Nonlinear power loss in the oscillations of coated and u radiation and encapsulating shell damping at various ex

Ultrasonics Sonochemistry 66, 105070 DOI: 10.1016/j.ultsonch.2020.105070

Citation Report

#	Article	IF	CITATIONS
1	Feedforward attractor targeting for non-linear oscillators using a dual-frequency driving technique. Chaos, 2020, 30, 073123.	2.5	10
2	The Pressure Threshold of the 1/2 Order Subharmonic Emissions in the Oscillations of Ultrasonically Excited Uncoated Air Bubbles Is Not at Twice the Resonance Nor It Is It at the Resonance Frequency. , 2020, , .		0
3	Investigation of the 1/2 order subharmonic emissions of the period-2 oscillations of an ultrasonically excited bubble. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126446.	2.1	26
4	Nonlinear dynamics of acoustic bubbles excited by their pressure-dependent subharmonic resonance frequency: influence of the pressure amplitude, frequency, encapsulation and multiple bubble interactions on oversaturation and enhancement of the subharmonic signal. Nonlinear Dynamics, 2021, 103, 429-466.	5.2	42
5	Classification of the major nonlinear regimes of oscillations, oscillation properties, and mechanisms of wave energy dissipation in the nonlinear oscillations of coated and uncoated bubbles. Physics of Fluids, 2021, 33, .	4.0	31
6	Nonlinear dynamics and bifurcation structure of ultrasonically excited lipid coated microbubbles. Ultrasonics Sonochemistry, 2021, 72, 105405.	8.2	28
7	On the threshold of 1/2 order subharmonic emissions in the oscillations of ultrasonically excited bubbles. Ultrasonics, 2021, 112, 106363.	3.9	13
8	Thermal effect inside bubbles for weakly nonlinear pressure waves in bubbly liquids: Theory on short waves. Physics of Fluids, 2021, 33, 063319.	4.0	10
9	Experimental and numerical evidence of intensified non-linearity at the microscale: The lipid coated acoustic bubble. Physics of Fluids, 2021, 33, .	4.0	19
10	Sonoporation: Past, Present, and Future. Advanced Materials Technologies, 2022, 7, .	5.8	28
11	Modelling Lipid-Coated Microbubbles in Focused Ultrasound Applications at Subresonance Frequencies. Ultrasound in Medicine and Biology, 2021, 47, 2958-2979.	1.5	11
12	Weakly nonlinear propagation of focused ultrasound in bubbly liquids with a thermal effect: Derivation of two cases of Khokolov–Zabolotskaya–Kuznetsoz equations. Ultrasonics Sonochemistry, 2022, 88, 105911.	8.2	13
13	Physico-mathematical model for multiple ultrasound-contrast-agent microbubbles encapsulated by a visco-elastic shell: Effect of shell compressibility on ultrasound attenuation. Chemical Engineering Science, 2023, 269, 117541.	3.8	10
14	A single oscillating bubble in liquids with high Mach number. Ultrasonics Sonochemistry, 2022, 85, 105985.	8.2	7
15	The Role of Primary and Secondary Delays in the Effective Resonance Frequency of Acoustically Interacting Microbubbles. SSRN Electronic Journal, 0, , .	0.4	0
16	The role of primary and secondary delays in the effective resonance frequency of acoustically interacting microbubbles. Ultrasonics Sonochemistry, 2022, 86, 106033.	8.2	7
17	Contribution of initial bubble radius distribution to weakly nonlinear waves with a long wavelength in bubbly liquids. Physics of Fluids, 2022, 34, .	4.0	9
18	Nonlinear acoustic theory on flowing liquid containing multiple microbubbles coated by a compressible visco-elastic shell: Low and high frequency cases. Physics of Fluids, 2023, 35, .	4.0	11

CITATION REPORT

#	Article	IF	CITATIONS
19	Nonlinear oscillations and resonances of the acoustic bubble and the mechanisms of energy dissipation. , 2022, , 109-131.		3
20	Analysis of bubble dynamics and thermal destratification induced by gas bubbles in cylindrical liquid storage tanks. Thermal Science and Engineering Progress, 2022, 36, 101481.	2.7	3
21	Concentration-Dependent Viscoelasticity of Poloxamer-Shelled Microbubbles. Langmuir, 2023, 39, 433-441.	3.5	4
22	Probing the pressure dependence of sound speed and attenuation in bubbly media: Experimental observations, a theoretical model and numerical calculations. Ultrasonics Sonochemistry, 2023, 95, 106319.	8.2	18
23	Resonance behaviors of encapsulated microbubbles oscillating nonlinearly with ultrasonic excitation. Ultrasonics Sonochemistry, 2023, 94, 106334.	8.2	9
24	Numerical investigation on acoustic cavitation characteristics of an air-vapor bubble: Effect of equation of state for interior gases. Ultrasonics Sonochemistry, 2023, 97, 106456.	8.2	6
25	Sound attenuation in high mach number oscillating bubble media. Ultrasonics Sonochemistry, 2023, 101, 106699.	8.2	0
26	Controlled Tempering of Lipid Concentration and Microbubble Shrinkage as a Possible Mechanism for Fine-Tuning Microbubble Size and Shell Properties. Langmuir, 2023, 39, 17622-17631.	3.5	0
27	The impact of an ultrasonic standing wave on the sorption behavior of proteins: Investigation of the role of acoustically induced non-spherical bubble oscillations. Journal of Colloid and Interface Science, 2024, 660, 52-65.	9.4	0
28	Detection of Individual Microbubbles by Burst-Wave-Aided Contrast-Enhanced Active Doppler Ultrasonography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2024, 71, 380-394.	3.0	0
29	Numerical investigation of the effect of bubble properties on the linear resonance frequency shift due to inter-bubble interactions in ultrasonically excited lipid coated microbubbles. Ultrasonics Sonochemistry, 2024, 104, 106831.	8.2	0