Effective improvement of electrochemical performance MnO2/reduced graphene oxide supercapacitor material

Journal of Energy Storage 30, 101511 DOI: 10.1016/j.est.2020.101511

Citation Report

#	Article	IF	CITATIONS
1	Cross-Section Auger Analysis to Study the Bulk Organization/Structure of Mn-Co Nano-Composites for Hybrid Supercapacitors. Journal of the Electrochemical Society, 2021, 168, 010508.	2.9	2
2	Cost-effective, environmentally-sustainable and scale-up synthesis of vertically oriented graphenes from waste oil and its supercapacitor applications. Waste Disposal & Sustainable Energy, 2021, 3, 31-39.	2.5	11
3	Mesoporous CeO2-α-MnO2- reduced graphene oxide composite with ultra-high stability as a novel electrode material for supercapacitor. Surfaces and Interfaces, 2021, 25, 101177.	3.0	17
4	Engineering Co3O4/MnO2 nanocomposite materials for oxygen reduction electrocatalysis. Heliyon, 2021, 7, e08076.	3.2	23
5	Electrochemical mechanisms of activated carbon, α-MnO2 and composited activated carbon-α-MnO2 films in supercapacitor applications. Applied Surface Science, 2021, 570, 151056.	6.1	26
6	Effect of current on electrodeposited MnO2 as supercapacitor and lithium-ion battery electrode. Vacuum, 2022, 195, 110692.	3.5	14
7	Size effect of Î ³ -MnO2 precoated anode on lead-containing pollutant reduction and its controllable fabrication in industrial-scale for zinc electrowinning. Chemosphere, 2022, 287, 132457.	8.2	11
8	In-site pulse electrodeposition of manganese dioxide/reduced graphene oxide nanocomposite for high-energy supercapacitors. Journal of Energy Storage, 2022, 46, 103802.	8.1	21
9	Recent advancements in supercapacitors based on different electrode materials: Classifications, synthesis methods and comparative performance. Journal of Energy Storage, 2022, 48, 103871.	8.1	99
10	Electrochemical Performance of Mno2/Graphene Flower-Like Microspheres Prepared by Thermally- Exfoliated Graphite. SSRN Electronic Journal, 0, , .	0.4	0
11	Electrochemical Performance of MnO2/Graphene Flower-like Microspheres Prepared by Thermally-Exfoliated Graphite. Frontiers in Chemistry, 2022, 10, 870541.	3.6	4
12	Sodium Dodecylbenzene Sulfonate Assisted Electrodeposition of MnO ₂ @C Electrode for High Performance Supercapacitor. Journal of the Electrochemical Society, 2021, 168, 122502.	2.9	2
13	Facile hydrothermal synthesis of α-MnO2 and δ-MnO2 for pseudocapacitor applications. Ionics, 2022, 28, 3501-3509.	2.4	10
14	Facile green and sustainable synthesis of MnO@rGO as electrochemically stable anode for lithium-ion batteries. Materials Letters, 2022, 325, 132761.	2.6	7
15	Preparation of Manganese Dioxide Supercapacitors by Secondary Construction of Three-Dimensional Substrates and Ion Embedding. Electronic Materials Letters, 2022, 18, 475-488.	2.2	2
16	Perspective Chapter: Graphene Based Nanocomposites for Supercapacitor Electrodes. , 0, , .		1
17	ZIF-67 derived rGO/NiCo2S4 electrode materials prepared by hydrothermal method for asymmetric supercapacitors. Diamond and Related Materials, 2023, 136, 109946.	3.9	6
18	Potentiodynamic electrodeposited MnO2:Co3O4 thin films electrodes for supercapacitor application. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	1

#	Article	IF	CITATIONS
19	Morphology induced symmetrical supercapacitive performance of the 3D interconnected Ni(OH)2 framework. Journal of Energy Storage, 2023, 68, 107762.	8.1	1
21	Graphene-metal oxide hybrid materials with 2D and 3D morphologies for advanced supercapacitor electrodes: Status, challenges and prospects. Materials Today Nano, 2023, 24, 100399.	4.6	10
22	Boosting MnO2-specific capacitance via surfactant-assisted synthesis and employing redox-active electrolyte. Ionics, 2024, 30, 1125-1136.	2.4	0
23	Facile In-Situ Electrosynthesis of MnO2/RGO Nanocomposite for Enhancing the Electrochemical Performance of Symmetric Supercapacitors. Journal of Electroanalytical Chemistry, 2024, 957, 118099.	3.8	0