High-Resolution mRNA and Secretome Atlas of Human

Cell 181, 1291-1306.e19 DOI: 10.1016/j.cell.2020.04.036

Citation Report

#	Article	IF	CITATIONS
1	Benchmarking algorithms for pathway activity transformation of single-cell RNA-seq data. Computational and Structural Biotechnology Journal, 2020, 18, 2953-2961.	4.1	43
2	Coâ€Culture System of Human Enteroids/Colonoids with Innate Immune Cells. Current Protocols in Immunology, 2020, 131, e113.	3.6	40
3	Regulation of Enteroendocrine Cell Networks by the Major Human Gut Symbiont Bacteroides thetaiotaomicron. Frontiers in Microbiology, 2020, 11, 575595.	3.5	27
4	Genetics and Epigenetics of Sex Bias: Insights from Human Cancer and Autoimmunity. Trends in Genetics, 2020, 36, 650-663.	6.7	23
5	Establishment and Culture of Human Intestinal Organoids Derived from Adult Stem Cells. Current Protocols in Immunology, 2020, 130, e106.	3.6	85
6	Intestinal Regeneration: Regulation by the Microenvironment. Developmental Cell, 2020, 54, 435-446.	7.0	91
7	Organoid Sample Preparation and Extraction for LC-MS Peptidomics. STAR Protocols, 2020, 1, 100164.	1.2	5
8	An Organoid Biobank of Neuroendocrine Neoplasms Enables Genotype-Phenotype Mapping. Cell, 2020, 183, 1420-1435.e21.	28.9	111
9	CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. Cell Stem Cell, 2020, 27, 705-731.	11.1	95
10	Revisiting the Complexity of GLP-1 Action from Sites of Synthesis to Receptor Activation. Endocrine Reviews, 2021, 42, 101-132.	20.1	115
11	Editorial: Gastrointestinal regulatory peptides. Current Opinion in Endocrinology, Diabetes and Obesity, 2021, 28, 196-197.	2.3	0
12	Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell, 2021, 184, 810-826.e23.	28.9	263
13	The Organoid Platform: Promises and Challenges as Tools in the Fight against COVID-19. Stem Cell Reports, 2021, 16, 412-418.	4.8	20
14	Human gastrointestinal epithelia of the esophagus, stomach, and duodenum resolved at single-cell resolution. Cell Reports, 2021, 34, 108819.	6.4	153
15	Nutrient-Induced Cellular Mechanisms of Gut Hormone Secretion. Nutrients, 2021, 13, 883.	4.1	39
17	The gut–brain axis: Identifying new therapeutic approaches for type 2 diabetes, obesity, and related disorders. Molecular Metabolism, 2021, 46, 101175.	6.5	29
18	Glucagon-like peptide-1 receptor co-agonists for treating metabolic disease. Molecular Metabolism, 2021, 46, 101090.	6.5	150
19	Controlling for cellular heterogeneity using single-cell deconvolution of gene expression reveals novel markers of colorectal tumors exhibiting microsatellite instability. Oncotarget, 2021, 12, 767-782.	1.8	5

#	Article	IF	CITATIONS
21	The specification and function of enteroendocrine cells in <i>Drosophila</i> and mammals: a comparative review. FEBS Journal, 2022, 289, 4773-4796.	4.7	29
22	High Glucose Exposure Impairs L-Cell Differentiation in Intestinal Organoids: Molecular Mechanisms and Clinical Implications. International Journal of Molecular Sciences, 2021, 22, 6660.	4.1	17
23	Organoids and organs-on-chips: Insights into human gut-microbe interactions. Cell Host and Microbe, 2021, 29, 867-878.	11.0	85
24	Peptidomics of enteroendocrine cells and characterisation of potential effects of a novel preprogastrin derived-peptide on glucose tolerance in lean mice. Peptides, 2021, 140, 170532.	2.4	7
25	What Is an L-Cell and How Do We Study the Secretory Mechanisms of the L-Cell?. Frontiers in Endocrinology, 2021, 12, 694284.	3.5	22
26	Tracing colonic embryonic transcriptional profiles and their reactivation upon intestinal damage. Cell Reports, 2021, 36, 109484.	6.4	18
27	Intestinal organoid cocultures with microbes. Nature Protocols, 2021, 16, 4633-4649.	12.0	99
28	L-cell Arntl is required for rhythmic glucagon-like peptide-1 secretion and maintenance of intestinal homeostasis. Molecular Metabolism, 2021, 54, 101340.	6.5	12
29	Cells of the human intestinal tract mapped across space and time. Nature, 2021, 597, 250-255.	27.8	266
32	Organoid based personalized medicine: from bench to bedside. Cell Regeneration, 2020, 9, 21.	2.6	67
34	Multiomic analysis defines the first microRNA atlas across all small intestinal epithelial lineages and reveals novel markers of almost all major cell types. American Journal of Physiology - Renal Physiology, 2021, 321, G668-G681.	3.4	7
36	Robust differentiation of human enteroendocrine cells from intestinal stem cells. Nature Communications, 2022, 13, 261.	12.8	19
37	Nutrient sensing in the gut and the regulation of appetite. Current Opinion in Endocrine and Metabolic Research, 2022, 23, 100318.	1.4	1
38	Enteroendocrine cell differentiation and function in the intestine. Current Opinion in Endocrinology, Diabetes and Obesity, 2022, 29, 169-176.	2.3	4
39	A Proximal-to-Distal Survey of Healthy Adult Human Small Intestine and Colon Epithelium by Single-Cell Transcriptomics. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1554-1589.	4.5	79
40	Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids. Nature Communications, 2022, 13, 1692.	12.8	101
41	Enteroendocrine System and Gut Barrier in Metabolic Disorders. International Journal of Molecular Sciences, 2022, 23, 3732.	4.1	8
43	GLP-1 Mediates Regulation of Colonic ACE2 Expression by the Bile Acid Receptor GPBAR1 in Inflammation. Cells, 2022, 11, 1187.	4.1	9

			_
#		IF	CITATIONS
44	Digital Spatial Profiling Reveals Functional Shift of Enterochromaffin Cell in Patients With Ulcerative Colitis. Frontiers in Cell and Developmental Biology, 2022, 10, 841090.	3.7	1
45	Gastrointestinal regulatory peptides. Current Opinion in Endocrinology, Diabetes and Obesity, 2022, 29, 167-168.	2.3	0
46	A turquoise fluorescence lifetime-based biosensor for quantitative imaging of intracellular calcium. Nature Communications, 2021, 12, 7159.	12.8	33
47	Targeting the Enteroendocrine System for Treatment of Obesity. Handbook of Experimental Pharmacology, 2022, , 1.	1.8	0
50	A Protocol for the Cryopreservation of Human Intestinal Mucosal Biopsies Compatible With Single-Cell Transcriptomics and Ex Vivo Studies. Frontiers in Physiology, 2022, 13, .	2.8	2
51	Bisphenol analogues induced metabolic effects through eliciting intestinal cell heterogeneous response. Environment International, 2022, 165, 107287.	10.0	11
52	MTG16 regulates colonic epithelial differentiation, colitis, and tumorigenesis by repressing E protein transcription factors. JCI Insight, 2022, 7, .	5.0	9
53	Liver Colonization by Colorectal Cancer Metastases Requires YAP-Controlled Plasticity at the Micrometastatic Stage. Cancer Research, 2022, 82, 1953-1968.	0.9	29
54	Organoids in gastrointestinal diseases: from experimental models to clinical translation. Gut, 2022, 71, 1892-1908.	12.1	40
55	Mass Spectrometry Approaches Empowering Neuropeptide Discovery and Therapeutics. Pharmacological Reviews, 2022, 74, 662-679.	16.0	5
56	Development of a Primary Human Intestinal Epithelium Enriched in L-Cells for Assay of GLP-1 Secretion. Analytical Chemistry, 2022, 94, 9648-9655.	6.5	3
58	Single-Cell RNA Sequencing for Analyzing the Intestinal Tract in Healthy and Diseased Individuals. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	3
59	Disrupted and Elevated Circadian Secretion of Glucagon-Like Peptide-1 in a Murine Model of Type 2 Diabetes. Endocrinology, 2022, 163, .	2.8	7
60	Human organoids: New strategies and methods for analyzing human development and disease. Cell, 2022, 185, 2756-2769.	28.9	42
61	InÂvivo drug discovery for increasing incretin-expressing cells identifies DYRK inhibitors that reinforce the enteroendocrine system. Cell Chemical Biology, 2022, 29, 1368-1380.e5.	5.2	4
62	Optimized human intestinal organoid model reveals interleukin-22-dependency of paneth cell formation. Cell Stem Cell, 2022, 29, 1333-1345.e6.	11.1	41
63	Differentiation and CRISPR-Cas9-mediated genetic engineering of human intestinal organoids. STAR Protocols, 2022, 3, 101639.	1.2	4
64	Intestinal epithelial organoids: regeneration and maintenance of the intestinal epithelium. Current Opinion in Genetics and Development, 2022, 76, 101977.	3.3	4

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
66	Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	7
67	The Molecular Determinants of Glucagon-like Peptide Secretion by the Intestinal L cell. Endocrinology, 2022, 163, .	2.8	3
68	Establishment of MDR1-knockout human enteroids for pharmaceutical application. Drug Metabolism and Pharmacokinetics, 2023, 48, 100476.	2.2	5
69	3D chromatin maps of the human pancreas reveal lineage-specific regulatory architecture of T2D risk. Cell Metabolism, 2022, 34, 1394-1409.e4.	16.2	26
70	Intestinal cellular heterogeneity and disease development revealed by single-cell technology. Cell Regeneration, 2022, 11, .	2.6	8
72	A hierarchical transcription factor cascade regulates enteroendocrine cell diversity and plasticity in Drosophila. Nature Communications, 2022, 13, .	12.8	4
73	Mapping prohormone processing by proteases in human enteroendocrine cells using genetically engineered organoid models. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	5
74	Neuroendocrinology of the lung revealed by single-cell RNA sequencing. ELife, 0, 11, .	6.0	11
75	Impact of the Human Cell Atlas on medicine. Nature Medicine, 2022, 28, 2486-2496.	30.7	59
76	The enteric nervous system. Physiological Reviews, 2023, 103, 1487-1564.	28.8	48
77	Enhanced secretion of satiety-promoting gut hormones in healthy humans after consumption of white bread enriched with cellular chickpea flour: A randomized crossover study. American Journal of Clinical Nutrition, 2023, 117, 477-489.	4.7	9
78	The landscape of immune dysregulation in Crohn's disease revealed through single-cell transcriptomic profiling in the ileum and colon. Immunity, 2023, 56, 444-458.e5.	14.3	35
79	Phox2B is a sensitive and reliable marker of paraganglioma—Phox2B immunohistochemistry in diagnosis of neuroendocrine neoplasms. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2023, 482, 679-686.	2.8	2
80	Gut Microbiota Remodeling and Intestinal Adaptation to Lipid Malabsorption After Enteroendocrine Cell Loss in Adult Mice. Cellular and Molecular Gastroenterology and Hepatology, 2023, 15, 1443-1461.	4.5	5
81	Exposure to nonanoic acid alters small intestinal neuroendocrine tumor phenotype. BMC Cancer, 2023, 23, .	2.6	0
83	Evidence that RXFP4 is located in enterochromaffin cells and can regulate production and release of serotonin. Bioscience Reports, 2023, 43, .	2.4	Ο
84	The diverse nature of intestinal fibroblasts in development, homeostasis, and disease. Trends in Cell Biology, 2023, 33, 834-849.	7.9	5
85	Therapeutic Potential of Human Intestinal Organoids in Tissue Repair Approaches in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2023, 29, 1488-1498.	1.9	4

CITATION REPORT

#	Article	IF	CITATIONS
86	A Roadmap for the Human Gut Cell Atlas. Nature Reviews Gastroenterology and Hepatology, 2023, 20, 597-614.	17.8	9
87	Co-culturing Human Intestinal Enteroid Monolayers with Innate Immune Cells. Methods in Molecular Biology, 2023, , 207-223.	0.9	0
88	Desacyl-ghrelin, not just an inactive form of ghrelin?-A review of current knowledge on the biological actions of desacyl-ghrelin. Peptides, 2023, , 171050.	2.4	0
89	GPCR-mediated effects of fatty acids and bile acids on glucose homeostasis. Frontiers in Endocrinology, 0, 14, .	3.5	3
90	Gene expression analyses of TAS1R taste receptors relevant to the treatment of cardiometabolic disease. Chemical Senses, 0, , .	2.0	0
91	Microbial-host-isozyme analyses reveal microbial DPP4 as a potential antidiabetic target. Science, 2023, 381, .	12.6	18
92	Dorothy Hodgkin lecture 2023: The enteroendocrine system—Sensors in your guts. Diabetic Medicine, 2023, 40, .	2.3	1
94	Microbial stimulation of oxytocin release from the intestinal epithelium via secretin signaling. Gut Microbes, 2023, 15, .	9.8	3
95	Organoids transplantation attenuates intestinal ischemia/reperfusion injury in mice through L-Malic acid-mediated M2 macrophage polarization. Nature Communications, 2023, 14, .	12.8	1
96	Transcriptional Regulation of Metabolism in the Intestinal Epithelium. American Journal of Physiology - Renal Physiology, 0, , .	3.4	0
97	Enteroendocrine cell regulation of the gut-brain axis. Frontiers in Neuroscience, 0, 17, .	2.8	4
98	Unbiased transcription factor CRISPR screen identifies ZNF800 as master repressor of enteroendocrine differentiation. Science, 2023, 382, 451-458.	12.6	5
99	Secretome Analysis: Reading Cellular Sign Language to Understand Intercellular Communication. Molecular and Cellular Proteomics, 2024, 23, 100692.	3.8	0
100	The Sympatheticâ€Immune Milieu in Metabolic Health and Diseases: Insights from Pancreas, Liver, Intestine, and Adipose Tissues. Advanced Science, 2024, 11, .	11.2	0
101	Colonic L-cell impairment in aged subjects with type 2 diabetes leads to diminished GLP-1 production. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2023, 17, 102907.	3.6	0
106	Gut-on-chip devices as intestinal inflammation models and their future for studying multifactorial diseases. , 0, 2, .		0
107	Sympathetic nerve-enteroendocrine L cell communication modulates GLP-1 release, brain glucose utilization, and cognitive function. Neuron, 2024, 112, 972-990.e8.	8.1	1
108	Decoding endocrine cell differentiation: insights from highâ€ŧhroughput CRISPR screening in human gut organoids. Clinical and Translational Medicine, 2024, 14, .	4.0	0

#	Article	IF	CITATIONS
109	Mechanics of serotonin-producing human entero-endocrine cells. , 2024, 2, 100044.		0