS-CoV-2 in Southern Nevada: Methodology, occurrence, and incidence/prevalence considerations. Water Research X, 2021, 10, 100086.	2.8	177
109	Route of SARS-CoV-2 in sewerage and wastewater treatment plants. , 2021, , 145-176.		4

#	Article	IF	CITATIONS
110	Management of environmental health to prevent an outbreak of COVID-19. , 2021, , 235-267.		9
112	Detection and disinfection of COVID-19 virus in wastewater. Environmental Chemistry Letters, 2021, 19, 1917-1933.	8.3	37
113	Protecting Sanitation Workers in Low-Middle Income Countries Amid COVID-19. Annals of Work Exposures and Health, 2021, 65, 492-493.	0.6	16
114	AMR and Covid-19 on the Frontline: A Call to Rethink War, WASH, and Public Health. Annals of Global Health, 2021, 87, 21.	0.8	1
115	Removal and Inactivation of an Enveloped Virus Surrogate by Iron Conventional Coagulation and Electrocoagulation. Environmental Science & amp; Technology, 2021, 55, 2674-2683.	4.6	22
116	Water and wastewater as potential sources of SARS-CoV-2 transmission: a systematic review. Reviews on Environmental Health, 2021, 36, 309-317.	1.1	13
117	Molecular diagnostic assays for COVID-19: an overview. Critical Reviews in Clinical Laboratory Sciences, 2021, 58, 385-398.	2.7	47
118	COVID-19 Crisis Creates Opportunity towards Global Monitoring & Surveillance. Pathogens, 2021, 10, 256.	1.2	13
119	Concentration and Quantification of SARS-CoV-2 RNA in Wastewater Using Polyethylene Glycol-Based Concentration and qRT-PCR. Methods and Protocols, 2021, 4, 17.	0.9	42
121	Exit strategies: optimising feasible surveillance for detection, elimination, and ongoing prevention of COVID-19 community transmission. BMC Medicine, 2021, 19, 50.	2.3	33
125	A Robust, Safe, and Scalable Magnetic Nanoparticle Workflow for RNA Extraction of Pathogens from Clinical and Wastewater Samples. Global Challenges, 2021, 5, 2000068.	1.8	10
128	Atıksularda Koronavirüslerin Varlığı, Akıbeti Ve Giderimi: COVID-19 Üzerine Bir Derleme. European Journal of Science and Technology, 0, , .	0.5	1
129	SARS-CoV-2 from Urban to Rural Water Environment: Occurrence, Persistence, Fate, and Influence on Agriculture Irrigation. A Review. Water (Switzerland), 2021, 13, 764.	1.2	22
133	Epidemiology and clinical features of COVID-19 outbreaks in aged care facilities: A systematic review and meta-analysis. EClinicalMedicine, 2021, 33, 100771.	3.2	94
135	When silence goes viral, Africa sneezes! A perspective on Africa's subdued research response to COVID-19 and a call for local scientific evidence. Environmental Research, 2021, 194, 110637.	3.7	32
136	Challenges in Measuring the Recovery of SARS-CoV-2 from Wastewater. Environmental Science & Technology, 2021, 55, 3514-3519.	4.6	120
137	Occurrence of SARS-CoV-2 in excreta, sewage, and environment: epidemiological significance and potential risks. International Journal of Environmental Health Research, 2022, 32, 1686-1706.	1.3	12
140	Wastewater-based epidemiology as a useful tool to track SARS-CoV-2 and support public health policies at municipal level in Brazil. Water Research, 2021, 191, 116810.	5.3	161

#	Article	IF	CITATIONS
141	Exposure Profile of Severe Acute Respiratory Syndrome Coronavirus 2 in Canadian Food Sources. Journal of Food Protection, 2021, 84, 1295-1303.	0.8	9
143	Impact of sampling depth on pathogen detection in pit latrines. PLoS Neglected Tropical Diseases, 2021, 15, e0009176.	1.3	17
144	Eco-Environmental Aspects of COVID-19 Pandemic and Potential Control Strategies. International Journal of Environmental Research and Public Health, 2021, 18, 3488.	1.2	15
145	The first detection of SARS-CoV-2 RNA in the wastewater of Tehran, Iran. Environmental Science and Pollution Research, 2021, 28, 38629-38636.	2.7	37
146	SARS-CoV-2: sewage surveillance as an early warning system and challenges in developing countries. Environmental Science and Pollution Research, 2021, 28, 22221-22240.	2.7	38
151	Sewage, Salt, Silica, and SARS-CoV-2 (4S): An Economical Kit-Free Method for Direct Capture of SARS-CoV-2 RNA from Wastewater. Environmental Science & Technology, 2021, 55, 4880-4888.	4.6	72
153	Fomite Transmission, Physicochemical Origin of Virus–Surface Interactions, and Disinfection Strategies for Enveloped Viruses with Applications to SARS-CoV-2. ACS Omega, 2021, 6, 6509-6527.	1.6	76
154	Long-term monitoring of SARS-CoV-2 RNA in wastewater of the Frankfurt metropolitan area in Southern Germany. Scientific Reports, 2021, 11, 5372.	1.6	108
157	Sustaining University Operations During the COVID-19 Pandemic. Disaster Medicine and Public Health Preparedness, 2022, 16, 1901-1909.	0.7	11
158	Placing sensors in sewer networks: A system to pinpoint new cases of coronavirus. PLoS ONE, 2021, 16, e0248893.	1.1	22
160	Surveillance of Wastewater for Early Epidemic Prediction (SWEEP): Environmental and health security perspectives in the post COVID-19 Anthropocene. Environmental Research, 2021, 195, 110831.	3.7	30
161	Efficient detection of SARS-CoV-2 RNA in the solid fraction of wastewater. Science of the Total Environment, 2021, 763, 144587.	3.9	116
162	High-Throughput Wastewater SARS-CoV-2 Detection Enables Forecasting of Community Infection Dynamics in San Diego County. MSystems, 2021, 6, .	1.7	106
163	Microscopic Observation of SARS-Like Particles in RT-qPCR SARS-CoV-2 Positive Sewage Samples. Pathogens, 2021, 10, 516.	1.2	10
164	Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review. International Journal of Environmental Research and Public Health, 2021, 18, 4287.	1.2	35
165	Approaches applied to detect SARS-CoV-2 in wastewater and perspectives post-COVID-19. Journal of Water Process Engineering, 2021, 40, 101947.	2.6	46
167	Wastewater Surveillance for SARS-CoV-2 on College Campuses: Initial Efforts, Lessons Learned, and Research Needs. International Journal of Environmental Research and Public Health, 2021, 18, 4455.	1.2	107
169	SARS-CoV-2: fate in water environments and sewage surveillance as an early warning system. Water Science and Technology, 2021, 84, 1-15.	1.2	9

#	Article	IF	CITATIONS
170	Coliphages as a Complementary Tool to Improve the Management of Urban Wastewater Treatments and Minimize Health Risks in Receiving Waters. Water (Switzerland), 2021, 13, 1110.	1.2	9
171	Metatranscriptomic Analysis Reveals SARS-CoV-2 Mutations in Wastewater of the Frankfurt Metropolitan Area in Southern Germany. Microbiology Resource Announcements, 2021, 10, .	0.3	23
172	Environmental Detection of SARS-CoV-2 Virus RNA in Health Facilities in Brazil and a Systematic Review on Contamination Sources. International Journal of Environmental Research and Public Health, 2021, 18, 3824.	1.2	11
174	Chemodynamic features of nanoparticles: Application to understanding the dynamic life cycle of SARS-CoV-2 in aerosols and aqueous biointerfacial zones. Advances in Colloid and Interface Science, 2021, 290, 102400.	7.0	13
175	Prevalence of SARS-CoV-2 in Communities Through Wastewater Surveillance—a Potential Approach for Estimation of Disease Burden. Current Pollution Reports, 2021, 7, 160-166.	3.1	29
176	Estimating the minimum number of SARS-CoV-2 infected cases needed to detect viral RNA in wastewater: To what extent of the outbreak can surveillance of wastewater tell us?. Environmental Research, 2021, 195, 110748.	3.7	64
179	Epidemiological surveillance of SARS-CoV-2 by genome quantification in wastewater applied to a city in the northeast of France: Comparison of ultrafiltration- and protein precipitation-based methods. International Journal of Hygiene and Environmental Health, 2021, 233, 113692.	2.1	42
181	Scaling of SARS-CoV-2 RNA in Settled Solids from Multiple Wastewater Treatment Plants to Compare Incidence Rates of Laboratory-Confirmed COVID-19 in Their Sewersheds. Environmental Science and Technology Letters, 2021, 8, 398-404.	3.9	89
182	Wastewater-Based Epidemiology for Managing the COVID-19 Pandemic. ACS ES&T Water, 2021, 1, 1352-1362.	2.3	24
183	Catching a resurgence: Increase in SARS-CoV-2 viral RNA identified in wastewater 48Âh before COVID-19 clinical tests and 96Âh before hospitalizations. Science of the Total Environment, 2021, 770, 145319.	3.9	159
184	Unravelling the early warning capability of wastewater surveillance for COVID-19: A temporal study on SARS-CoV-2 RNA detection and need for the escalation. Environmental Research, 2021, 196, 110946.	3.7	86
185	Accessible and Validated Processing of SARS-CoV-2 from Wastewater. Microbiology Resource Announcements, 2021, 10, e0017421.	0.3	3
187	Monitoring SARS-CoV-2 as a Microbiological Risk in Shellfish Aquaculture. Frontiers in Marine Science, 2021, 8, .	1.2	1
188	Monitoring SARS-CoV-2 Circulation and Diversity through Community Wastewater Sequencing, the Netherlands and Belgium. Emerging Infectious Diseases, 2021, 27, 1405-1415.	2.0	168
189	Testing at scale during the COVID-19 pandemic. Nature Reviews Genetics, 2021, 22, 415-426.	7.7	261
191	Coronavirus Disease 19 and Future Ecological Crises: Hopes from Epigenomics and Unraveling Genome Regulation in Humans and Infectious Agents. OMICS A Journal of Integrative Biology, 2021, 25, 269-278.	1.0	1
193	Early detections of SARS-CoV-2 in wastewater and their use in COVID-19 epidemiological control. Research, Society and Development, 2021, 10, e45910515219.	0.0	1
194	The detection and stability of the SARS-CoV-2 RNA biomarkers in wastewater influent in Helsinki, Finland. Science of the Total Environment, 2021, 770, 145274.	3.9	111

#	Article	IF	CITATIONS
195	Viral RNA in City Wastewater as a Key Indicator of COVID-19 Recrudescence and Containment Measures Effectiveness. Frontiers in Microbiology, 2021, 12, 664477.	1.5	22
196	Early warning of COVID-19 via wastewater-based epidemiology: potential and bottlenecks. Science of the Total Environment, 2021, 767, 145124.	3.9	126
202	Wastewater-Based Epidemiology as an Early Warning System for the Spreading of SARS-CoV-2 and Its Mutations in the Population. International Journal of Environmental Research and Public Health, 2021, 18, 5629.	1.2	15
203	Evaluation of two rapid ultrafiltration-based methods for SARS-CoV-2 concentration from wastewater. Science of the Total Environment, 2021, 768, 144786.	3.9	64
205	Duration of SARS-CoV-2 viral shedding in faeces as a parameter for wastewater-based epidemiology: Re-analysis of patient data using a shedding dynamics model. Science of the Total Environment, 2021, 769, 144549.	3.9	94
206	Make it clean, make it safe: A review on virus elimination via adsorption. Chemical Engineering Journal, 2021, 412, 128682.	6.6	40
210	Microbial and Viral Indicators of Pathogens and Human Health Risks from Recreational Exposure to Waters Impaired by Fecal Contamination. Journal of Sustainable Water in the Built Environment, 2021, 7, .	0.9	17
211	Capsid integrity RT-qPCR for the selective detection of intact SARS-CoV-2 in wastewater. Science of the Total Environment, 2021, 791, 148342.	3.9	20
212	Hospital wastewater as a source of environmental contamination: An overview of management practices, environmental risks, and treatment processes. Journal of Water Process Engineering, 2021, 41, 101990.	2.6	73
213	Simultaneous detection and mutation surveillance of SARS-CoV-2 and multiple respiratory viruses by rapid field-deployable sequencing. Med, 2021, 2, 689-700.e4.	2.2	16
216	The contribution of veterinary public health to the management of the COVID-19 pandemic from a One Health perspective. One Health, 2021, 12, 100230.	1.5	21
219	COVIDâ€19 in gastroenterology: Where are we now? Current evidence on the impact of COVIDâ€19 in gastroenterology. United European Gastroenterology Journal, 2021, 9, 750-765.	1.6	18
221	The fate of SARS-COV-2 in WWTPS points out the sludge line as a suitable spot for detection of COVID-19. Science of the Total Environment, 2021, 772, 145268.	3.9	177
223	Municipal wastewater viral pollution in Saudi Arabia: effect of hot climate on COVID-19 disease spreading. Environmental Science and Pollution Research, 2023, 30, 25050-25057.	2.7	13
224	Fine-Scale Temporal Dynamics of SARS-CoV-2 RNA Abundance in Wastewater during A COVID-19 Lockdown. Water Research, 2021, 197, 117093.	5.3	63
225	Development of a large volume concentration method for recovery of coronavirus from wastewater. Science of the Total Environment, 2021, 774, 145727.	3.9	37
226	A critical review on SARS-CoV-2 infectivity in water and wastewater. What do we know?. Science of the Total Environment, 2021, 774, 145721.	3.9	97
227	COVID-19-associated diarrhea. World Journal of Gastroenterology, 2021, 27, 3208-3222.	1.4	32

#	Article	IF	CITATIONS
230	Vital role of water in longevity of SARS-CoV-2 and enhancing its binding with human cells. Journal of the Iranian Chemical Society, 0, , 1.	1.2	2
231	Occurrence of SARS-CoV-2 RNA in Six Municipal Wastewater Treatment Plants at the Early Stage of COVID-19 Pandemic in The United States. Pathogens, 2021, 10, 798.	1.2	24
232	Impacts of COVID-19 pandemic on the wastewater pathway into surface water: A review. Science of the Total Environment, 2021, 774, 145586.	3.9	54
233	COVID-19 (SARS-CoV-2) outbreak monitoring using wastewater-based epidemiology in Qatar. Science of the Total Environment, 2021, 774, 145608.	3.9	120
237	COVID-19 infection risk from exposure to aerosols of wastewater treatment plants. Chemosphere, 2021, 273, 129701.	4.2	61
238	Effects of pH, Temperature, Suspended Solids, and Biological Activity on Transformation of Illicit Drug and Pharmaceutical Biomarkers in Sewers. Environmental Science & Technology, 2021, 55, 8771-8782.	4.6	26
240	RT-LAMP: A Cheaper, Simpler and Faster Alternative for the Detection of SARS-CoV-2 in Wastewater. Food and Environmental Virology, 2021, 13, 447-456.	1.5	23
241	Novel Multiplexed Amplicon-Based Sequencing to Quantify SARS-CoV-2 RNA from Wastewater. Environmental Science and Technology Letters, 2021, 8, 683-690.	3.9	15
242	As condições de saneamento no municÃpio de Conceição do Araguaia e seus impactos na prevenção da Covid-19. Research, Society and Development, 2021, 10, e7610817191.	0.0	0
243	Evaluation of Sampling, Analysis, and Normalization Methods for SARS-CoV-2 Concentrations in Wastewater to Assess COVID-19 Burdens in Wisconsin Communities. ACS ES&T Water, 2021, 1, 1955-1965.	2.3	169
244	Prospects and challenges of using electrochemical immunosensors as an alternative detection method for SARS-CoV-2 wastewater-based epidemiology. Science of the Total Environment, 2021, 777, 146239.	3.9	27
245	The presence of SARS-CoV-2 RNA in human sewage in Santa Catarina, Brazil, November 2019. Science of the Total Environment, 2021, 778, 146198.	3.9	99
246	Tracking COVID-19 with wastewater to understand asymptomatic transmission. International Journal of Infectious Diseases, 2021, 108, 296-299.	1.5	32
248	Detection of SARS-CoV-2 in wastewater is influenced by sampling time, concentration method, and target analyzed. Journal of Water and Health, 2021, 19, 775-784.	1.1	10
249	Uncertainties in estimating SARS-CoV-2 prevalence by wastewater-based epidemiology. Chemical Engineering Journal, 2021, 415, 129039.	6.6	133
250	COVID-19 containment on a college campus via wastewater-based epidemiology, targeted clinical testing and an intervention. Science of the Total Environment, 2021, 779, 146408.	3.9	226
251	SARS oVâ€2 surveillance in Norway rats (<i>Rattus norvegicus</i>) from Antwerp sewer system, Belgium. Transboundary and Emerging Diseases, 2022, 69, 3016-3021.	1.3	18
253	Sewage Systems Surveillance for SARS-CoV-2: Identification of Knowledge Gaps, Emerging Threats, and Future Research Needs. Pathogens, 2021, 10, 946.	1.2	17

#	Article	IF	CITATIONS
254	First surveillance of SARS-CoV-2 and organic tracers in community wastewater during post lockdown in Chennai, South India: Methods, occurrence and concurrence. Science of the Total Environment, 2021, 778, 146252.	3.9	57
256	Coronavirus: occurrence, surveillance, and persistence in wastewater. Environmental Monitoring and Assessment, 2021, 193, 508.	1.3	6
257	Onâ€site environmental DNA detection of species using ultrarapid mobile PCR. Molecular Ecology Resources, 2021, 21, 2364-2368.	2.2	13
258	Making Waves: Collaboration in the time of SARS-CoV-2 - rapid development of an international co-operation and wastewater surveillance database to support public health decision-making. Water Research, 2021, 199, 117167.	5.3	48
259	Implications of inadequate water and sanitation infrastructure for community spread of COVID-19 in remote Alaskan communities. Science of the Total Environment, 2021, 776, 145842.	3.9	21
260	SARS-CoV-2 in Human Sewage and River Water from a Remote and Vulnerable Area as a Surveillance Tool in Brazil. Food and Environmental Virology, 2022, 14, 417-420.	1.5	27
261	Detection of SARS-CoV-2 in Wastewater: Community Variability, Temporal Dynamics, and Genotype Diversity. ACS ES&T Water, 2021, 1, 1816-1825.	2.3	7
262	Global occurrence of SARS-CoV-2 in environmental aquatic matrices and its implications for sanitation and vulnerabilities in Brazil and developing countries. International Journal of Environmental Health Research, 2022, 32, 2160-2199.	1.3	2
263	COVID-19 Impacts on Beaches and Coastal Water Pollution at Selected Sites in Ecuador, and Management Proposals Post-pandemic. Frontiers in Marine Science, 2021, 8, .	1.2	36
265	Risk factors and on-site simulation of environmental transmission of SARS-CoV-2 in the largest wholesale market of Beijing, China. Science of the Total Environment, 2021, 778, 146040.	3.9	23
268	Methods Evaluation for Rapid Concentration and Quantification of SARS-CoV-2 in Raw Wastewater Using Droplet Digital and Quantitative RT-PCR. Food and Environmental Virology, 2021, 13, 303-315.	1.5	49
269	Wastewater monitoring outperforms case numbers as a tool to track COVID-19 incidence dynamics when test positivity rates are high. Water Research, 2021, 200, 117252.	5.3	100
270	Prevalence, environmental fate, treatment strategies, and future challenges for wastewater contaminated with SARSâ \in CoVâ \in 2. Remediation, 2021, 31, 97-110.	1.1	7
271	First detection of SARS-CoV-2 genetic material in the vicinity of COVID-19 isolation Centre in Bangladesh: Variation along the sewer network. Science of the Total Environment, 2021, 776, 145724.	3.9	86
273	Wastewater-Based Epidemiology for Community Monitoring of SARS-CoV-2: Progress and Challenges. ACS Environmental Au, 2021, 1, 18-31.	3.3	33
276	Monitoring SARS-CoV-2 in municipal wastewater to evaluate the success of lockdown measures for controlling COVID-19 in the UK. Water Research, 2021, 200, 117214.	5.3	117
277	Secondary transmission of SARS-CoV-2 through wastewater: Concerns and tactics for treatment to effectively control the pandemic. Journal of Environmental Management, 2021, 290, 112668.	3.8	36
279	A multicenter study investigating SARS-CoV-2 in tertiary-care hospital wastewater. viral burden correlates with increasing hospitalized cases as well as hospital-associated transmissions and outbreaks. Water Research, 2021, 201, 117369.	5.3	64

#	Article	IF	CITATIONS
280	The impact of coronavirus SARS-CoV-2 (COVID-19) in water: potential risks. Environmental Science and Pollution Research, 2021, 28, 52651-52674.	2.7	16
281	Effect of storage conditions on SARS-CoV-2 RNA quantification in wastewater solids. PeerJ, 2021, 9, e11933.	0.9	39
282	Wastewater Surveillance during Mass COVID-19 Vaccination on a College Campus. Environmental Science and Technology Letters, 2021, 8, 792-798.	3.9	45
283	Monitoring SARS-CoV-2 Populations in Wastewater by Amplicon Sequencing and Using the Novel Program SAM Refiner. Viruses, 2021, 13, 1647.	1.5	32
284	Tools for interpretation of wastewater SARS-CoV-2 temporal and spatial trends demonstrated with data collected in the San Francisco Bay Area. Water Research X, 2021, 12, 100111.	2.8	67
285	Early Warnings of COVID-19 Second Wave in Detroit. Journal of Environmental Engineering, ASCE, 2021, 147, .	0.7	14
286	Detection of SARS-CoV-2 in Wastewater Northeast of Mexico City: Strategy for Monitoring and Prevalence of COVID-19. International Journal of Environmental Research and Public Health, 2021, 18, 8547.	1.2	5
287	Environmental perspective of COVID-19: Atmospheric and wastewater environment in relation to pandemic. Ecotoxicology and Environmental Safety, 2021, 219, 112297.	2.9	12
288	Within- and between-Day Variability of SARS-CoV-2 RNA in Municipal Wastewater during Periods of Varying COVID-19 Prevalence and Positivity. ACS ES&T Water, 2021, 1, 2097-2108.	2.3	45
289	SARS-CoV-2 in wastewater from Mexico City used for irrigation in the Mezquital Valley: quantification and modeling of geographic dispersion. Environmental Management, 2021, 68, 580-590.	1.2	11
290	The Urban Water Cycle as a Planning Tool to Monitor SARS-CoV-2: A Review of the Literature. Sustainability, 2021, 13, 9010.	1.6	4
291	Decay of infectious SARS-CoV-2 and surrogates in aquatic environments. Water Research, 2021, 201, 117090.	5.3	66
292	Impact of COVID-19 pandemic on socio-economic, energy-environment and transport sector globally and sustainable development goal (SDG). Journal of Cleaner Production, 2021, 312, 127705.	4.6	169
293	Coronavirus in water media: Analysis, fate, disinfection and epidemiological applications. Journal of Hazardous Materials, 2021, 415, 125580.	6.5	50
294	A review on the potential of photocatalysis in combatting SARS-CoV-2 in wastewater. Journal of Water Process Engineering, 2021, 42, 102111.	2.6	29
295	Detection of SARS-CoV-2 RNA in the Danube River in Serbia associated with the discharge of untreated wastewaters. Science of the Total Environment, 2021, 783, 146967.	3.9	29
298	Defining the methodological approach for wastewater-based epidemiological studies—Surveillance of SARS-CoV-2. Environmental Technology and Innovation, 2021, 23, 101696.	3.0	20
299	Water Resource Management: Moving from Single Risk-Based Management to Resilience to Multiple Stressors. Sustainability, 2021, 13, 8609.	1.6	2

		CITATION R	Report	
#	Article		IF	CITATIONS
301	COVID-19 Research: Lessons from Non-Human Primate Models. Vaccines, 2021, 9, 886).	2.1	15
302	Water science under the global epidemic of COVID-19: Bibliometric tracking on COVID and further research needs. Journal of Environmental Chemical Engineering, 2021, 9, 1	-19 publication 05357.	3.3	32
303	The presence of SARS-CoV-2 RNA in different freshwater environments in urban setting RT-qPCR: Implications for water safety. Science of the Total Environment, 2021, 784, 1	s determined by 47183.	3.9	49
304	Molecular Epidemiology of SARS-CoV-2 in Diverse Environmental Samples Globally. Mic 2021, 9, 1696.	troorganisms,	1.6	10
305	Implementing building-level SARS-CoV-2 wastewater surveillance on a university camp the Total Environment, 2021, 782, 146749.	us. Science of	3.9	203
306	Antidrug resistance in the Indian ambient waters of Ahmedabad during the COVID-19 of Hazardous Materials, 2021, 416, 126125.	bandemic. Journal	6.5	28
308	Spike in pollution to ignite the bursting of COVID-19 second wave is more dangerous t SAR-CoV-2 under environmental ignorance in long term: a review. Environmental Scien Pollution Research, 2022, 29, 85595-85611.	han spike of ce and	2.7	9
309	Wastewater Based Epidemiology Perspective as a Faster Protocol for Detecting Coron Human Populations: A Review with Specific Reference to SARS-CoV-2 Virus. Pathogens	avirus RNA in , 2021, 10, 1008.	1.2	30
310	Monitoring the Circulation of SARS-CoV-2 Variants by Genomic Analysis of Wastewate South-East France. Pathogens, 2021, 10, 1042.	r in Marseille,	1.2	23
311	Digital solutions for continued operation of WRRFs during pandemics and other interr Water Environment Research, 2021, 93, 2527-2536.	uptions.	1.3	6
312	Elimination of SARS-CoV-2 along wastewater and sludge treatment processes. Water F 202, 117435.	esearch, 2021,	5.3	50
313	Detection and Stability of SARS-CoV-2 Fragments in Wastewater: Impact of Storage Te Pathogens, 2021, 10, 1215.	mperature.	1.2	21
314	High-throughput sequencing of SARS-CoV-2 in wastewater provides insights into circu Water Research, 2021, 205, 117710.	ating variants.	5.3	93
315	Wastewater surveillance of SARS-CoV-2 across 40 U.S. states from February to June 20 Research, 2021, 202, 117400.	120. Water	5.3	119
316	Source identification of amphetamine-like stimulants in Spanish wastewater through e profiling. Water Research, 2021, 206, 117719.	nantiomeric	5.3	13
317	Mathematical modeling based on RT-qPCR analysis of SARS-CoV-2 in wastewater as a t epidemiology. Scientific Reports, 2021, 11, 19456.	ool for	1.6	24
318	SARS-CoV-2 Wastewater Surveillance for Public Health Action. Emerging Infectious Dis 1-8.	eases, 2021, 27,	2.0	73
319	Hospital Wastewater—Source of Specific Micropollutants, Antibiotic-Resistant Micro Viruses, and Their Elimination. Antibiotics, 2021, 10, 1070.	organisms,	1.5	26

#	Article	IF	CITATIONS
320	Wastewater monitoring as a supplementary surveillance tool for capturing SARS-COV-2 community spread. A case study in two Greek municipalities. Environmental Research, 2021, 200, 111749.	3.7	24
321	Non-intrusive wastewater surveillance for monitoring of a residential building for COVID-19 cases. Science of the Total Environment, 2021, 786, 147419.	3.9	59
323	The prevalence of SARS-CoV-2 in sewage waste water: A review. Indian Journal of Microbiology Research, 2021, 8, 185-190.	0.0	0
324	COVID-19, a double-edged sword for the environment: a review on the impacts of COVID-19 on the environment. Environmental Science and Pollution Research, 2021, 28, 61969-61978.	2.7	11
325	Escalating SARS-CoV-2 circulation in environment and tracking waste management in South Asia. Environmental Science and Pollution Research, 2021, 28, 61951-61968.	2.7	13
326	Grapheneâ€Based Technologies for Tackling COVIDâ€19 and Future Pandemics. Advanced Functional Materials, 2021, 31, 2107407.	7.8	43
327	Critical Capability Needs for Reduction of Transmission of SARS-CoV-2 Indoors. Frontiers in Bioengineering and Biotechnology, 2021, 9, 641599.	2.0	1
328	Targeted wastewater surveillance of SARS-CoV-2 on a university campus for COVID-19 outbreak detection and mitigation. Environmental Research, 2021, 200, 111374.	3.7	126
329	Ahead of the second wave: Early warning for COVID-19 by wastewater surveillance in Hungary. Science of the Total Environment, 2021, 786, 147398.	3.9	43
330	An optimized and robust PEG precipitation method for detection of SARS-CoV-2 in wastewater. Science of the Total Environment, 2021, 785, 147270.	3.9	43
331	Long-term monitoring of SARS-COV-2 RNA in wastewater in Brazil: A more responsive and economical approach. Water Research, 2021, 203, 117534.	5.3	39
334	Monitoring changes in COVID-19 infection using wastewater-based epidemiology: A South African perspective. Science of the Total Environment, 2021, 786, 147273.	3.9	38
335	Potential Use of Untreated Wastewater for Assessing COVID-19 Trends in Southern Italy. International Journal of Environmental Research and Public Health, 2021, 18, 10278.	1.2	11
336	Monitoring waves of the COVID-19 pandemic: Inferences from WWTPs of different sizes. Science of the Total Environment, 2021, 787, 147463.	3.9	47
337	Removal of SARSâ€CoVâ€2 viral markers through a water reclamation facility. Water Environment Research, 2021, 93, 2819-2827.	1.3	8
338	Plateaus, rebounds and the effects of individual behaviours in epidemics. Scientific Reports, 2021, 11, 18339.	1.6	5
340	Monitoring the presence and persistence of SARS-CoV-2 in water-food-environmental compartments: State of the knowledge and research needs. Environmental Research, 2021, 200, 111373.	3.7	24
341	COVID-19 wastewater based epidemiology: long-term monitoring of 10 WWTP in France reveals the importance of the sampling context. Water Science and Technology, 2021, 84, 1997-2013.	1.2	18

#	ARTICLE	IF	CITATIONS
342	Impact of Viral Decontamination Method on Cytokine Profile of COVID-19 Patients. Biomedicines, 2021, 9, 1287.	1.4	0
343	RNA Viromics of Southern California Wastewater and Detection of SARS-CoV-2 Single-Nucleotide Variants. Applied and Environmental Microbiology, 2021, 87, e0144821.	1.4	40
344	Variability in RT-qPCR assay parameters indicates unreliable SARS-CoV-2 RNA quantification for wastewater surveillance. Water Research, 2021, 203, 117516.	5.3	68
345	Reliability of thermal desalination (solar stills) for water/wastewater treatment in light of COVID-19 (novel coronavirus "SARS-CoV-2â€) pandemic: What should consider?. Desalination, 2021, 512, 115106.	4.0	47
346	Assessing spatial distribution of COVID-19 prevalence in Brazil using decentralised sewage monitoring. Water Research, 2021, 202, 117388.	5.3	42
347	Platinum chloride-based viability RT-qPCR for SARS-CoV-2 detection in complex samples. Scientific Reports, 2021, 11, 18120.	1.6	21
349	Connected Sensors, Innovative Sensor Deployment, and Intelligent Data Analysis for Online Water Quality Monitoring. IEEE Internet of Things Journal, 2021, 8, 13805-13824.	5.5	32
350	Using Wastewater Surveillance Data to Support the COVID-19 Response — United States, 2020–2021. Morbidity and Mortality Weekly Report, 2021, 70, 1242-1244.	9.0	107
352	SARS-CoV-2 adsorption on suspended solids along a sewerage network: mathematical model formulation, sensitivity analysis, and parametric study. Environmental Science and Pollution Research, 2022, 29, 11304-11319.	2.7	6
353	Making waves: Plausible lead time for wastewater based epidemiology as an early warning system for COVID-19. Water Research, 2021, 202, 117438.	5.3	85
354	Wastewater, waste, and water-based epidemiology (WWW-BE): A novel hypothesis and decision-support tool to unravel COVID-19 in low-income settings?. Science of the Total Environment, 2022, 806, 150680.	3.9	22
355	Raman biosensor and molecular tools for integrated monitoring of pathogens and antimicrobial resistance in wastewater. TrAC - Trends in Analytical Chemistry, 2021, 143, 116415.	5.8	13
356	High-resolution within-sewer SARS-CoV-2 surveillance facilitates informed intervention. Water Research, 2021, 204, 117613.	5.3	38
357	The first case study of wastewater-based epidemiology of COVID-19 in Hong Kong. Science of the Total Environment, 2021, 790, 148000.	3.9	50
358	Wastewater aerosols produced during flushing toilets, WWTPs, and irrigation with reclaimed municipal wastewater as indirect exposure to SARS-CoV-2. Journal of Environmental Chemical Engineering, 2021, 9, 106201.	3.3	17
359	Challenges to detect SARS-CoV-2 on environmental media, the need and strategies to implement the detection methodologies in wastewaters. Journal of Environmental Chemical Engineering, 2021, 9, 105881.	3.3	2
360	Direct RT-qPCR assay for SARS-CoV-2 variants of concern (Alpha, B.1.1.7 and Beta, B.1.351) detection and quantification in wastewater. Environmental Research, 2021, 201, 111653.	3.7	65
361	Modelling rotavirus concentrations in rivers: Assessing Uganda's present and future microbial water quality. Water Research, 2021, 204, 117615.	5.3	6

#	Article	IF	CITATIONS
362	What is the risk of acquiring SARS-CoV-2 from the use of public toilets?. Science of the Total Environment, 2021, 792, 148341.	3.9	38
363	Development and appraisal of handwash-wastewater treatment system for water recycling as a resilient response to COVID-19. Journal of Environmental Chemical Engineering, 2021, 9, 106113.	3.3	8
364	A review on Saudi Arabian wastewater treatment facilities and available disinfection methods: Implications to SARS-CoV-2 control. Journal of King Saud University - Science, 2021, 33, 101574.	1.6	14
365	Moore swab performs equal to composite and outperforms grab sampling for SARS-CoV-2 monitoring in wastewater. Science of the Total Environment, 2021, 790, 148205.	3.9	42
366	Transmission of severe acute respiratory syndrome coronavirus 2 via fecal-oral: Current knowledge. World Journal of Clinical Cases, 2021, 9, 8280-8294.	0.3	4
367	Feasibility of neighborhood and building scale wastewater-based genomic epidemiology for pathogen surveillance. Science of the Total Environment, 2021, 789, 147829.	3.9	55
368	The COVID-19 pandemic and its implications on the environment. Environmental Research, 2021, 201, 111648.	3.7	43
369	Technical framework for wastewater-based epidemiology of SARS-CoV-2. Science of the Total Environment, 2021, 791, 148271.	3.9	18
370	SARS-CoV-2 RNA detected in urban wastewater from Porto, Portugal: Method optimization and continuous 25-week monitoring. Science of the Total Environment, 2021, 792, 148467.	3.9	25
371	Age-dependent association between SARS-CoV-2 cases reported by passive surveillance and viral load in wastewater. Science of the Total Environment, 2021, 792, 148442.	3.9	12
372	A year into the COVID-19 pandemic: Rethinking of wastewater monitoring as a preemptive approach. Journal of Environmental Chemical Engineering, 2021, 9, 106063.	3.3	26
373	An alternative approach for bioanalytical assay optimization for wastewater-based epidemiology of SARS-CoV-2. Science of the Total Environment, 2021, 789, 148043.	3.9	25
374	Concentration techniques tailored for the detection of SARS-CoV-2 genetic material in domestic wastewater and treatment plant sludge: A review. Journal of Environmental Chemical Engineering, 2021, 9, 106296.	3.3	6
376	Wastewater surveillance-based city zonation for effective COVID-19 pandemic preparedness powered by early warning: A perspectives of temporal variations in SARS-CoV-2-RNA in Ahmedabad, India. Science of the Total Environment, 2021, 792, 148367.	3.9	42
377	Shedding light on toxicity of SARS-CoV-2 peptides in aquatic biota: A study involving neotropical mosquito larvae (Diptera: Culicidae). Environmental Pollution, 2021, 289, 117818.	3.7	11
378	SARS-CoV-2 detection in wastewater using multiplex quantitative PCR. Science of the Total Environment, 2021, 797, 148890.	3.9	19
379	Evaluation of low-cost viral concentration methods in wastewaters: Implications for SARS-CoV-2 pandemic surveillances. Journal of Virological Methods, 2021, 297, 114249.	1.0	12
380	The existence, spread, and strategies for environmental monitoring and control of SARS-CoV-2 in environmental media. Science of the Total Environment, 2021, 795, 148949.	3.9	4

#	Article	IF	CITATIONS
381	A direct capture method for purification and detection of viral nucleic acid enables epidemiological surveillance of SARS-CoV-2. Science of the Total Environment, 2021, 795, 148834.	3.9	37
382	City-level SARS-CoV-2 sewage surveillance. Chemosphere, 2021, 283, 131194.	4.2	28
383	Somatic coliphages are conservative indicators of SARS-CoV-2 inactivation during heat and alkaline pH treatments. Science of the Total Environment, 2021, 797, 149112.	3.9	17
384	SARS-CoV-2 spillover into hospital outdoor environments. Journal of Hazardous Materials Letters, 2021, 2, 100027.	2.0	33
385	Prevalence of SARS-CoV-2 genes in water reclamation facilities: From influent to anaerobic digester. Science of the Total Environment, 2021, 796, 148905.	3.9	11
386	Monitoring of SARS-CoV-2 RNA in wastewater as an epidemiological surveillance tool in Mendoza, Argentina. Science of the Total Environment, 2021, 796, 148887.	3.9	34
387	Prevalence of human pathogenic viruses in wastewater: A potential transmission risk as well as an effective tool for early outbreak detection for COVID-19. Journal of Environmental Management, 2021, 298, 113486.	3.8	16
388	Diagnosis of COVID-19, vitality of emerging technologies and preventive measures. Chemical Engineering Journal, 2021, 423, 130189.	6.6	38
389	SARS-CoV-2 concentrations in a wastewater collection system indicated potential COVID-19 hotspots at the zip code level. Science of the Total Environment, 2021, 800, 149480.	3.9	22
390	Lessons learned from SARS-CoV-2 measurements in wastewater. Science of the Total Environment, 2021, 798, 149177.	3.9	36
391	Reflections of COVID-19 cases in the wastewater loading of SARS-CoV-2 RNA: A case of three major cities of Gujarat, India. Case Studies in Chemical and Environmental Engineering, 2021, 4, 100115.	2.9	17
392	Dynamics of SARS-CoV-2 in wastewater in three districts of the Buenos Aires metropolitan region, Argentina, throughout nine months of surveillance: A pilot study. Science of the Total Environment, 2021, 800, 149578.	3.9	28
393	A two-year study of emerging micro-pollutants and drugs of abuse in two Western Cape wastewater treatment works (South Africa). Chemosphere, 2021, 285, 131460.	4.2	20
394	Droplet digital RT-PCR to detect SARS-CoV-2 signature mutations of variants of concern in wastewater. Science of the Total Environment, 2021, 799, 149456.	3.9	92
395	Systematic assessment of SARS-CoV-2 virus in wastewater, rivers and drinking water – A catchment-wide appraisal. Science of the Total Environment, 2021, 800, 149298.	3.9	8
396	On the Critical Role of Human Feces and Public Toilets in the Transmission of COVID-19: Evidence from China. Sustainable Cities and Society, 2021, 75, 103350.	5.1	19
397	SARS-CoV-2 in a stream running through an underprivileged, underserved, urban settlement in São Paulo, Brazil: A 7-month follow-up. Environmental Pollution, 2021, 290, 118003.	3.7	7
398	Change in the chemical content of untreated wastewater of Athens, Greece under COVID-19 pandemic. Science of the Total Environment, 2021, 799, 149230.	3.9	61

		Citation R	EPORT	
#	Article		IF	CITATIONS
399	An innovative approach for the non-invasive surveillance of communities and early dete SARS-CoV-2 via solid waste analysis. Science of the Total Environment, 2021, 801, 149	ection of 1743.	3.9	7
400	First comparison of conventional activated sludge versus root-zone treatment for SAR removal from wastewaters: Statistical and temporal significance. Chemical Engineering 425, 130635.	S-CoV-2 RNA g Journal, 2021,	6.6	26
401	A review on detection of SARS-CoV-2 RNA in wastewater in light of the current knowle treatment process for removal of viral fragments. Journal of Environmental Manageme 113563.	dge of nt, 2021, 299,	3.8	37
402	COVID-19 wastewater surveillance in rural communities: Comparison of lagoon and pu samples. Science of the Total Environment, 2021, 801, 149618.	mping station	3.9	36
403	Enumerating asymptomatic COVID-19 cases and estimating SARS-CoV-2 fecal sheddin wastewater-based epidemiology. Science of the Total Environment, 2021, 801, 14979	g rates via 4.	3.9	83
404	SARS-CoV-2 RNA concentrations in wastewater foreshadow dynamics and clinical pres COVID-19 cases. Science of the Total Environment, 2022, 805, 150121.	entation of new	3.9	192
405	Viral outbreaks detection and surveillance using wastewater-based epidemiology, viral and machine learning techniques: A comprehensive review and outlook. Science of the Environment, 2022, 803, 149834.	air sampling, Total	3.9	48
406	Building knowledge of university campus population dynamics to enhance near-to-sou surveillance for SARS-CoV-2 detection. Science of the Total Environment, 2022, 806, 1	rce sewage 50406.	3.9	22
407	Population balance modeling of homogeneous viral aggregation. Chemical Engineering 247, 117035.	g Science, 2022,	1.9	4
408	SARS-CoV-2 wastewater surveillance data can predict hospitalizations and ICU admissi the Total Environment, 2022, 804, 150151.	ons. Science of	3.9	116
409	Monitoring SARS-CoV-2 in sewage: Toward sentinels with analytical accuracy. Science Environment, 2022, 804, 150244.	of the Total	3.9	13
410	Passive sampling, a practical method for wastewater-based surveillance of SARS-CoV-2 Research, 2022, 204, 112058.	. Environmental	3.7	35
411	Spectre of SARS-CoV-2 RNA in the ambient urban waters of Ahmedabad and Guwahati Indian cities. Environmental Research, 2022, 204, 112067.	: A tale of two	3.7	14
412	Associations between SARS-CoV-2 RNA concentrations in wastewater and COVID-19 rasampling in small urban areas of Seville: A time series study. Science of the Total Enviro 806, 150573.	ates in days after onment, 2022,	3.9	18
413	Wastewater surveillance to infer COVID-19 transmission: A systematic review. Science Environment, 2022, 804, 150060.	of the Total	3.9	124
414	Effect of selected wastewater characteristics on estimation of SARS-CoV-2 viral load in Environmental Research, 2022, 203, 111877.	wastewater.	3.7	29
415	SARS-CoV-2 and other pathogens in municipal wastewater, landfill leachate, and solid about virus surveillance, infectivity, and inactivation. Environmental Research, 2022, 20	waste: A review 03, 111839.	3.7	75
416	Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for waste surveillance. Science of the Total Environment, 2022, 805, 149877.	water	3.9	153

#	Article	IF	CITATIONS
417	A wastewater-based epidemiology tool for COVID-19 surveillance in Portugal. Science of the Total Environment, 2022, 804, 150264.	3.9	41
418	Environmental surveillance of SARS-CoV-2 RNA in wastewater systems and related environments in Wuhan: April to May of 2020. Journal of Environmental Sciences, 2022, 112, 115-120.	3.2	32
419	Analytical performance comparison of four SARS-CoV-2 RT-qPCR primer-probe sets for wastewater samples. Science of the Total Environment, 2022, 806, 150572.	3.9	10
420	SARS-CoV-2 detection in wastewater as an early warning indicator for COVID-19 pandemic. Madrid region case study. Environmental Research, 2022, 203, 111852.	3.7	30
421	Inactivation efficacy and mechanism of pulsed corona discharge plasma on virus in water. Journal of Hazardous Materials, 2022, 422, 126906.	6.5	24
422	Development of a rapid pre-concentration protocol and a magnetic beads-based RNA extraction method for SARS-CoV-2 detection in raw municipal wastewater. Environmental Science: Water Research and Technology, 2021, 8, 47-61.	1.2	14
423	Addressing associated risks of COVID-19 infections across water and wastewater service chain in Asia. , 2021, , 103-114.		0
425	Wastewater monitoring for SARS-CoV-2. Microbiology Australia, 2021, 42, 18.	0.1	5
426	Impediments of coronavirus in healthcare wastewater treatment and ways to ameliorate them. , 2021, , 177-206.		2
427	A review of the impact of environmental factors on the fate and transport of coronaviruses in aqueous environments. Npj Clean Water, 2021, 4, .	3.1	35
428	COVID-19 epidemiologic surveillance using wastewater. Environmental Chemistry Letters, 2021, 19, 1911-1915.	8.3	22
429	Genome Sequencing of Sewage Detects Regionally Prevalent SARS-CoV-2 Variants. MBio, 2021, 12, .	1.8	284
430	Wastewater-based epidemiology—surveillance and early detection of waterborne pathogens with a focus on SARS-CoV-2, Cryptosporidium and Giardia. Parasitology Research, 2021, 120, 4167-4188.	0.6	55
433	The presence of SARS-CoV-2 in raw and treated wastewater in 3 cities of Iran: Tehran, Qom and Anzali during coronavirus disease 2019 (COVID-19) outbreak. Journal of Environmental Health Science & Engineering, 2021, 19, 573-584.	1.4	41
434	Paper-based devices for rapid diagnostics and testing sewage for early warning of COVID-19 outbreak. Case Studies in Chemical and Environmental Engineering, 2020, 2, 100064.	2.9	31
464	A szennyvÃz alapú epidemiológia jelentÅ'sége a COVID–19 jÃ;rvÃ;nyban és azon túl. Scientia Et Securit 2021, 2, 30-37.	as. 0.1	0
465	Monitoramento do esgoto como ferramenta de vigilância epidemiológica para controle da COVID-19: estudo de caso na cidade de Belo Horizonte. Engenharia Sanitaria E Ambiental, 2021, 26, 691-699.	0.1	5
466	SARS–CoV–2 and Food—How Confident Are We about Them?. Hygiene, 2021, 1, 80-98.	0.5	1

#	Article	IF	CITATIONS
467	Robust Evaluation of Ultraviolet-C Sensitivity for SARS-CoV-2 and Surrogate Coronaviruses. Microbiology Spectrum, 2021, 9, e0053721.	1.2	15
468	Retrospective epidemiological analysis of SARS-CoV-2 wastewater surveillance and case notifications data – New South Wales, Australia, 2020. Journal of Water and Health, 2022, 20, 103-113.	1.1	4
469	SARS-CoV-2 RNA surveillance in large to small centralized wastewater treatment plants preceding the third COVID-19 resurgence in Bangkok, Thailand. Science of the Total Environment, 2022, 809, 151169.	3.9	37
471	Insights into Gastrointestinal Virome: Etiology and Public Exposure. Water (Switzerland), 2021, 13, 2794.	1.2	5
472	Another casualty of the SARS-CoV-2 pandemic—the environmental impact. Environmental Science and Pollution Research, 2022, 29, 1696-1711.	2.7	7
473	Changes in Sewage Sludge Chemical Signatures During a COVIDâ€19 Community Lockdown, Part 1: Traffic, Drugs, Mental Health, and Disinfectants. Environmental Toxicology and Chemistry, 2022, 41, 1179-1192.	2.2	22
474	Coronaviruses and SARS-CoV-2 in sewerage and their removal: Step by step in wastewater treatment plants. Environmental Research, 2022, 207, 112204.	3.7	27
475	Persistence and occurrence of SARS-CoV-2 in water and wastewater environments: a review of the current literature. Environmental Science and Pollution Research, 2022, 29, 85658-85668.	2.7	18
476	SARS-CoV-2 surveillance in untreated wastewater: detection of viral RNA in a low-resource community in Buenos Aires, Argentina. Revista Panamericana De Salud Publica/Pan American Journal of Public Health, 2021, 45, 1.	0.6	16
477	Strategy and Performance Evaluation of Low-Frequency Variant Calling for SARS-CoV-2 Using Targeted Deep Illumina Sequencing. Frontiers in Microbiology, 2021, 12, 747458.	1.5	15
478	SARS-CoV-2 RNA in urban wastewater samples to monitor the COVID-19 pandemic in Lombardy, Italy (March–June 2020). Science of the Total Environment, 2022, 806, 150816.	3.9	17
479	Wastewater surveillance of SARS-CoV-2 corroborates heightened community infection during the initial peak of COVID-19 in Bexar County, Texas. FEMS Microbes, 2021, 2, .	0.8	6
480	Wastewater-Based Epidemiology for Cost-Effective Mass Surveillance of COVID-19 in Low- and Middle-Income Countries: Challenges and Opportunities. Water (Switzerland), 2021, 13, 2897.	1.2	30
481	Quest for Optimal Regression Models in SARS-CoV-2 Wastewater Based Epidemiology. International Journal of Environmental Research and Public Health, 2021, 18, 10778.	1.2	23
482	Averting an Outbreak of SARS-CoV-2 in a University Residence Hall through Wastewater Surveillance. Microbiology Spectrum, 2021, 9, e0079221.	1.2	47
483	Detection of SARS-CoV-2 in the sewerage system inÂTunisia: a promising tool to confront COVID-19 pandemic. Future Virology, 2021, 16, 751-759.	0.9	9
484	Preparing for COVID-2x: Urban Planning Needs to Regard Urological Wastewater as an Invaluable Communal Public Health Asset and Not as a Burden. Urban Science, 2021, 5, 75.	1.1	4
485	Assessment of SARS-CoV-2 Stability in human and environmental matrices, and potential hazards. International Journal of Environmental Health Research, 2023, 33, 1-14.	1.3	5

ARTICLE IF CITATIONS Seizing the moment: now is the time for integrated global surveillance of antimicrobial resistance in 486 2.3 53 wastewater environments. Current Opinion in Microbiology, 2021, 64, 91-99. Formulation and evaluation of organo-mineral fertilizers based on sewage sludge optimized for maize 487 3.7 and sunflower crops. Waste Management, 2021, 136, 57-66. Genome Sequencing of SARS-CoV-2 Allows Monitoring of Variants of Concern through Wastewater. 491 1.2 21 Water (Switzerland), 2021, 13, 3018. Surveillance of SARS-CoV-2 in extensive monitoring of municipal wastewater: key issues to yield 1.2 reliable results. Water Science and Technology, 2021, 84, 3508-3514. Systematic Review and Meta-Analysis of the Persistence of Enveloped Viruses in Environmental Waters 494 and Wastewater in the Absence of Disinfectants. Environmental Science & amp; Technology, 2021, 55, 4.6 40 14480-14493. COVID-19 PANDEMİSİNİN ćEVRE ÜZERİNDEKİ ERKEN DÖNEM ETKİLERİ. UludaÄŸ University Journal of, the Faculty of Engineering, 0, , 1611-1636. Relating SARS-CoV-2 shedding rate in wastewater to daily positive tests data: A consistent model based 498 3.9 23 approach. Science of the Total Environment, 2022, 807, 150838. Long-term surveillance of wastewater SARS-CoV-2 in Los Angeles County. Environmental Science: 400 1.2 Water Research and Technology, 2021, 7, 2282-2294. A State-of-the-Art Scoping Review on SARS-CoV-2 in Sewage Focusing on the Potential of Wastewater 500 Surveillance for the Monitoring of the COVID-19 Pandemic. Food and Environmental Virology, 2022, 14, 1.5 47 315-354. Wastewater-based epidemiology: current uses and future opportunities as a public health surveillance tool. Environmental Health Review, 2021, 64, 44-52. Validating and optimizing the method for molecular detection and quantification of SARS-CoV-2 in 502 3.9 30 wastewater. Science of the Total Environment, 2022, 812, 151434. Site Specific Relationships between COVID-19 Cases and SARS-CoV-2 Viral Load in Wastewater Treatment 4.6 38 Plant Influent. Environmental Science & amp; Technology, 2021, 55, 15276-15286. Changes in Sewage Sludge Chemical Signatures During a COVIDâ€19 Community Lockdown, Part 2: 504 Nontargeted Analysis of Sludge and Evaluation with COVIDâ€19 Metrics. Environmental Toxicology and 2.2 4 Chemistry, 2021, , . Strategy to Develop and Evaluate a Multiplex RT-ddPCR in Response to SARS-CoV-2 Genomic Evolution. Current Issues in Molecular Biology, 2021, 43, 1937-1949. 1.0 Predicting COVID-19 cases in diverse population groups using SARS-CoV-2 wastewater monitoring 506 3.9 16 across Oklahoma City. Science of the Total Environment, 2022, 812, 151431. Antibiotic resistance in the environment. Nature Reviews Microbiology, 2022, 20, 257-269. A nationwide indicator to smooth and normalize heterogeneous SARS-CoV-2 RNA data in wastewater. 512 4.8 31 Environment International, 2022, 158, 106998. SERS biosensors based on cucurbituril-mediated nanoaggregates for wastewater-based epidemiology. 5.8 TrAC - Trends in Analytical Chemistry, 2022, 146, 116485

#	Article	IF	CITATIONS
514	Hydrothermal carbonization process: Fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. A review. Renewable and Sustainable Energy Reviews, 2022, 154, 111873.	8.2	63
515	Field study of the indoor environments for preventing the spread of the SARS oVâ€2 in Seoul. Indoor Air, 2022, 32, .	2.0	4
516	Spatial and Temporal Trends of SARS-CoV-2 RNA from Wastewater Treatment Plants over 6 Weeks in Cape Town, South Africa. International Journal of Environmental Research and Public Health, 2021, 18, 12085.	1.2	16
518	Reliability of Wastewater Analysis for Monitoring COVID-19 Incidence Revealed by a Long-Term Follow-Up Study. Frontiers in Virology, 2021, 1, .	0.7	9
519	Nanofiltration for drinking water treatment: a review. Frontiers of Chemical Science and Engineering, 2022, 16, 681-698.	2.3	77
520	Wastewater-based epidemiology: a new frontier for tracking environmental persistence and community transmission of COVID-19. Environmental Science and Pollution Research, 2022, 29, 85688-85699.	2.7	5
521	Water Analysis: Emerging Contaminants and Current Issues. Analytical Chemistry, 2022, 94, 382-416.	3.2	92
522	Detection and abundance of SARS-CoV-2 in wastewater in Liechtenstein, and the estimation of prevalence and impact of the B.1.1.7 variant. Journal of Water and Health, 2022, 20, 114-125.	1.1	18
523	Comparison of residential dormitory COVID-19 monitoring via weekly saliva testing and sewage monitoring. Science of the Total Environment, 2022, 814, 151947.	3.9	28
524	Point-of-Care Testing—The Key in the Battle against SARS-CoV-2 Pandemic. Micromachines, 2021, 12, 1464.	1.4	18
525	Emerging Trends in the Epidemiology of COVID-19: The Croatian â€~One Health' Perspective. Viruses, 2021, 13, 2354.	1.5	10
529	Waste and Health: Sewage Sludge and Its Hazard to Human. , 2022, , 135-158.		2
531	Proposed approaches for coronaviruses elimination from wastewater: Membrane techniques and nanotechnology solutions. Nanotechnology Reviews, 2021, 11, 1-25.	2.6	11
532	Evaluation of a Virus Concentration Method Based on Ultrafiltration and Wet Foam Elution for Studying Viruses from Large-Volume Water Samples. SSRN Electronic Journal, 0, , .	0.4	0
533	Suspect Screening of Wastewaters to Trace Anti-Covid-19 Drugs: Potential Adverse Effects on Aquatic Environment. SSRN Electronic Journal, 0, , .	0.4	0
534	Selection of Surrogate Viruses for Process Control in Detection of Sars-Cov-2 in Wastewater. SSRN Electronic Journal, 0, , .	0.4	0
535	Longitudinal, virological, and serological assessment of hospitalized COVID-19 patients. Journal of NeuroVirology, 2022, , 1.	1.0	2
536	A review of the potential of conventional and advanced membrane technology in the removal of pathogens from wastewater. Separation and Purification Technology, 2022, 286, 120454.	3.9	43

#	Article	IF	CITATIONS
537	Evaluation of multiple analytical methods for SARS-CoV-2 surveillance in wastewater samples. Science of the Total Environment, 2022, 808, 152033.	3.9	41
538	Interactions between virus surrogates and sewage sludge vary by viral analyte: Recovery, persistence, and sorption. Water Research, 2022, 210, 117995.	5.3	23
539	SARS-CoV-2 wastewater surveillance in Germany: Long-term RT-digital droplet PCR monitoring, suitability of primer/probe combinations and biomarker stability. Water Research, 2022, 210, 117977.	5.3	40
540	Recovery of SARS-CoV-2 from large volumes of raw wastewater is enhanced with the inuvai R180 system. Journal of Environmental Management, 2022, 304, 114296.	3.8	6
541	Indirect effects of COVID-19 on the environment: How deep and how long?. Science of the Total Environment, 2022, 810, 152255.	3.9	16
542	Occupational health outcomes among sanitation workers: A systematic review and meta-analysis. International Journal of Hygiene and Environmental Health, 2022, 240, 113907.	2.1	14
543	Modeling the number of people infected with SARS-COV-2 from wastewater viral load in Northwest Spain. Science of the Total Environment, 2022, 811, 152334.	3.9	42
544	Association of SARS-CoV-2 presence in sewage with public adherence to precautionary measures and reported COVID-19 prevalence in Tehran. Science of the Total Environment, 2022, 812, 152597.	3.9	11
545	Discrimination and surveillance of infectious severe acute respiratory syndrome Coronavirus 2 in wastewater using cell culture and RT-qPCR. Science of the Total Environment, 2022, 815, 152914.	3.9	18
546	SARS-CoV-2 circulation in Croatian wastewaters and the absence of SARS-CoV-2 in bivalve molluscan shellfish. Environmental Research, 2022, 207, 112638.	3.7	4
547	A Review of COVID-19 Survival Potential in Food and Prevention Approaches. Infection, Epidemiology and Microbiology, 2020, 6, 311-326.	0.0	0
548	Predicting daily COVID-19 case rates from SARS-CoV-2 RNA concentrations across a diversity of wastewater catchments. FEMS Microbes, 2022, 2, xtab022.	0.8	19
549	Challenges and emerging perspectives of an international SARS-CoV-2 epidemiological surveillance in wastewater. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20210163.	0.3	2
550	Monitoring of SARS-CoV-2 Variants by Wastewater-Based Surveillance as a Sustainable and Pragmatic Approach—A Case Study of Jaipur (India). Water (Switzerland), 2022, 14, 297.	1.2	11
551	Wastewater surveillance of SARS-CoV-2 in Austria: development, implementation, and operation of the Tyrolean wastewater monitoring program. Journal of Water and Health, 2022, 20, 314-328.	1.1	11
552	Policy and behavioral response to shock events: An agent-based model of the effectiveness and equity of policy design features. PLoS ONE, 2022, 17, e0262172.	1.1	6
554	Coprostanol as a Population Biomarker for SARS-CoV-2 Wastewater Surveillance Studies. Water (Switzerland), 2022, 14, 225.	1.2	5
555	SARS-CoV-2 detection from the built environment and wastewater and its use for hospital surveillance. Facets, 2022, 7, 82-97.	1.1	15

#	Article	IF	CITATIONS
556	Greywater as an Alternative Solution for a Sustainable Management of Water Resources—A Review. Sustainability, 2022, 14, 665.	1.6	18
557	A Review on the Potential of Common Disinfection Processes for the Removal of Virus from Wastewater. International Journal of Environmental Research, 2022, 16, 9.	1.1	9
558	Utilization of SARS-CoV-2 Wastewater Surveillance in Africa—A Rapid Review. International Journal of Environmental Research and Public Health, 2022, 19, 969.	1.2	17
559	Norovirus detection in wastewater and its correlation with human gastroenteritis: a systematic review and meta-analysis. Environmental Science and Pollution Research, 2022, 29, 22829-22842.	2.7	25
560	Surveillance of SARS-CoV-2 RNA in open-water sewage canals contaminated with untreated wastewater in resource-constrained regions. Access Microbiology, 2022, 4, 000318.	0.2	7
561	Surveillance of RNase P, PMMoV, and CrAssphage in wastewater as indicators of human fecal concentration across urban sewer neighborhoods, Kentucky. FEMS Microbes, 2022, 3, .	0.8	25
562	Comparison of RT-qPCR and RT-dPCR Platforms for the Trace Detection of SARS-CoV-2 RNA in Wastewater. ACS ES&T Water, 2022, 2, 1871-1880.	2.3	51
563	Use of ozonation technology to combat viruses and bacteria in aquatic environments: problems and application perspectives for SARS-CoV-2. Environmental Technology (United Kingdom), 2023, 44, 2490-2502.	1.2	7
564	Microplastics and Macroplastic Debris as Potential Physical Vectors of SARS-CoV-2: A Hypothetical Overview with Implications for Public Health. Microplastics, 2022, 1, 156-166.	1.6	10
565	Laser-Induced Graphene (LIG) as a Smart and Sustainable Material to Restrain Pandemics and Endemics: A Perspective. ACS Omega, 2022, 7, 5112-5130.	1.6	26
566	SARS-CoV-2 in wastewater: From detection to evaluation. Materials Today Advances, 2022, 13, 100211.	2.5	15
567	Spatial and temporal distribution of SARS-CoV-2 diversity circulating in wastewater. Water Research, 2022, 211, 118007.	5.3	37
568	Reduction and liquid-solid partitioning of SARS-CoV-2 and adenovirus throughout the different stages of a pilot-scale wastewater treatment plant. Water Research, 2022, 212, 118069.	5.3	15
569	Metrics to relate COVID-19 wastewater data to clinical testing dynamics. Water Research, 2022, 212, 118070.	5.3	68
570	Persistence of SARS-CoV-2 RNA in wastewater after the end of the COVID-19 epidemics. Journal of Hazardous Materials, 2022, 429, 128358.	6.5	38
571	An assessment of hospital wastewater and biomedical waste generation, existing legislations, risk assessment, treatment processes, and scenario during COVID-19. Journal of Environmental Management, 2022, 308, 114609.	3.8	47
572	Pasteurization, storage conditions and viral concentration methods influence RT-qPCR detection of SARS-CoV-2 RNA in wastewater. Science of the Total Environment, 2022, 821, 153228.	3.9	15
573	Factors influencing SARS-CoV-2 RNA concentrations in wastewater up to the sampling stage: A systematic review. Science of the Total Environment, 2022, 820, 153290.	3.9	55

	CITATION R	EPORT	
#	Article	IF	CITATIONS
574	Contribution of magnetic particles in molecular diagnosis of human viruses. Talanta, 2022, 241, 123243.	2.9	13
575	The practicality and prospects for disinfection control by photocatalysis during and post-pandemic: A critical review. Environmental Research, 2022, 209, 112814.	3.7	24
576	Use of sewage surveillance for COVID-19 to guide public health response: A case study in Hong Kong. Science of the Total Environment, 2022, 821, 153250.	3.9	31
577	Passively sensing SARS-CoV-2 RNA in public transit buses. Science of the Total Environment, 2022, 821, 152790.	3.9	6
579	LIGHTING THE POPULATIONAL IMPACT OF COVID-19 VACCINES IN BRAZIL. Fractals, 2022, 30, .	1.8	14
580	Wastewater analysis can be a powerful public health tool—if it's done sensibly. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	58
581	Comparison of virus concentration methods and RNA extraction methods for SARS-CoV-2 wastewater surveillance. Science of the Total Environment, 2022, 824, 153687.	3.9	49
582	Establishment of local wastewater-based surveillance programmes in response to the spread and infection of COVID-19 – case studies from South Africa, the Netherlands, Turkey and England. Journal of Water and Health, 2022, 20, 287-299.	1.1	15
583	Development and Validation of the Skimmed Milk Pellet Extraction Protocol for SARS-CoV-2 Wastewater Surveillance. Food and Environmental Virology, 2022, 14, 355-363.	1.5	9
584	Prevalence and circulation patterns of SARS-CoV-2 variants in European sewage mirror clinical data of 54 European cities. Water Research, 2022, 214, 118162.	5.3	45
585	Suspect screening of wastewaters to trace anti-COVID-19 drugs: Potential adverse effects on aquatic environment. Science of the Total Environment, 2022, 824, 153756.	3.9	23
586	Clinical and experimental bacteriophage studies: Recommendations for possible approaches for standing against SARS-CoV-2. Microbial Pathogenesis, 2022, 164, 105442.	1.3	21
587	Detection of SARS-CoV-2 RNA in wastewater, river water, and hospital wastewater of Nepal. Science of the Total Environment, 2022, 824, 153816.	3.9	34
588	One-year surveillance of SARS-CoV-2 in wastewater from vulnerable urban communities in metropolitan São Paulo, Brazil. Journal of Water and Health, 2022, 20, 471-490.	1.1	14
589	Sensitivity of wastewater-based epidemiology for detection of SARS-CoV-2 RNA in a low prevalence setting. Water Research, 2022, 211, 118032.	5.3	33
590	Evaluation of process limit of detection and quantification variation of SARS-CoV-2 RT-qPCR and RT-dPCR assays for wastewater surveillance. Water Research, 2022, 213, 118132.	5.3	46
591	Selection of surrogate viruses for process control in detection of SARS-CoV-2 in wastewater. Science of the Total Environment, 2022, 823, 153737.	3.9	24
592	Padronização de método de concentração e extração de ácidos nucleicos em amostras de esgoto sanitário: uma ferramenta de baixo custo para ser utilizada na vigilância epidemiológica de SARS-CoV-2. Engenharia Sanitaria E Ambiental, 2021, 26, 1043-1049.	0.1	2

#	Article	IF	CITATIONS
594	DEVELOPMENT AND FIELD VERIFICATION OF NOVEL PASSIVE SAMPLER FOR EARLY DETECTION OF SARS-CoV-2 PATIENT FOR INDIVIDUAL BUILDING WASTEWATER. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2021, 77, III_179-III_190.	0.1	0
595	Establishment of an infectivity assay for SARS-CoV-2 to manage risks derived from wastewater during COVID-19 pandemic. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2021, 77, III_191-III_197.	0.1	0
596	SARS-CoV-2 RNA is enriched by orders of magnitude in primary settled solids relative to liquid wastewater at publicly owned treatment works. Environmental Science: Water Research and Technology, 2022, 8, 757-770.	1.2	46
599	First Detection of SARS-CoV-2 Omicron Variant Using Nanopore Sequencing in Wastewater of Foz Do Iguassu-Brazil. SSRN Electronic Journal, 0, , .	0.4	0
600	Operationalizing a routine wastewater monitoring laboratory for SARS-CoV-2. , 2022, 1, e0000007.		19
602	Comparison of analytical sensitivity and efficiency for SARS-CoV-2 primer sets by TaqMan-based and SYBR Green-based RT-qPCR. Applied Microbiology and Biotechnology, 2022, 106, 2207-2218.	1.7	8
603	Longitudinal and Long-Term Wastewater Surveillance for COVID-19: Infection Dynamics and Zoning of Urban Community. International Journal of Environmental Research and Public Health, 2022, 19, 2697.	1.2	6
604	A Simple Method to Detect SARS-CoV-2 in Wastewater at Low Virus Concentration. Journal of Environmental and Public Health, 2022, 2022, 1-7.	0.4	13
605	The Detection of SARS-CoV-2 in the Environment: Lessons from Wastewater. Water (Switzerland), 2022, 14, 599.	1.2	3
606	A safe haven of SARS-CoV-2 in the environment: Prevalence and potential transmission risks in the effluent, sludge, and biosolids. Geoscience Frontiers, 2022, 13, 101373.	4.3	9
607	Wastewater surveillance of SARS-CoV-2 in Bangladesh: Opportunities and challenges. Current Opinion in Environmental Science and Health, 2022, 27, 100334.	2.1	8
608	Risk of activation of human viruses lurking in ambient following COVID-19 prevention supplies excessive use. , 2022, 3, 011-015.		0
609	How Is Mass Spectrometry Tackling the COVID-19 Pandemic?. Frontiers in Analytical Science, 2022, 2, .	1,1	3
610	Review and Metaâ€Analysis: SARSâ€CoVâ€2 and Enveloped Virus Detection in Feces and Wastewater. ChemBioEng Reviews, 2022, 9, 129-145.	2.6	6
611	Coupling freedom from disease principles and early warning from wastewater surveillance to improve health security. , 2022, 1, .		13
612	Efficacy of SARS-CoV-2 wastewater surveillance for detection of COVID-19 at a residential private college. FEMS Microbes, 2022, 3, .	0.8	3
613	Optimization and Application of a Multiplex Digital PCR Assay for the Detection of SARS-CoV-2 Variants of Concern in Belgian Influent Wastewater. Viruses, 2022, 14, 610.	1.5	12
614	Monitoring of SARS-CoV-2 in wastewater: what normalisation for improved understanding of epidemic trends?. Journal of Water and Health, 2022, 20, 712-726.	1.1	9

#	Article	IF	CITATIONS
616	Photoinactivation of Phage Phi6 as a SARS-CoV-2 Model in Wastewater: Evidence of Efficacy and Safety. Microorganisms, 2022, 10, 659.	1.6	12
617	Water, Sanitation and Hygiene in Schools in Low- and Middle-Income Countries: A Systematic Review and Implications for the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 2022, 19, 3124.	1.2	7
619	Comparison of Auto Sampling and Passive Sampling Methods for SARS-CoV-2 Detection in Wastewater. Pathogens, 2022, 11, 359.	1.2	14
620	Evaluating the Use of Alternative Normalization Approaches on SARS-CoV-2 Concentrations in Wastewater: Experiences from Two Catchments in Northern Sweden. Environments - MDPI, 2022, 9, 39.	1.5	21
621	Association Between SARS-CoV-2 Viral Load in Wastewater and Reported Cases, Hospitalizations, and Vaccinations in Milan, March 2020 to November 2021. JAMA - Journal of the American Medical Association, 2022, 327, 1922.	3.8	19
622	Successful application of wastewater-based epidemiology in prediction and monitoring of the second wave of COVID-19 with fragmented sewerage systems–a case study of Jaipur (India). Environmental Monitoring and Assessment, 2022, 194, 342.	1.3	11
623	Unlocking capacities of genomics for the COVID-19 response and future pandemics. Nature Methods, 2022, 19, 374-380.	9.0	35
624	Identification coronavirus (SARS-CoV-2) and physicochemical qualities in various water sources and the efficiency of water treatment plants in their removal- case study: Northwest region of Iran. Applied Water Science, 2022, 12, 89.	2.8	7
626	A wastewater-based epidemic model for SARS-CoV-2 with application to three Canadian cities. Epidemics, 2022, 39, 100560.	1.5	53
628	Wastewater as an information source of COVID-19. Science Bulletin, 2022, 67, 1090-1092.	4.3	10
629	Ferrate (VI), Fenton Reaction and Its Modification: An Effective Method of Removing SARS-CoV-2 RNA from Hospital Wastewater. Pathogens, 2022, 11, 450.	1.2	2
630	Detection and quantification of SARS-CoV-2 RNA in wastewater influent in relation to reported COVID-19 incidence in Finland. Water Research, 2022, 215, 118220.	5.3	48
631	Emergence of SARS-CoV-2 Alpha lineage and its correlation with quantitative wastewater-based epidemiology data. Water Research, 2022, 215, 118257.	5.3	17
632	Opportunities and limits of wastewater-based epidemiology for tracking global health and attainment of UN sustainable development goals. Environment International, 2022, 163, 107217.	4.8	41
633	Wastewater-based epidemiology for early warning of SARS-COV-2 circulation: A pilot study conducted in Sicily, Italy. International Journal of Hygiene and Environmental Health, 2022, 242, 113948.	2.1	17
634	Sampling strategies for wastewater surveillance: Evaluating the variability of SARS-COV-2 RNA concentration in composite and grab samples. Journal of Environmental Chemical Engineering, 2022, 10, 107478.	3.3	31
635	Detection of SARS-CoV-2 RNA throughout wastewater treatment plants and a modeling approach to understand COVID-19 infection dynamics in Winnipeg, Canada. Science of the Total Environment, 2022, 825, 153906.	3.9	12
636	Development of an efficient wastewater testing protocol for high-throughput country-wide SARS-CoV-2 monitoring. Science of the Total Environment, 2022, 826, 154024.	3.9	17

#	Article	IF	CITATIONS
637	Monitoring COVID-19 spread in Prague local neighborhoods based on the presence of SARS-CoV-2 RNA in wastewater collected throughout the sewer network. Water Research, 2022, 216, 118343.	5.3	19
638	First case of SARS-CoV-2 RNA detection in municipal solid waste leachate from Brazil. Science of the Total Environment, 2022, 824, 153927.	3.9	5
639	Influence of wastewater treatment technologies on virus removal under a bibliometric-statistical analysis. Journal of Water Process Engineering, 2022, 47, 102642.	2.6	8
640	Dynamics of SARS-CoV-2 spreading under the influence of environmental factors and strategies to tackle the pandemic: A systematic review. Sustainable Cities and Society, 2022, 81, 103840.	5.1	20
641	Loop-mediated isothermal amplification-based electrochemical sensor for detecting SARS-CoV-2 in wastewater samples. Journal of Environmental Chemical Engineering, 2022, 10, 107488.	3.3	37
642	Evaluation of a virus concentration method based on ultrafiltration and wet foam elution for studying viruses from large-volume water samples. Science of the Total Environment, 2022, 829, 154431.	3.9	5
643	Acquired insights from the long-term surveillance of SARS-CoV-2 RNA for COVID-19 monitoring: The case of Monterrey Metropolitan Area (Mexico). Environmental Research, 2022, 210, 112967.	3.7	11
644	Can wastewater surveillance assist China to cost-effectively prevent the nationwide outbreak of COVID-19?. Science of the Total Environment, 2022, 829, 154719.	3.9	6
645	Lead time of early warning by wastewater surveillance for COVID-19: Geographical variations and impacting factors. Chemical Engineering Journal, 2022, 441, 135936.	6.6	40
647	Monitoring the Viral Transmission of SARS-CoV-2 in Still Waterbodies Using a Lanthanide-Doped Carbon Nanoparticle-Based Sensor Array. ACS Sustainable Chemistry and Engineering, 2022, 10, 245-258.	3.2	17
648	Possibility of Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) through Wastewater in Developing Countries. Water (Switzerland), 2021, 13, 3412.	1.2	3
649	Evolution of Diagnostic Methods and Prevalence Detection of COVID-19: A Review. , 0, , .		0
650	Sorption of SARS-CoV-2 Virus Particles to the Surface of Microplastics Released during Washing Processes. International Journal of Environmental Research and Public Health, 2022, 19, 281.	1.2	6
653	Surveillance of SARS-CoV-2 in Sewage Treatment Plants between January 2020 and July 2021 in Taiwan. Pathogens, 2021, 10, 1611.	1.2	2
654	Did Climate Change Influence the Emergence, Transmission, and Expression of the COVID-19 Pandemic?. Frontiers in Medicine, 2021, 8, 769208.	1.2	17
655	Simple Affinity-Based Method for Concentrating Viruses from Wastewater Using Engineered Curli Fibers. ACS ES&T Water, 2022, 2, 1836-1843.	2.3	3
656	Monitoring COVIDâ€19 through SARS oVâ€2 quantification in wastewater: progress, challenges and prospects. Microbial Biotechnology, 2022, 15, 1719-1728.	2.0	23
657	The devil is in the details: emerging insights on the relevance of wastewater surveillance for SARS-CoV-2 to public health. Journal of Water and Health, 2022, 20, 246-270.	1.1	23

#	Article	IF	CITATIONS
659	Toward smart diagnosis of pandemic infectious diseases using wastewater-based epidemiology. TrAC - Trends in Analytical Chemistry, 2022, 153, 116635.	5.8	11
660	Passive sampling to scale wastewater surveillance of infectious disease: Lessons learned from COVID-19. Science of the Total Environment, 2022, 835, 155347.	3.9	31
661	Assessment of Commonly Measured Wastewater Parameters to Estimate Sewershed Populations for Use in Wastewater-Based Epidemiology: Insights into Population Dynamics in New York City during the COVID-19 Pandemic. ACS ES&T Water, 2022, 2, 2014-2024.	2.3	7
662	Wastewater-Based SARS-CoV-2 Surveillance in Northern New England. Microbiology Spectrum, 2022, 10, e0220721.	1.2	8
663	Solar Drying as an Eco-Friendly Technology for Sewage Sludge Stabilization: Assessment of Micropollutant Behavior, Pathogen Removal, and Agronomic Value. Frontiers in Environmental Science, 2022, 10, .	1.5	5
664	Monitoring of SARS-CoV-2 in sewersheds with low COVID-19 cases using a passive sampling technique. Water Research, 2022, 218, 118481.	5.3	26
665	Diurnal Variability of SARS-CoV-2 RNA Concentrations in Hourly Grab Samples of Wastewater Influent during Low COVID-19 Incidence. ACS ES&T Water, 2022, 2, 2125-2133.	2.3	8
666	High Sensitivity and Specificity of Dormitory-Level Wastewater Surveillance for COVID-19 during Fall Semester 2020 at Syracuse University, New York. International Journal of Environmental Research and Public Health, 2022, 19, 4851.	1.2	12
667	Artificial neural network-based estimation of COVID-19 case numbers and effective reproduction rate using wastewater-based epidemiology. Water Research, 2022, 218, 118451.	5.3	52
668	Wastewater and marine bioindicators surveillance to anticipate COVID-19 prevalence and to explore SARS-CoV-2 diversity by next generation sequencing: One-year study. Science of the Total Environment, 2022, 833, 155140.	3.9	13
669	Predictive values of time-dense SARS-CoV-2 wastewater analysis in university campus buildings. Science of the Total Environment, 2022, 835, 155401.	3.9	18
670	Use of wastewater surveillance for early detection of Alpha and Epsilon SARS-CoV-2 variants of concern and estimation of overall COVID-19 infection burden. Science of the Total Environment, 2022, 835, 155410.	3.9	34
671	Detection of SARS-CoV-2 B.1.351 (Beta) Variant through Wastewater Surveillance before Case Detection in a Community, Oregon, USA. Emerging Infectious Diseases, 2022, 28, .	2.0	22
672	Evaluation of Low-Cost Phage-Based Microbial Source Tracking Tools for Elucidating Human Fecal Contamination Pathways in Kolkata, India. Frontiers in Microbiology, 2021, 12, 673604.	1.5	1
673	Emerging investigator series: meta-analyses on SARS-CoV-2 viral RNA levels in wastewater and their correlations to epidemiological indicators. Environmental Science: Water Research and Technology, 2022, 8, 1391-1407.	1.2	5
674	Environmental Persistence of SARS-CoV-2 and Disinfection of Work Surfaces in View of Pandemic Outbreak of COVID-19. , 0, , .		1
675	Mass Spectrometry Approaches for SARS-CoV-2 Detection: Harnessing for Application in Food and Environmental Samples. Viruses, 2022, 14, 872.	1.5	3
677	Effect of Time and Temperature on SARS-CoV-2 in Municipal Wastewater Conveyance Systems. Water (Switzerland), 2022, 14, 1373.	1.2	7

#	Article	IF	CITATIONS
678	Modeling the relationship between SARS-CoV-2 RNA in wastewater or sludge and COVID-19 cases in three New England regions. Journal of Water and Health, 2022, 20, 816-828.	1.1	6
679	Comparative Analysis of RNA-Extraction Approaches and Associated Influences on RT-qPCR of the SARS-CoV-2 RNA in a University Residence Hall and Quarantine Location. ACS ES&T Water, 2022, 2, 1929-1943.	2.3	11
680	Molecular Diagnostic Tools Applied for Assessing Microbial Water Quality. International Journal of Environmental Research and Public Health, 2022, 19, 5128.	1.2	7
682	Subsewershed SARS-CoV-2 Wastewater Surveillance and COVID-19 Epidemiology Using Building-Specific Occupancy and Case Data. ACS ES&T Water, 2022, 2, 2047-2059.	2.3	8
683	Improved methods for the detection and quantification of SARS-CoV-2 RNA in wastewater. Scientific Reports, 2022, 12, 7201.	1.6	8
684	Making waves: Wastewater surveillance of SARS-CoV-2 in an endemic future. Water Research, 2022, 219, 118535.	5.3	37
685	Molecular Monitoring of SARS-CoV-2 in Different Sewage Plants in Venice and the Implications for Genetic Surveillance. ACS ES&T Water, 0, , .	2.3	1
686	Nationwide Trends in COVID-19 Cases and SARS-CoV-2 RNA Wastewater Concentrations in the United States. ACS ES&T Water, 2022, 2, 1899-1909.	2.3	46
687	Wastewater based epidemiology as a silent sentinel of the trend of SARS-CoV-2 circulation in the community in central Argentina. Water Research, 2022, 219, 118541.	5.3	13
688	SARS-CoV-2 RNA Wastewater Settled Solids Surveillance Frequency and Impact on Predicted COVID-19 Incidence Using a Distributed Lag Model. ACS ES&T Water, 2022, 2, 2167-2174.	2.3	14
689	Elucidating the role of environmental management of forests, air quality, solid waste and wastewater on the dissemination of SARS-CoV-2. , 2022, 3, 100006.		4
690	Long term detection and quantification of SARS-CoV-2 RNA in wastewater in Bahrain. Journal of Hazardous Materials Advances, 2022, 7, 100082.	1.2	2
691	Monitoring SARS-CoV-2 in the Wastewater and Rivers of Tapachula, a Migratory Hub in Southern Mexico. Food and Environmental Virology, 2022, 14, 199-211.	1.5	7
692	Invited Perspective: The Promise of Wastewater Monitoring for Infectious Disease Surveillance. Environmental Health Perspectives, 2022, 130, 51302.	2.8	8
693	Use of Sewage Surveillance for COVID-19: A Large-Scale Evidence-Based Program in Hong Kong. Environmental Health Perspectives, 2022, 130, 57008.	2.8	20
694	Development and Validation of a Simplified Method for Analysis of SARS-CoV-2 RNA in University Dormitories. ACS ES&T Water, 2022, 2, 1984-1991.	2.3	9
695	Detection of SARS-CoV-2 and Other Viruses in Wastewater: Optimization and Automation of an Aluminum Hydroxide Adsorption–Precipitation Method for Virus Concentration. ACS ES&T Water, 2022, 2, 2175-2184.	2.3	4
696	SARS-CoV-2 and other airborne respiratory viruses in outdoor aerosols in three Swiss cities before and during the first wave of the COVID-19 pandemic. Environment International, 2022, 164, 107266.	4.8	13

#	Article	IF	CITATIONS
697	Managing an evolving pandemic: Cryptic circulation of the Delta variant during the Omicron rise. Science of the Total Environment, 2022, 836, 155599.	3.9	24
698	Evaluation of SARS-CoV-2 concentrations in wastewater and river water samples. Case Studies in Chemical and Environmental Engineering, 2022, 6, 100214.	2.9	11
699	Longitudinal SARS-CoV-2 RNA wastewater monitoring across a range of scales correlates with total and regional COVID-19 burden in a well-defined urban population. Water Research, 2022, 220, 118611.	5.3	34
700	Long-term monitoring of SARS-CoV-2 RNA in sewage samples from specific public places and STPs to track COVID-19 spread and identify potential hotspots. Science of the Total Environment, 2022, 838, 155959.	3.9	11
701	SARS-CoV-2 variant trends in Ireland: Wastewater-based epidemiology and clinical surveillance. Science of the Total Environment, 2022, 838, 155828.	3.9	25
704	Assessment of Concentration, Recovery, and Normalization of SARS-CoV-2 RNA from Two Wastewater Treatment Plants in Texas and Correlation with COVID-19 Cases in the Community. ACS ES&T Water, 2022, 2, 2060-2069.	2.3	12
705	Wastewater Reveals the Spatiotemporal Spread of SARS-CoV-2 in the Canton of Ticino (Switzerland) during the Onset of the COVID-19 Pandemic. ACS ES&T Water, 2022, 2, 2194-2200.	2.3	10
706	Comparison of Electronegative Filtration to Magnetic Bead-Based Concentration and V2G-qPCR to RT-qPCR for Quantifying Viral SARS-CoV-2 RNA from Wastewater. ACS ES&T Water, 2022, 2, 2004-2013.	2.3	15
707	Emerging Human Coronaviruses (SARS-CoV-2) in the Environment Associated with Outbreaks Viral Pandemics. , 0, , .		1
708	Wastewater-Based Estimation of the Effective Reproductive Number of SARS-CoV-2. Environmental Health Perspectives, 2022, 130, .	2.8	92
709	Photocatalytic Activity of Tungsten-Loaded Titanium Dioxide Photocatalysts Against Dyes and Bacteria in Water System. Lecture Notes in Mechanical Engineering, 2022, , 938-952.	0.3	1
710	Complementing RNA Detection with Pharmaceutical Monitoring for Early Warning of Viral Outbreaks through Wastewater-Based Epidemiology. Environmental Science and Technology Letters, 2022, 9, 567-574.	3.9	15
711	Space-time analysis of COVID-19 cases and SARS-CoV-2 wastewater loading: A geodemographic perspective. Spatial and Spatio-temporal Epidemiology, 2022, 42, 100521.	0.9	5
712	Basic influent sewage quality reflects sewershed characteristics in Tokyo city. Journal of Water and Health, 2022, 20, 972-984.	1.1	1
713	Wastewater surveillance of SARS-CoV-2 in dormitories as a part of comprehensive university campus COVID-19 monitoring. Environmental Research, 2022, 212, 113580.	3.7	20
714	The wave of the SARS-CoV-2 Omicron variant resulted in a rapid spike and decline as highlighted by municipal wastewater surveillance. Environmental Technology and Innovation, 2022, 28, 102667.	3.0	22
715	Centralized and decentralized wastewater-based epidemiology to infer COVID-19 transmission – A brief review. One Health, 2022, 15, 100405.	1.5	14
716	Factores ambientales en la transmisión del SARS-CoV-2/COVID 19: panorama mundial y colombiano. Revista De La Universidad Industrial De Santander Salud, 2021, 53, .	0.0	1

#	Article	IF	CITATIONS
717	Removal Performance of SARS-CoV-2 in Wastewater Treatment by Membrane Bioreactor, Anaerobic-Anoxic-Oxic, and Conventional Activated Sludge Processes. SSRN Electronic Journal, 0, , .	0.4	0
718	Quantitative Trend Analysis of SARS-CoV-2 RNA in Municipal Wastewater Exemplified with Sewershed-Specific COVID-19 Clinical Case Counts. ACS ES&T Water, 2022, 2, 2070-2083.	2.3	7
719	Spatiotemporal Surveillance of SARS-CoV-2 in the Sewage of Three Major Urban Areas in Peru: Generating Valuable Data Where Clinical Testing Is Extremely Limited. ACS ES&T Water, 2022, 2, 2144-2157.	2.3	7
720	National Scale Real-Time Surveillance of SARS-CoV-2 Variants Dynamics by Wastewater Monitoring in Israel. Viruses, 2022, 14, 1229.	1.5	5
722	Social distancing and mask-wearing could avoid recurrent stay-at-home restrictions during COVID-19 respiratory pandemic in New York City. Scientific Reports, 2022, 12, .	1.6	3
724	A systematic review on the occurrence, fate, and remediation of SARS-CoV-2 in wastewater. International Journal of Environmental Science and Technology, 2023, 20, 8073-8086.	1.8	4
725	Case Study: Impact of Diurnal Variations and Stormwater Dilution on SARS-CoV-2 RNA Signal Intensity at Neighborhood Scale Wastewater Pumping Stations. ACS ES&T Water, 2022, 2, 1964-1975.	2.3	4
726	Extensive Wastewater-Based Epidemiology as a Resourceful Tool for SARS-CoV-2 Surveillance in a Low-to-Middle-Income Country through a Successful Collaborative Quest: WBE, Mobility, and Clinical Tests. Water (Switzerland), 2022, 14, 1842.	1.2	10
727	<scp>SARS oV</scp> â€2 wholeâ€proteome sequences from environment as an indicator of community viral distribution, evolution and epidemiological dynamics: A cohort analysis of Austria. Environmental Microbiology Reports, 0, , .	1.0	1
728	Comparability of 24-hour composite and grab samples for detection of SARS-2-CoV RNA in wastewater. FEMS Microbes, 2022, 3, .	0.8	7
729	Wastewater-based epidemiological surveillance to monitor the prevalence of SARS-CoV-2 in developing countries with onsite sanitation facilities. Environmental Pollution, 2022, 311, 119679.	3.7	42
730	An Analysis of SARS-CoV-2 in Wastewater to Evaluate the Effectiveness of Nonpharmaceutical Interventions against COVID-19 in The Netherlands. ACS ES&T Water, 2022, 2, 2158-2166.	2.3	10
731	Early Warning Measurement of SARS-CoV-2 Variants of Concern in Wastewaters by Mass Spectrometry. Environmental Science and Technology Letters, 2022, 9, 638-644.	3.9	4
733	Microbiome Analysis for Wastewater Surveillance during COVID-19. MBio, 2022, 13, .	1.8	40
734	Population level SARS-CoV-2 fecal shedding rates determined via wastewater-based epidemiology. Science of the Total Environment, 2022, 838, 156535.	3.9	22
735	Review of Method and a New Tool for Decline and Inactive SARS-CoV-2 in Wastewater Treatment. , 2022, 3, 100037.		4
736	Stochastic SIR Model Predicts the Evolution of COVID-19 Epidemics from Public Health and Wastewater Data in Small and Medium-Sized Municipalities: A One Year Study. SSRN Electronic Journal, 0, , .	0.4	0
737	SARS-CoV-2 Whole-Genome Sequencing Using Oxford Nanopore Technology for Variant Monitoring in Wastewaters. Frontiers in Microbiology, 0, 13, .	1.5	18

#	Article	IF	CITATIONS
738	A hands-free stool sampling system for monitoring intestinal health and disease. Scientific Reports, 2022, 12, .	1.6	3
739	The Detection of SARS-CoV2 Antigen in Wastewater Using an Automated Chemiluminescence Enzyme Immunoassay. International Journal of Environmental Research and Public Health, 2022, 19, 7783.	1.2	3
742	Potential and Challenges Encountered in the Application of Wastewater-Based Epidemiology as an Early Warning System for COVID-19 Infections in South Africa. ACS ES&T Water, 2022, 2, 2105-2113.	2.3	4
743	Wastewater monitoring of SARS-CoV-2 shows high correlation with COVID-19 case numbers and allowed early detection of the first confirmed B.1.1.529 infection in Switzerland: results of an observational surveillance study. Swiss Medical Weekly, 2022, 152, w30202.	0.8	8
744	SARS-CoV-2 RNA in Wastewater Was Highly Correlated With the Number of COVID-19 Cases During the Fourth and Fifth Pandemic Wave in Kobe City, Japan. Frontiers in Microbiology, 0, 13, .	1.5	15
745	Evaluation of a Wastewater-Based Epidemiological Approach to Estimate the Prevalence of SARS-CoV-2 Infections and the Detection of Viral Variants in Disparate Oregon Communities at City and Neighborhood Scales. Environmental Health Perspectives, 2022, 130, .	2.8	30
747	Modeling infection from SARS-CoV-2 wastewater concentrations: promise, limitations, and future directions. Journal of Water and Health, 2022, 20, 1197-1211.	1.1	33
748	Yearâ€long wastewater monitoring for SARSâ€CoVâ€2 signals in combined and separate sanitary sewers. Water Environment Research, 2022, 94, .	1.3	8
749	Transmission Pathways and Genomic Epidemiology of Emerging Variants of SARS-CoV-2 in the Environment. Covid, 2022, 2, 916-939.	0.7	5
750	Wastewater surveillance allows early detection of SARS-CoV-2 omicron in North Rhine-Westphalia, Germany. Science of the Total Environment, 2022, 846, 157375.	3.9	13
751	A Review of the Presence of SARS-CoV-2 in Wastewater: Transmission Risks in Mexico. International Journal of Environmental Research and Public Health, 2022, 19, 8354.	1.2	5
752	SARS-CoV-2 Testing of Aircraft Wastewater Shows That Mandatory Tests and Vaccination Pass before Boarding Did Not Prevent Massive Importation of Omicron Variant into Europe. Viruses, 2022, 14, 1511.	1.5	9
753	Early detection and surveillance of SARS-CoV-2 genomic variants in wastewater using COJAC. Nature Microbiology, 2022, 7, 1151-1160.	5.9	69
754	Effectiveness of environmental surveillance of SARS-CoV-2 as an early warning system during the first year of the COVID-19 pandemic: a systematic review. Journal of Water and Health, 2022, 20, 1223-1242.	1.1	6
755	Community Wastewater-Based Surveillance Can Be a Cost-Effective Approach to Track COVID-19 Outbreak in Low-Resource Settings: Feasibility Assessment for Ethiopia Context. International Journal of Environmental Research and Public Health, 2022, 19, 8515.	1.2	4
756	Rapid Implementation of High-Frequency Wastewater Surveillance of SARS-CoV-2. ACS ES&T Water, 2022, 2, 2201-2210.	2.3	6
757	Dispersion of SARS oVâ€2 RNA across a wastewater treatment plant and its workers. Water and Environment Journal, 2022, 36, 713-722.	1.0	5
758	Is SARS-CoV-2 a Concern for Food Safety? A Very Low Prevalence from a Food Survey during the COVID-19 Pandemic in Northern Italy. Foods, 2022, 11, 2096.	1.9	1

#	Article	IF	CITATIONS
761	Quantitative Reverse Transcription PCR Surveillance of SARS-CoV-2 Variants of Concern in Wastewater of Two Counties in Texas, United States. ACS ES&T Water, 2022, 2, 2211-2224.	2.3	3
762	Rapid displacement of SARS-CoV-2 variant Delta by Omicron revealed by allele-specific PCR in wastewater. Water Research, 2022, 221, 118809.	5.3	30
763	Quantification of SARS-CoV-2 RNA in wastewater treatment plants mirrors the pandemic trend in Hong Kong. Science of the Total Environment, 2022, 844, 157121.	3.9	22
764	Five-week warning of COVID-19 peaks prior to the Omicron surge in Detroit, Michigan using wastewater surveillance. Science of the Total Environment, 2022, 844, 157040.	3.9	31
765	Monitoring the evolution of SARS-CoV-2 on a Spanish university campus through wastewater analysis: A pilot project for the reopening strategy. Science of the Total Environment, 2022, 845, 157370.	3.9	12
766	Data modelling recipes for SARS-CoV-2 wastewater-based epidemiology. Environmental Research, 2022, 214, 113809.	3.7	7
767	Multifaceted Assessment of Wastewater-Based Epidemiology for SARS-CoV-2 in Selected Urban Communities in Davao City, Philippines: A Pilot Study. International Journal of Environmental Research and Public Health, 2022, 19, 8789.	1.2	5
768	Tracking Emergence and Spread of SARS-CoV-2 Omicron Variant in Large and Small Communities by Wastewater Monitoring in Alberta, Canada. Emerging Infectious Diseases, 2022, 28, 1770-1776.	2.0	15
769	Wastewater-based epidemiology: A Brazilian SARS-COV-2 surveillance experience. Journal of Environmental Chemical Engineering, 2022, 10, 108298.	3.3	15
770	Adsorption of SARS-CoV-2 onto granular activated carbon (GAC) in wastewater: Implications for improvements in passive sampling. Science of the Total Environment, 2022, 847, 157548.	3.9	16
771	Sensitive detection of SARS-CoV-2 molecular markers in urban community sewersheds using automated viral RNA purification and digital droplet PCR. Science of the Total Environment, 2022, 847, 157547.	3.9	7
773	Assessment of Possibilities of Spreading of Bioaerosol from Different Technological Objects in Small Sewage Treatment Plants. , 2022, 15, 177-186.		0
774	A Methodological Approach to Water Concentration to Investigate the Presence of SARS-CoV-2 RNA in Surface Freshwaters. Pathogens, 2022, 11, 845.	1.2	2
776	Role of pepper mild mottle virus as a tracking tool for fecal pollution in aquatic environments. Archives of Microbiology, 2022, 204, .	1.0	6
777	An analysis of 45 large-scale wastewater sites in England to estimate SARS-CoV-2 community prevalence. Nature Communications, 2022, 13, .	5.8	53
778	Next-generation Sequencing for Surveillance of Antimicrobial Resistance and Pathogenicity in Municipal Wastewater Treatment Plants. Current Medicinal Chemistry, 2023, 30, 5-29.	1.2	4
779	Statistical framework to support the epidemiological interpretation of SARS-CoV-2 concentration in municipal wastewater. Scientific Reports, 2022, 12, .	1.6	6
780	Implications of COVID-19 on Public Policy, Supply Chain Disruptions, and Monitoring Methods. , 0, , .		0

#	Article	IF	CITATIONS
781	Review of concerned SARS-CoV-2 variants like Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529), as well as novel methods for reducing and inactivating SARS-CoV-2 mutants in wastewater treatment facilities. Journal of Hazardous Materials Advances, 2022, 7, 100140.	1.2	10
782	The first detection of SARS-CoV-2 RNA in urban wastewater in Giza, Egypt. Journal of Water and Health, 2022, 20, 1212-1222.	1.1	4
783	Wild type and variants of SARS-COV-2 in Parisian sewage: presence in raw water and through processes in wastewater treatment plants. Environmental Science and Pollution Research, 2022, 29, 67442-67449.	2.7	5
784	Clues for zoonotic potential and transmission of Sars-CoV-2 via food and water. Journal of Istanbul Veterinary Sciences, 2022, 6, 52-64.	0.3	Ο
785	Useful molecular tools for facing next pandemic events: Effective sample preparation and improved RT-PCR for highly sensitive detection of SARS-CoV-2 in wastewater environment. International Journal of Hygiene and Environmental Health, 2022, 245, 114017.	2.1	3
787	Research needs for optimising wastewater-based epidemiology monitoring for public health protection. Journal of Water and Health, 2022, 20, 1284-1313.	1.1	13
788	Comparative Assessment of Filtration- and Precipitation-Based Methods for the Concentration of SARS-CoV-2 and Other Viruses from Wastewater. Microbiology Spectrum, 2022, 10, .	1.2	17
789	Wastewater surveillance in Pakistan: Preventing future epidemics. Annals of Medicine and Surgery, 2022, 81, 104495.	0.5	0
790	Reduction in SARS-CoV-2 Virus Infectivity in Human and Hamster Feces. Viruses, 2022, 14, 1777.	1.5	6
791	Removal performance of SARS-CoV-2 in wastewater treatment by membrane bioreactor, anaerobic-anoxic-oxic, and conventional activated sludge processes. Science of the Total Environment, 2022, 851, 158310.	3.9	15
793	Biomarkers selection for population normalization in SARS-CoV-2 wastewater-based epidemiology. Water Research, 2022, 223, 118985.	5.3	21
794	A critical review on the existing wastewater treatment methods in the COVID-19 era: What is the potential of advanced oxidation processes in combatting viral especially SARS-CoV-2?. Journal of Water Process Engineering, 2022, 49, 103077.	2.6	10
795	Presence and persistence of SARS-CoV-2 in aquatic environments: A mini-review. Current Opinion in Environmental Science and Health, 2022, 29, 100385.	2.1	8
796	A sustainable approach for the removal methods and analytical determination methods of antiviral drugs from water/wastewater: A review. Journal of Water Process Engineering, 2022, 49, 103036.	2.6	7
797	The Efficient and Practical virus Identification System with ENhanced Sensitivity for Solids (EPISENS-S): A rapid and cost-effective SARS-CoV-2 RNA detection method for routine wastewater surveillance. Science of the Total Environment, 2022, 843, 157101.	3.9	17
798	Fate of SARS-CoV-2 coronavirus in wastewater treatment sludge during storage and thermophilic anaerobic digestion. Environmental Research, 2022, 214, 114057.	3.7	5
799	Tracking SARS-CoV-2 in rivers as a tool for epidemiological surveillance. Science of the Total Environment, 2022, 848, 157707.	3.9	8
800	Temporal dynamics of SARS-CoV-2 genome and detection of variants of concern in wastewater influent from two metropolitan areas in Arkansas. Science of the Total Environment, 2022, 849, 157546.	3.9	8

#	Article	IF	CITATIONS
801	Advances in virus detection methods for wastewater-based epidemiological applications. Case Studies in Chemical and Environmental Engineering, 2022, 6, 100238.	2.9	4
802	Importance of wastewater-based epidemiology for detecting and monitoring SARS-CoV-2. Case Studies in Chemical and Environmental Engineering, 2022, 6, 100241.	2.9	2
803	Sensitivity of wastewater surveillance: What is the minimum COVID-19 cases required in population for SARS-CoV-2 RNA to be detected in wastewater?. Journal of Environmental Sciences, 2023, 125, 851-853.	3.2	4
804	Wastewater-Based Surveillance Is an Effective Tool for Trending COVID-19 Prevalence in Communities: A Study of 10 Major Communities for 17 Months in Alberta. ACS ES&T Water, 2022, 2, 2243-2254.	2.3	10
805	Early identification of a COVID-19 outbreak detected by wastewater surveillance at a large homeless shelter in Toronto, Ontario. Canadian Journal of Public Health, 2023, 114, 72-79.	1.1	5
806	Bayesian estimation of seasonal and between year variability of norovirus infection risks for workers in agricultural water reuse using epidemiological data. Water Research, 2022, 224, 119079.	5.3	0
807	Membranes in Zero-Liquid-Discharge Systems for Efficient Processes toward Sustainable Environment: A Review. Journal of Environmental Engineering, ASCE, 2022, 148, .	0.7	5
808	Stochastic SIR model predicts the evolution of COVID-19 epidemics from public health and wastewater data in small and medium-sized municipalities: A one year study. Chaos, Solitons and Fractals, 2022, 164, 112671.	2.5	13
809	Is the virus-laden standing water change the transmission intensity of SARS-CoV-2 after precipitation? A framework for empirical studies. Environmental Research, 2022, 215, 114127.	3.7	1
810	Surveillance of SARS-CoV-2 in nine neighborhood sewersheds in Detroit Tri-County area, United States: Assessing per capita SARS-CoV-2 estimations and COVID-19 incidence. Science of the Total Environment, 2022, 851, 158350.	3.9	6
811	Socioeconomic status correlations with confirmed COVID-19 cases and SARS-CoV-2 wastewater concentrations in small-medium sized communities. Environmental Research, 2022, 215, 114290.	3.7	9
812	Understanding the dynamic relation between wastewater SARS-CoV-2 signal and clinical metrics throughout the pandemic. Science of the Total Environment, 2022, 853, 158458.	3.9	19
813	Wastewater to clinical case (WC) ratio of COVID-19 identifies insufficient clinical testing, onset of new variants of concern and population immunity in urban communities. Science of the Total Environment, 2022, 853, 158547.	3.9	19
814	Wastewater-based monitoring of illicit drugs in Cyprus by UPLC-MS/MS: The impact of the COVID-19 pandemic. Science of the Total Environment, 2023, 854, 158747.	3.9	6
815	Correlation between SARS-CoV-2 RNA concentration in wastewater and COVID-19 cases in community: A systematic review and meta-analysis. Journal of Hazardous Materials, 2023, 441, 129848.	6.5	38
816	Wastewater-Based Epidemiology (WBE): An Emerging Nexus Between Environment and Human Health. , 2022, , 725-748.		0
817	Wastewater research and surveillance: an ethical exploration. Environmental Science: Water Research and Technology, 2022, 8, 2431-2438.	1.2	5
818	Long-Term SARS-CoV-2 Surveillance in the Wastewater of Stockholm: What Lessons Can Be Learned from the Swedish Perspective?. SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	CITATIONS
819	Exposure Assessment of SARS-CoV-2 and Nov GII/GII in Aerosols Generated by a Municipal Wastewater Treatment Plant. SSRN Electronic Journal, 0, , .	0.4	2
820	Lighting the Populational Impact of COVID-19 Vaccines in Brazil. SSRN Electronic Journal, 0, , .	0.4	1
821	Photodynamic Inactivation of Phage Phi6 as SARS-CoV-2 Model in Wastewater Disinfection: Effectivity and Safety. , 0, , .		0
822	Global public health implications of human exposure to viral contaminated water. Frontiers in Microbiology, 0, 13, .	1.5	24
823	Early Detection of SARS-CoV-2 Omicron BA.4 and BA.5 in German Wastewater. Viruses, 2022, 14, 1876.	1.5	12
824	A State-of-the-Art Review on SARS-CoV-2 Virus Removal Using Different Wastewater Treatment Strategies. Environments - MDPI, 2022, 9, 110.	1.5	2
825	Estudo do esgoto de um municÃpio do sul de Minas Gerais: correlação de variáveis fÃsicas e quÃmicas, casos de COVID-19 e concentração do RNA de SARS-CoV-2. Engenharia Sanitaria E Ambiental, 2022, 27, 967-974.	0.1	1
826	Assessing wastewater-based epidemiology for the prediction of SARS-CoV-2 incidence in Catalonia. Scientific Reports, 2022, 12, .	1.6	10
827	Detecting SARS-CoV-2 variants in wastewater and their correlation with circulating variants in the communities. Scientific Reports, 2022, 12, .	1.6	11
828	Wastewater-based epidemiology (WBE) for SARS-CoV-2 – A review focussing on the significance of the sewer network using a Dublin city catchment case study. Water Science and Technology, 2022, 86, 1402-1425.	1.2	7
829	Human Responses in Public Health Emergencies for Infectious Disease Control: An Overview of Controlled Topologies for Biomedical Applications. Contrast Media and Molecular Imaging, 2022, 2022, 1-17.	0.4	1
831	Wastewater-Based Epidemiology: Detection of SARS-CoV-2 RNA in Different Stages of Domestic Wastewater Treatment in Santa Fe, Argentina. Water, Air, and Soil Pollution, 2022, 233, .	1.1	2
832	SARS-CoV-2 Monitoring in Wastewater Reveals Novel Variants and Biomarkers of Infection. Viruses, 2022, 14, 2032.	1.5	3
834	Community-Based SARS-CoV-2 Testing Using Saliva or Nasopharyngeal Swabs to Compare the Performance of Weekly COVID-19 Screening to Wastewater SARS-CoV-2 Signals. ACS ES&T Water, 2022, 2, 1667-1677.	2.3	1
835	Predicting the dispersal of SARS-CoV-2 RNA from the wastewater treatment plant to the coast. Heliyon, 2022, 8, e10547.	1.4	5
836	Estimating the relative proportions of SARS-CoV-2 haplotypes from wastewater samples. Cell Reports Methods, 2022, , 100313.	1.4	1
838	Monkeypox outbreak: Wastewater and environmental surveillance perspective. Science of the Total Environment, 2023, 856, 159166.	3.9	47
839	The Catalan Surveillance Network of SARS-CoV-2 in Sewage: design, implementation, and performance. Scientific Reports, 2022, 12, .	1.6	13

#	Article	IF	CITATIONS
840	Variant-specific SARS-CoV-2 shedding rates in wastewater. Science of the Total Environment, 2023, 857, 159165.	3.9	19
841	The Mathematical Modeling Approach for the Wastewater Treatment Process in Saudi Arabia during COVID-19 Pandemic. Discrete Dynamics in Nature and Society, 2022, 2022, 1-15.	0.5	3
842	An opinion on Wastewater-Based Epidemiological Monitoring (WBEM) with Clinical Diagnostic Test (CDT) for detecting high-prevalence areas of community COVID-19 infections. Current Opinion in Environmental Science and Health, 2023, 31, 100396.	2.1	20
843	Introduction to Nanobiosensors. , 2022, , 1-17.		0
844	First Detection of Monkeypox Virus Genome in Sewersheds in France: The Potential of Wastewater-Based Epidemiology for Monitoring Emerging Disease. Environmental Science and Technology Letters, 2022, 9, 991-996.	3.9	15
845	Investigating SARS-CoV-2 RNA in five municipal wastewater treatment plants, hospital wastewater and wastewater collection networks during the COVID-19 pandemic in Ardabil Province, Iran. Applied Water Science, 2022, 12, .	2.8	3
846	A 30-day follow-up study on the prevalence of SARS-COV-2 genetic markers in wastewater from the residence of COVID-19 patient and comparison with clinical positivity. Science of the Total Environment, 2023, 858, 159350.	3.9	26
847	Wastewater-Based Epidemiology for SARS-CoV-2 Biomarkers: Evaluation of Normalization Methods in Small and Large Communities in Southern Germany. ACS ES&T Water, 2022, 2, 2460-2470.	2.3	9
848	Population-based screening in a municipality after a primary school outbreak of the SARS-CoV-2 Alpha variant, the Netherlands, December 2020–February 2021. PLoS ONE, 2022, 17, e0276696.	1.1	1
849	Model training periods impact estimation of COVID-19 incidence from wastewater viral loads. Science of the Total Environment, 2023, 858, 159680.	3.9	11
850	Detection of the SARS-CoV-2 Delta Variant in the Transboundary Rivers of Yunnan, China. ACS ES&T Water, 2022, 2, 2367-2377.	2.3	3
852	Testing specificity and sensitivity of wastewater-based epidemiology for detecting SARS-CoV-2 in four communities on Vancouver Island, Canada. Environmental Advances, 2022, 9, 100310.	2.2	1
853	Spectrum of Environmental Surveillance of SARS-CoV-2 fragments: Questions, Quests, and Conquest. Current Opinion in Environmental Science and Health, 2022, , 100401.	2.1	0
855	SARS-CoV-2 infection dynamics revealed by wastewater sequencing analysis and deconvolution. Science of the Total Environment, 2022, 853, 158931.	3.9	13
856	Persistence of endogenous RNA biomarkers of SARS-CoV-2 and PMMoV in raw wastewater: Impact of temperature and implications for wastewater-based epidemiology. Science of the Total Environment, 2023, 857, 159401.	3.9	22
857	Environmental challenges of COVID-19 pandemic: resilience and sustainability – A review. Environmental Research, 2023, 216, 114496.	3.7	18
858	Identification of a rare SARS-CoV-2 XL hybrid variant in wastewater and the subsequent discovery of two infected individuals in Nevada. Science of the Total Environment, 2023, 858, 160024.	3.9	5
859	Detection of SARS-CoV-2 RNA in wastewater and comparison to COVID-19 cases in two sewersheds, North Carolina, USA. Science of the Total Environment, 2023, 858, 159996.	3.9	6

#	Article	IF	CITATIONS
860	Long-term SARS-CoV-2 surveillance in the wastewater of Stockholm: What lessons can be learned from the Swedish perspective?. Science of the Total Environment, 2023, 858, 160023.	3.9	9
861	Tinjauan Literatur: SUMBER POTENSIAL PENYEBARAN SARS-CoV-2 DARI LINGKUNGAN RUMAH SAKIT DAN PENTINGNYA PEMANTAUAN SANITASI RUMAH SAKIT UNTUK MENEKAN PANDEMI COVID-19 DI INDONESIA. Majalah Kesehatan, 2022, 9, 181-198.	0.0	0
862	Assessment of a mass balance equation for estimating community-level prevalence of COVID-19 using wastewater-based epidemiology in a mid-sized city. Scientific Reports, 2022, 12, .	1.6	1
863	Lineage abundance estimation for SARS-CoV-2 in wastewater using transcriptome quantification techniques. Genome Biology, 2022, 23, .	3.8	20
864	Comparative analysis of Adsorption-Extraction (AE) and Nanotrap® Magnetic Virus Particles (NMVP) workflows for the recovery of endogenous enveloped and non-enveloped viruses in wastewater. Science of the Total Environment, 2023, 859, 160072.	3.9	13
865	Human activities and zoonotic epidemics: a two-way relationship. The case of the COVID-19 pandemic. Global Sustainability, 2022, 5, .	1.6	1
866	Angiotensin-Converting Enzyme 2-Based Biosensing Modalities and Devices for Coronavirus Detection. Biosensors, 2022, 12, 984.	2.3	3
868	SARS-CoV-2 RNA levels in Scotland's wastewater. Scientific Data, 2022, 9, .	2.4	4
869	Challenges and Opportunities for Global Genomic Surveillance Strategies in the COVID-19 Era. Viruses, 2022, 14, 2532.	1.5	11
870	Degradation of viral RNA in wastewater complex matrix models and other standards for wastewater-based epidemiology: A review. TrAC - Trends in Analytical Chemistry, 2023, 158, 116890.	5.8	7
871	High-throughput sequencing as a tool for monitoring prokaryote communities in a wastewater treatment plant. Science of the Total Environment, 2023, 861, 160531.	3.9	5
872	When case reporting becomes untenable: Can sewer networks tell us where COVID-19 transmission occurs?. Water Research, 2023, 229, 119516.	5.3	2
873	Wastewater Surveillance for SARS-CoV-2 RNA in Canada. Facets, 2022, 7, 1493-1597.	1.1	5
875	Wastewater monitoring in tourist cities as potential sentinel sites for near real-time dynamics of imported SARS-CoV-2 variants. Science of the Total Environment, 2023, 860, 160317.	3.9	9
876	The effects of COVID-19 on the water sector. Frontiers in Environmental Science, 0, 10, .	1.5	0
877	Comparison of RT-dPCR and RT-qPCR and the effects of freeze–thaw cycle and glycine release buffer for wastewater SARS-CoV-2 analysis. Scientific Reports, 2022, 12, .	1.6	6
879	Retrospective Analysis of Wastewater-Based Epidemiology of SARS-CoV-2 in Residences on a Large College Campus: Relationships between Wastewater Outcomes and COVID-19 Cases across Two Semesters with Different COVID-19 Mitigation Policies. ACS ES&T Water, 2023, 3, 16-29.	2.3	3
880	Normalisation of SARS-CoV-2 concentrations in wastewater: The use of flow, electrical conductivity and crAssphage. Science of the Total Environment, 2023, 865, 161196.	3.9	16

#	Article	IF	CITATIONS
881	Developing Biosensors for SARS-CoV-2 Wastewater-Based Epidemiology: A Systematic Review of Trends, Limitations and Future Perspectives. Sustainability, 2022, 14, 16761.	1.6	2
882	The Importance of Fostering and Funding Scientific Research, and its Relevance to Environmental Toxicology and Chemistry. Environmental Toxicology and Chemistry, 2023, 42, 581-593.	2.2	0
883	Occurrence and transport of SARS-CoV-2 in wastewater streams and its detection and remediation by chemical-biological methods. Journal of Hazardous Materials Advances, 2023, 9, 100221.	1.2	1
884	Leveraging an established neighbourhood-level, open access wastewater monitoring network to address public health priorities: a population-based study. Lancet Microbe, The, 2023, 4, e29-e37.	3.4	12
885	1Progress, applications, challenges and prospects of protein purification technology. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	6
886	Contextualizing Wastewater-Based surveillance in the COVID-19 vaccination era. Environment International, 2023, 171, 107718.	4.8	5
887	Wastewater-based epidemiology for preventing outbreaks and epidemics in Latin America – Lessons from the past and a look to the future. Science of the Total Environment, 2023, 865, 161210.	3.9	8
888	Hospital wastewater as hotspots for pathogenic microorganisms spread into aquatic environment: A review. Frontiers in Environmental Science, 0, 10, .	1.5	10
889	Using Wastewater Surveillance to Compare COVID-19 Outbreaks during the Easter Holidays over a 2-Year Period in Cape Town, South Africa. Viruses, 2023, 15, 162.	1.5	1
890	Surveillance for SARSâ€CoVâ€2 and its variants in wastewater of tertiary care hospitals correlates with increasing case burden and outbreaks. Journal of Medical Virology, 2023, 95, .	2.5	10
891	One-Stop Extraction and <i>In Situ</i> RT-qPCR for Ultrasensitive Detection of Highly Diluted SARS-CoV-2 in Large-Volume Samples from Aquatic Environments. Analytical Chemistry, 0, , .	3.2	3
892	National Wastewater Reconnaissance of Analgesic Consumption in Australia. Environmental Science & Technology, 2023, 57, 1712-1720.	4.6	7
893	Viral Metagenomics as a Tool to Track Sources of Fecal Contamination: A One Health Approach. Viruses, 2023, 15, 236.	1.5	3
895	Simple Wastewater Preparation Protocol Applied to Monitor the Emergence of the Omicron 21L/BA.2 Variant by Genome Sequencing. Viruses, 2023, 15, 268.	1.5	2
896	Not a waste: Wastewater surveillance to enhance public health. Frontiers in Chemical Engineering, 0, 4, .	1.3	4
897	A Comprehensive Sampling Study on SARS-CoV-2 Contamination of Air and Surfaces in a Large Meat Processing Plant Experiencing COVID-19 Clusters in June 2020. Journal of Occupational and Environmental Medicine, 2023, 65, e227-e233.	0.9	5
898	Expanding the Pathogen Panel in Wastewater Epidemiology to Influenza and Norovirus. Viruses, 2023, 15, 263.	1.5	13
899	COVID-19 surveillance in wastewater: An epidemiological tool for the monitoring of SARS-CoV-2. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	13

#	Article	IF	CITATIONS
900	A rapid, high-throughput, and sensitive PEG-precipitation method for SARS-CoV-2 wastewater surveillance. Water Research, 2023, 230, 119560.	5.3	12
901	Wastewater surveillance of SARS-CoV-2 at intra-city level demonstrated high resolution in tracking COVID-19 and calibration using chemical indicators. Science of the Total Environment, 2023, 866, 161467.	3.9	10
902	Wastewater surveillance of SARS-CoV-2 and chemical markers in campus dormitories in an evolving COVID â^' 19 pandemic. Journal of Hazardous Materials, 2023, 446, 130690.	6.5	16
903	Dependency of sanitation infrastructure on the discharge of faecal coliform and SARS-CoV-2 viral RNA in wastewater from COVID and non-COVID hospitals in Dhaka, Bangladesh. Science of the Total Environment, 2023, 867, 161424.	3.9	8
904	SRAS-CoV-2 Virusvariantenmonitoring im Abwasser. Public Health Forum, 2022, 30, 264-268.	0.1	0
905	Antibiotikaresistenzen im klinischen Umfeld: Abwasser als unsichtbarer Hotspot. Public Health Forum, 2022, 30, 256-259.	0.1	0
906	Cost of wastewater-based environmental surveillance for SARS-CoV-2: Evidence from pilot sites in Blantyre, Malawi and Kathmandu, Nepal. PLOS Global Public Health, 2022, 2, e0001377.	0.5	11
907	Looking Forward: The Role of Academic Researchers in Building Sustainable Wastewater Surveillance Programs. Environmental Health Perspectives, 2022, 130, .	2.8	9
908	Environmental pollutants and their impact on COVIDâ€19 spread: Current problem and future resolutions. , 2023, 2, 127-146.		0
909	Wastewater-based monitoring of SARS-CoV-2 at UK airports and its potential role in international public health surveillance. PLOS Global Public Health, 2023, 3, e0001346.	0.5	13
910	Knowledge graph of wastewater-based epidemiology development: A data-driven analysis based on research topics and trends. Environmental Science and Pollution Research, 0, , .	2.7	1
911	Show us the data: global COVID-19 wastewater monitoring efforts, equity, and gaps. FEMS Microbes, 2023, 4, .	0.8	33
912	Environmental surveillance of SARS-CoV-2 in municipal wastewater to monitor COVID-19 status in urban clusters in Malaysia. Archives of Microbiology, 2023, 205, .	1.0	3
914	Effectiveness of passive sampling for the detection and genetic characterization of human viruses in wastewater. Environmental Science: Water Research and Technology, 2023, 9, 1195-1204.	1.2	5
915	Comprehensive mutation profiling from wastewater in southern Germany extends evidence of circulating SARS-CoV-2 diversity beyond mutations characteristic for Omicron. FEMS Microbes, 2023, 4, .	0.8	2
916	Coronavirus Disease (COVID-19) Possible Transmission Routes and Alleviation Strategies. International Journal of Pharmaceutical Research and Allied Sciences, 2023, 12, 23-32.	0.1	0
917	Quantitative Evaluation of Municipal Wastewater Disinfection by 280 nm UVC LED. Water (Switzerland), 2023, 15, 1257.	1.2	2
918	The potential of biomass-derived bio-liquid to prevent the spread of SARS-CoV-2 from waste and its production-based life cycle assessment. Science of the Total Environment, 2023, 869, 161833.	3.9	0

#	Article	IF	CITATIONS
919	Quantifying Mixing in Sewer Networks for Source Localization. Journal of Environmental Engineering, ASCE, 2023, 149, .	0.7	1
920	Prediction of hospitalisations based on wastewater-based SARS-CoV-2 epidemiology. Science of the Total Environment, 2023, 873, 162149.	3.9	21
921	Intensity of sample processing methods impacts wastewater SARS-CoV-2 whole genome amplicon sequencing outcomes. Science of the Total Environment, 2023, 876, 162572.	3.9	5
922	A critical assessment of SARS-CoV-2 in aqueous environment: Existence, detection, survival, wastewater-based surveillance, inactivation methods, and effective management of COVID-19. Chemosphere, 2023, 327, 138503.	4.2	6
923	Co-incidence of BA.1 and BA.2 at the start of Singapore's Omicron wave revealed by Community and University Campus wastewater surveillance. Science of the Total Environment, 2023, 875, 162611.	3.9	9
924	Recent progress on wastewater-based epidemiology for COVID-19 surveillance: A systematic review of analytical procedures and epidemiological modeling. Science of the Total Environment, 2023, 878, 162953.	3.9	17
925	SARS-CoV-2 wastewater-based epidemiology in an enclosed compound: A 2.5-year survey to identify factors contributing to local community dissemination. Science of the Total Environment, 2023, 875, 162466.	3.9	2
926	Online dashboards for SARS-CoV-2 wastewater data need standard best practices: An environmental health communication agenda. Journal of Water and Health, 2023, 21, 615-624.	1.1	3
927	Rise and fall of SARS-CoV-2 variants in Rotterdam: Comparison of wastewater and clinical surveillance. Science of the Total Environment, 2023, 873, 162209.	3.9	6
928	An improved method for determining frequency of multiple variants of SARS-CoV-2 in wastewater using qPCR assays. Science of the Total Environment, 2023, 881, 163292.	3.9	7
929	Impact of the COVID-19 pandemic on the prevalence of influenza A and respiratory syncytial viruses elucidated by wastewater-based epidemiology. Science of the Total Environment, 2023, 880, 162694.	3.9	17
930	Prediction of COVID-19 positive cases, a nation-wide SARS-CoV-2 wastewater-based epidemiology study. Water Research, 2023, 231, 119617.	5.3	7
931	Spanish wastewater reveals the current spread of Monkeypox virus. Water Research, 2023, 231, 119621.	5.3	15
932	SARS-CoV-2 concentration in wastewater consistently predicts trends in COVID-19 case counts by at least two days across multiple WWTP scales. Environmental Advances, 2023, 11, 100347.	2.2	5
933	The impact of plastic during the COVID-19 pandemic: The point of view of the environmental science literature. Materials Today: Proceedings, 2023, 80, 1448-1455.	0.9	1
934	Establishment of quantitative and recovery method for detection of dengue virus in wastewater with noncognate spike control. Journal of Virological Methods, 2023, 314, 114687.	1.0	4
935	Early detection of local SARS-CoV-2 outbreaks by wastewater surveillance: a feasibility study. Epidemiology and Infection, 2023, 151, .	1.0	7
936	Whole campus wastewater surveillance of SARS-CoV-2 for COVID-19 outbreak management. Water Science and Technology, 2023, 87, 910-923.	1.2	2

\sim		<u> </u>	
	TION	REDC) D L

#	Article		CITATIONS
938	Epidemiological surveillance and environmental hygiene, SARS-CoV-2 infection in the community, urban wastewater control in Cyprus, and water reuse. Journal of Contemporary Studies in Epidemiology and Public Health, 2023, 4, ep23003.	0.1	3
939	Comparison of Two Methods for SARS-CoV-2 Detection in Wastewater: A Case Study from Sofia, Bulgaria. Water (Switzerland), 2023, 15, 658.	1.2	2
940	Assessment and monitoring of human health risk during wastewater reuse. , 2023, , 255-270.		1
941	Impact of sewer biofilms on fate of SARS-CoV-2 RNA and wastewater surveillance. , 2023, 1, 272-280.		13
942	Evaluation of three viral concentration methods for detection and quantification of SARS-CoV-2 in wastewater. Journal of Water and Health, 2023, 21, 354-360.	1.1	2
943	Monitoring of SARSâ€CoVâ€2 concentration and circulation of variants of concern in wastewater of Leuven, Belgium. Journal of Medical Virology, 2023, 95, .	2.5	13
944	Detection of the Omicron BA.1 Variant of SARS-CoV-2 in Wastewater From a Las Vegas Tourist Area. JAMA Network Open, 2023, 6, e230550.	2.8	8
945	Building health system resilience and pandemic preparedness using wastewater-based epidemiology from SARS-CoV-2 monitoring in Bengaluru, India. Frontiers in Public Health, 0, 11, .	1.3	1
946	Statistical Analysis of SARS-CoV-2 Using Wastewater-Based Data of Stockholm, Sweden. International Journal of Environmental Research and Public Health, 2023, 20, 4181.	1.2	0
947	A case study of a community-organized wastewater surveillance in a small community: correlating weekly reported COVID-19 cases with SARS-CoV-2 RNA concentrations during fall 2020 to summer 2021 in Yarmouth, ME. Journal of Water and Health, 2023, 21, 329-342.	1.1	2
948	Wastewater-based SARS-CoV-2 airport surveillance: key trends at the Cape Town International Airport. Journal of Water and Health, 2023, 21, 402-408.	1.1	3
949	Short-term stability of wastewater samples for storage and shipment in the context of the EU Sewage Sentinel System for SARS-CoV-2. Journal of Environmental Chemical Engineering, 2023, 11, 109623.	3.3	2
950	Prewhitening and normalization help detect a strong cross-correlation between daily wastewater SARS-CoV-2 RNA abundance and COVID-19 cases in a community. Environmental Science: Water Research and Technology, 0, , .	1.2	0
951	Improving wastewater-based epidemiology performance through streamlined automation. Journal of Environmental Chemical Engineering, 2023, 11, 109595.	3.3	1
952	Comparison of the methods for isolation and detection of SARS-CoV-2 RNA in municipal wastewater. Frontiers in Public Health, 0, 11, .	1.3	6
953	Weaponising microbes for peace. Microbial Biotechnology, 2023, 16, 1091-1111.	2.0	12
954	FACTORS AFFECTING THE INTENTION OF STRENGTHEN PROTECTIONS AGAINST COVID-19 BASED ON SEWAGE MONITORING INFORMATION – A SURVEY TWO YEARS AFTER ITS PANDEMIC. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2022, 78, III_275-III_284.	0.1	0
955	Public views on tourist beach environment from multinational countries and ensuing changes during global epidemic. Environmental Science and Pollution Research, 0, , .	2.7	0

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
956	Emerging COVID waste and its impact on the aquatic environment in India. , 2023, , 102	1-126.		0
957	Faecal shedding models for SARS-CoV-2 RNA among hospitalised patients and implication wastewater-based epidemiology. Journal of the Royal Statistical Society Series C: Applie 2023, 72, 330-345.	ons for d Statistics,	0.5	7
958	Rapid Reverse Purification DNA Extraction Approaches to Identify Microbial Pathogens i Microorganisms, 2023, 11, 813.	n Wastewater.	1.6	1
959	Comparing Recovery Methods for Wastewater Surveillance of Arthropod-Borne and Env Viruses. ACS ES&T Water, 2023, 3, 974-983.	eloped	2.3	5
960	Building-Level Detection Threshold of SARS-CoV-2 in Wastewater. Microbiology Spectru	m, 2023, 11, .	1.2	8
961	Monitoring Enteroviruses and SARS-CoV-2 in Wastewater Using the Polio Environmenta System in Japan. Applied and Environmental Microbiology, 2023, 89, .	l Surveillance	1.4	4
962	A sustainable trend in COVID-19 research: An environmental perspective. Frontiers in Er Science, 0, 11, .	vironmental	1.5	5
963	The emergence of a virus variant: dynamics of a competition model with cross-immunity validated by wastewater surveillance data for COVID-19. Journal of Mathematical Biolog	rtime-delay y, 2023, 86, .	0.8	6
964	Wastewater Surveillance Can Function as an Early Warning System for COVID-19 in Lov Settings. Tropical Medicine and Infectious Disease, 2023, 8, 211.	v-Incidence	0.9	1
965	Dynamic population normalisation in wastewater-based epidemiology for improved und the SARS-CoV-2 prevalence: a multi-site study. Journal of Water and Health, O, , .	erstanding of	1.1	4
966	Exploring possible strategies for treating SARS-CoV-2 in sewage wastewater: A review o research and future directions. , 2023, 6, 100056.	fcurrent		0
967	A multistate assessment of population normalization factors for wastewater-based epid COVID-19. PLoS ONE, 2023, 18, e0284370.	emiology of	1.1	12
968	Evaluation of SARS-CoV-2 RNA Presence in Treated and Untreated Hospital Sewage. Wa Pollution, 2023, 234, .	ter, Air, and Soil	1.1	1
969	Optimised protocol for monitoring SARS-CoV-2 in wastewater using reverse complemer whole-genome sequencing. PLoS ONE, 2023, 18, e0284211.	t PCR-based	1.1	4
970	Influence of membrane pore-size on the recovery of endogenous viruses from wastewat adsorption-extraction method. Journal of Virological Methods, 2023, 317, 114732.	er using an	1.0	3
971	The fate of SARS-CoV-2 viral RNA in coastal New England wastewater treatment plants. Water, 0, 5, .	Frontiers in	1.0	2
972	Application of wastewater-based surveillance and copula time-series model for COVID-1 Science of the Total Environment, 2023, 885, 163655.	9 forecasts.	3.9	7
973	Exploration on wastewater-based epidemiology of SARS-CoV-2: Mimic relative quantification on wastewater-based epidemiology of SARS-CoV-2: Mimic relative quantification of the second se	ation with	1.4	1

#	Article	IF	CITATIONS
978	Broadening Wastewater Monitoring of SARS-CoV-2 RNA. Handbook of Environmental Chemistry, 2023, , .	0.2	0
987	WBE: An Integral Part of Mass Surveillance of COVID-19?. Handbook of Environmental Chemistry, 2023,	0.2	0
1005	Covid-19: Survival and Transmission in Wastewater and Sludge. Handbook of Environmental Chemistry, 2023, , .	0.2	0
1006	Implementation of a National Wastewater Surveillance System in France as a Tool to Support Public Authorities During the Covid Crisis: The Obepine Project. Handbook of Environmental Chemistry, 2023,	0.2	0
1019	Wastewater surveillance. , 2023, , 187-224.		0
1032	Sensor-based Wastewater Monitoring Framework to Detect COVID-19. , 2023, , .		0
1074	Inferring Changes in Daily Human Activity from Internet Response. , 2023, , .		1
1094	A Novel Approach to Face Early Pandemics Using QUBO Models. , 2023, , .		0
1099	Surveillance of SARS-CoV-2 RNA in wastewater matrix: a review. Environmental Monitoring and Assessment, 2024, 196, .	1.3	1
1105	New prospects of environmental RNA metabarcoding research in biological diversity, ecotoxicological monitoring, and detection of COVID-19: a critical review. Environmental Science and Pollution Research, 2024, 31, 11406-11427.	2.7	1
1137	Wastewater-Based Epidemiology for Early Warning and Surveillance of Covid-19. , 2024, , 223-246.		0