Water and Metal–Organic Frameworks: From Interac

Chemical Reviews 120, 8303-8377

DOI: 10.1021/acs.chemrev.9b00746

Citation Report

#	ARTICLE	IF	Citations
1	Metal–Organic Frameworks and Water: â€~From Old Enemies to Friends'?. Trends in Chemistry, 2020, 2, 990-1003.	4.4	35
2	Metal–Organic Frameworks for Water Harvesting from Air, Anywhere, Anytime. ACS Central Science, 2020, 6, 1348-1354.	5.3	248
3	Selective CO2 adsorption over functionalized Zr-based metal organic framework under atmospheric or lower pressure: Contribution of functional groups to adsorption. Chemical Engineering Journal, 2020, 402, 126254.	6.6	58
4	Crystal engineering of porous coordination networks to enable separation of C2 hydrocarbons. Chemical Communications, 2020, 56, 10419-10441.	2.2	123
5	Metalâ€Organic Frameworks as Sorption Materials for Heat Transformation Processes. European Journal of Inorganic Chemistry, 2020, 2020, 4502-4515.	1.0	18
6	A historical overview of the activation and porosity of metal–organic frameworks. Chemical Society Reviews, 2020, 49, 7406-7427.	18.7	367
7	Linker Substituents Control the Thermodynamic Stability in Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 21720-21729.	6.6	36
8	Oneâ€Step Roomâ€Temperature Synthesis of Metal(IV) Carboxylate Metalâ€"Organic Frameworks. Angewandte Chemie, 2021, 133, 4328-4334.	1.6	13
9	Oneâ€Step Roomâ€Temperature Synthesis of Metal(IV) Carboxylate Metalâ€"Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 4282-4288.	7.2	73
10	Screening metal-organic frameworks for adsorption-driven osmotic heat engines via grand canonical Monte Carlo simulations and machine learning. IScience, 2021, 24, 101914.	1.9	24
11	Scalable crystalline porous membranes: current state and perspectives. Chemical Society Reviews, 2021, 50, 1913-1944.	18.7	47
12	Porous frameworks for effective water adsorption: from 3D bulk to 2D nanosheets. Inorganic Chemistry Frontiers, 2021, 8, 898-913.	3.0	22
13	H2S Stability of Metal–Organic Frameworks: A Computational Assessment. ACS Applied Materials & Interfaces, 2021, 13, 4813-4822.	4.0	6
14	Gas hydrates in confined space of nanoporous materials: new frontier in gas storage technology. Nanoscale, 2021, 13, 7447-7470.	2.8	28
15	Elucidating pore chemistry within metal–organic frameworks <i>via</i> single crystal X-ray diffraction; from fundamental understanding to application. CrystEngComm, 2021, 23, 2185-2195.	1.3	5
16	Fluorinated Grapheneâ€Enabled Durable Triboelectric Coating for Water Energy Harvesting. Small, 2021, 17, e2007805.	5. 2	27
17	Polyanilineâ€Coated MOFs Nanorod Arrays for Efficient Evaporationâ€Driven Electricity Generation and Solar Steam Desalination. Advanced Science, 2021, 8, 2004552.	5.6	95
18	Metal-organic frameworks for environmental applications. Cell Reports Physical Science, 2021, 2, 100348.	2.8	44

#	ARTICLE	IF	CITATIONS
19	Highâ€Silica CHA Zeolite Membrane with Ultraâ€High Selectivity and Irradiation Stability for Krypton/Xenon Separation. Angewandte Chemie - International Edition, 2021, 60, 9032-9037.	7.2	32
20	Metal Organic Frameworks (MOFs) as Photocatalysts for the Degradation of Agricultural Pollutants in Water. ACS ES&T Engineering, 2021, 1, 804-826.	3.7	82
21	Highâ€Silica CHA Zeolite Membrane with Ultraâ€High Selectivity and Irradiation Stability for Krypton/Xenon Separation. Angewandte Chemie, 2021, 133, 9114-9119.	1.6	6
22	Structural and Hydrolytic Stability of Coordinatively Unsaturated Metal–Organic Frameworks M ₃ (BTC) ₂ (M = Cu, Co, Mn, Ni, and Zn): A Combined DFT and Experimental Study. Journal of Physical Chemistry C, 2021, 125, 5832-5847.	1.5	11
23	Evaluating the Robustness of Metal–Organic Frameworks for Synthetic Chemistry. ACS Applied Materials & Samp; Interfaces, 2021, 13, 17517-17531.	4.0	35
25	Ultrahigh-Energy-Density Sorption Thermal Battery Enabled by Graphene Aerogel-Based Composite Sorbents for Thermal Energy Harvesting from Air. ACS Energy Letters, 2021, 6, 1795-1802.	8.8	82
26	Chemically Stable Hafnium-Based Metal–Organic Framework for Highly Efficient C ₂ H ₆ /C _{/C₄ Separation under Humid Conditions. ACS Applied Materials & Description (1879).}	4.0	34
27	Simulation Meets Experiment: Unraveling the Properties of Water in Metal–Organic Frameworks through Vibrational Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 12451-12460.	1.5	16
28	High-performance membrane with angstrom-scale manipulation of gas transport channels via polymeric decorated MOF cavities. Journal of Membrane Science, 2021, 625, 119175.	4.1	27
29	Cooling performance of metal organic framework-water pairs in cascaded adsorption chillers. Applied Thermal Engineering, 2021, 189, 116707.	3.0	17
30	Insights into Catalytic Hydrolysis of Organophosphonates at M–OH Sites of Azolate-Based Metal Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 9893-9900.	6.6	45
31	Asymmetric catalysis using metal-organic frameworks. Coordination Chemistry Reviews, 2021, 437, 213845.	9.5	80
32	Metal-organic frameworks for energy conversion and water harvesting: A bridge between thermal engineering and material science. Nano Energy, 2021, 84, 105946.	8.2	110
33	Advances in adsorptive separation of benzene and cyclohexane by metal-organic framework adsorbents. Coordination Chemistry Reviews, 2021, 437, 213852.	9.5	74
34	CaCl2 Nanocrystals decorated photothermal Fe-ferrocene MOFs hollow microspheres for atmospheric water harvesting. Applied Materials Today, 2021, 23, 101076.	2.3	15
35	En Route to a Heterogeneous Catalytic Direct Peptide Bond Formation by Zr-Based Metal–Organic Framework Catalysts. ACS Catalysis, 2021, 11, 7647-7658.	5.5	31
36	Adsorption-based atmospheric water harvesting. Joule, 2021, 5, 1678-1703.	11.7	165
37	Chemical Stability of Metalâ€organic Frameworks for Applications in Drug Delivery. ChemNanoMat, 2021, 7, 998-1007.	1.5	46

#	ARTICLE	IF	CITATIONS
38	Stable metal-organic frameworks based mixed matrix membranes for Ethylbenzene/N2 separation. Chemical Engineering Journal, 2021, 416, 129193.	6.6	21
39	The forgotten chemistry of group(IV) metals: A survey on the synthesis, structure, and properties of discrete Zr(IV), Hf(IV), and Ti(IV) oxo clusters. Coordination Chemistry Reviews, 2021, 438, 213886.	9.5	40
40	Fine-Tuning Window Apertures in ZIF-8/67 Frameworks by Metal Ions and Temperature for High-Efficiency Molecular Sieving of Xylenes. ACS Applied Materials & Interfaces, 2021, 13, 40830-40836.	4.0	28
41	Water Confined in MIL-101(Cr): Unique Sorption–Desorption Behaviors Revealed by Diffuse Reflectance Infrared Spectroscopy and Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2021, 125, 17786-17795.	1.5	15
42	Regulation of hydrophobicity and water adsorption of MIL-101(Cr) through post-synthetic modification. Inorganic Chemistry Communication, 2021, 130, 108741.	1.8	14
43	Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coordination Chemistry Reviews, 2021, 440, 213969.	9.5	27
44	Performance-Based Screening of Porous Materials for Carbon Capture. Chemical Reviews, 2021, 121, 10666-10741.	23.0	115
45	Hydrophobic Metalâ^'Organic Frameworks and Derived Composites for Microelectronics Applications. Chemistry - A European Journal, 2021, 27, 16543-16563.	1.7	4
46	Emerging porous framework material-based nanofluidic membranes toward ultimate ion separation. Matter, 2021, 4, 2810-2830.	5.0	27
47	Round-the-clock water harvesting from dry air using a metalâ° organic framework. Chinese Journal of Chemical Engineering, 2022, 49, 170-177.	1.7	5
48	Moisture-participating MOF thermal battery for heat reallocation between indoor environment and building-integrated photovoltaics. Nano Energy, 2021, 87, 106224.	8.2	17
49	Contribution of hydrogen bonding to liquid-phase adsorptive removal of hazardous organics with metal-organic framework-based materials. Chemical Engineering Journal, 2022, 430, 132596.	6.6	79
50	A regulation strategy of sorbent stepwise position for boosting atmospheric water harvesting in arid area. Cell Reports Physical Science, 2021, 2, 100561.	2.8	28
52	Improving porosity and water uptake of aluminum metal-organic frameworks (Al-MOFs) as graphite oxide (GO) composites. Microporous and Mesoporous Materials, 2021, 326, 111352.	2.2	4
53	The optimal step locations for high-performance adsorption heat pumps under various working conditions. Thermal Science and Engineering Progress, 2021, 25, 101033.	1.3	6
54	An updated status and trends in actinide metal-organic frameworks (An-MOFs): From synthesis to application. Coordination Chemistry Reviews, 2021, 446, 214011.	9.5	93
55	Ultrahigh water sorption on highly nitrogen doped carbonaceous materials derived from uric acid. Journal of Colloid and Interface Science, 2021, 602, 880-888.	5.0	9
56	Development of lithium hydroxide-metal organic framework-derived porous carbon composite materials for efficient low temperature thermal energy storage. Microporous and Mesoporous Materials, 2021, 328, 111455.	2.2	2

#	ARTICLE	IF	CITATIONS
57	A switchable sensor and scavenger: detection and removal of fluorinated chemical species by a luminescent metal–organic framework. Chemical Science, 2021, 12, 14189-14197.	3.7	26
58	Humidity reduction by using hetero-layered metal–organic framework nanosheet composites as hygroscopic materials. Environmental Science: Nano, 2021, 8, 3665-3672.	2.2	11
59	Metastable Zr/Hf-MOFs: the hexagonal family of EHU-30 and their water-sorption induced structural transformation. Inorganic Chemistry Frontiers, 2021, 8, 4767-4779.	3.0	8
60	Binderâ€Free Growth of Aluminumâ€Based Metal–Organic Frameworks on Aluminum Substrate for Enhanced Water Adsorption Capacity. Advanced Functional Materials, 2022, 32, 2105267.	7.8	23
61	An improved water-harvesting cycle. Science, 2021, 374, 402-402.	6.0	6
62	Fabrication of 3D Amino-Functionalized Metal–Organic Framework on Porous Nickel Foam Skeleton to Combinate Follicle Stimulating Hormone Antibody for Specific Recognition of Follicle-Stimulating Hormone. Jacs Au, 2021, 1, 2249-2260.	3.6	8
63	Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting. Science, 2021, 374, 454-459.	6.0	281
64	A Hydrolytically Stable Cu(II)-Based Metalâ^'Organic Framework with Easily Accessible Ligands for Water Harvesting. ACS Applied Materials & Interfaces, 2021, 13, 49509-49518.	4.0	18
65	Carbon nanotubes decorated hollow metal–organic frameworks for efficient solar-driven atmospheric water harvesting. Chemical Engineering Journal, 2022, 430, 133086.	6.6	37
66	Chemically Stable Carbazole-Based Imine Covalent Organic Frameworks with Acidochromic Response for Humidity Control Applications. Journal of the American Chemical Society, 2021, 143, 18368-18373.	6.6	40
67	Efficient removal of antimonate from water by yttrium-based metal-organic framework: Adsorbent stability and adsorption mechanism investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633, 127877.	2.3	8
68	High Water Adsorption MOFs with Optimized Poreâ€Nanospaces for Autonomous Indoor Humidity Control and Pollutants Removal. Angewandte Chemie, 2022, 134, .	1.6	5
69	Water cluster in hydrophobic crystalline porous covalent organic frameworks. Nature Communications, 2021, 12, 6747.	5.8	33
70	The Role of Freeâ€Radical Pathway in Catalytic Dye Degradation by Hydrogen Peroxide on the Zrâ€Based UiOâ€66â€NH ₂ MOF. ChemistrySelect, 2021, 6, 11675-11681.	0.7	4
71	High Water Adsorption MOFs with Optimized Poreâ€Nanospaces for Autonomous Indoor Humidity Control and Pollutants Removal. Angewandte Chemie - International Edition, 2022, 61, .	7.2	42
72	Photocatalytic MOF membranes with two-dimensional heterostructure for the enhanced removal of agricultural pollutants in water. Chemical Engineering Journal, 2022, 435, 133870.	6.6	10
73	Structure–Property Correlation of Hierarchically Porous Carbons for Fluorocarbon Adsorption. ACS Applied Materials & Diterfaces, 2021, 13, 54266-54273.	4.0	7
74	Highly Water-Permeable Metal–Organic Framework MOF-303 Membranes for Desalination. Journal of the American Chemical Society, 2021, 143, 20055-20058.	6.6	74

#	ARTICLE	IF	CITATIONS
75	Uranyl phosphonates: crystalline materials and nanosheets for temperature sensing. Dalton Transactions, 2021, 50, 17129-17139.	1.6	9
76	Metal–Organic Frameworks/Polymer Composite Membranes. RSC Smart Materials, 2021, , 98-141.	0.1	0
77	Ultralow-temperature-driven water-based sorption refrigeration enabled by low-cost zeolite-like porous aluminophosphate. Nature Communications, 2022, 13, 193.	5.8	33
78	MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chemical Society Reviews, 2022, 51, 1045-1097.	18.7	148
79	Eco-friendly hierarchical porous palygorskite/wood fiber aerogels with smart indoor humidity control. Journal of Cleaner Production, 2022, 335, 130367.	4.6	13
80	A remarkable adsorbent for denitrogenation of liquid fuel: Ethylenediaminetetraacetic acid-grafted metal–organic framework, MOF-808. Separation and Purification Technology, 2022, 284, 120248.	3.9	14
81	Thermal kinetics on adsorption heat transformation based on activated biocarbon and ethanol as working pairs. Materials Letters, 2022, 311, 131622.	1.3	1
82	Construction of metal organic framework-derived hollow-structured mesoporous carbon based lithium hydroxide composites for low-grade thermal energy storage. Composites Part B: Engineering, 2022, 232, 109604.	5.9	6
83	Facile synthesis of Al-based MOF and its applications in desiccant coated heat exchangers. Renewable and Sustainable Energy Reviews, 2022, 157, 112015.	8.2	26
84	Kinetics of Sorption in Hygroscopic Hydrogels. Nano Letters, 2022, 22, 1100-1107.	4.5	65
85	MOF@chitosan Composites with Potential Antifouling Properties for Open-Environment Applications of Metal-Organic Frameworks. Solids, 2022, 3, 35-54.	1.1	5
86	Screening versatile water/adsorbent working pairs for wide operating conditions of adsorption heat pumps. Sustainable Energy and Fuels, 2022, 6, 309-319.	2.5	3
87	Which factors govern the adsorption of peptides to Zr(<scp>iv</scp>)-based metal–organic frameworks?. Materials Advances, 2022, 3, 2475-2487.	2.6	7
88	Producing cold from heat with aluminum carboxylate-based metal-organic frameworks. Cell Reports Physical Science, 2022, 3, 100730.	2.8	12
89	Significance of an Environmental Gas Cell to Obtain a Fully Dehydrated Form and CO ₂ -Pressurized Structure of a Metal–Organic Framework Using In Situ Single-Crystal X-ray Diffraction at 298 K. Inorganic Chemistry, 2022, 61, 939-943.	1.9	10
90	A caveat on the effect of modulators in the synthesis of the aluminum furandicarboxylate metalâ€organic framework MILâ€160. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	2
91	A metal-organic framework (MOF)-based temperature swing adsorption cycle for postcombustion CO2 capture from wet flue gas. Chemical Engineering Science, 2022, 250, 117399.	1.9	23
92	Sorption-tree with scalable hygroscopic adsorbent-leaves for water harvesting. Journal of Materials Chemistry A, 2022, 10, 6576-6586.	5.2	21

#	Article	IF	CITATIONS
93	Immobilization of Lewis Basic Nitrogen Sites into a Chemically Stable Metal–Organic Framework for Benchmark Waterâ€Sorptionâ€Driven Heat Allocations. Advanced Science, 2022, 9, e2105556.	5.6	17
94	Incorporation of free halide ions stabilizes metal–organic frameworks (MOFs) against pore collapse and renders large-pore Zr-MOFs functional for water harvesting. Journal of Materials Chemistry A, 2022, 10, 6442-6447.	5.2	19
95	Theoretical Evaluation OfÂAdsorption Desalination Performance of Metal-Organic Frameworks Under Varying Senarios. SSRN Electronic Journal, 0, , .	0.4	0
96	Metal organic framework/polyelectrolyte composites for water vapor sorption applications. Dalton Transactions, 2022, , .	1.6	2
97	Selective luminescent sensing of metal ions and nitroaromatics over a porous mixed-linker cadmium(<scp>ii</scp>) based metal–organic framework. New Journal of Chemistry, 2022, 46, 8523-8533.	1.4	6
98	Synergetic and persistent harvesting of electricity and potable water from ambient moisture with biohybrid fibrils. Journal of Materials Chemistry A, 2022, 10, 8356-8363.	5.2	12
99	Large-scale cascade cooling performance evaluation of adsorbent/water working pairs by integrated mathematical modelling and machine learning. Journal of Materials Chemistry A, O, , .	5.2	4
100	Sandwich-Structured Carbon Paper/Metal–Organic Framework Monoliths for Flexible Solar-Powered Atmospheric Water Harvesting On Demand. ACS Applied Materials & Demand. ACS ACS Applied Materials & Demand. ACS	4.0	24
101	Porphyrin aluminum MOF with ultra-high water sorption capacity: In-situ time-dependent ATR-FTIR spectroscopy and gravimetry to study mechanism of water bonding and desorption. Vibrational Spectroscopy, 2022, 119, 103356.	1.2	8
102	Confinement–Unconfinement Transformation of ILs in IL@MOF Composite with Multiple Adsorption Sites for Efficient Water Capture and Release. Advanced Materials Interfaces, 2022, 9, .	1.9	11
103	Adsorption-based atmospheric water harvesting: A review of adsorbents and systems. International Communications in Heat and Mass Transfer, 2022, 133, 105961.	2.9	47
104	xmins:mmi="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e529" altimg="si146.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>4</mml:mn> </mml:mrow></mml:mrow </mml:msub> /H <mml:math xmins:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e537"</mml:math 	2.2	5
105	Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2 under low pressure. Journal of CO2 Utilization, 2022, 58, 101932.	3.3	36
106	Functional nanomaterials based opto-electrochemical sensors for the detection of gonadal steroid hormones. TrAC - Trends in Analytical Chemistry, 2022, 150, 116571.	5.8	13
107	Benefits of metal–organic frameworks sorbents for sorbent wheels used in air conditioning systems. Applied Thermal Engineering, 2022, 210, 118407.	3.0	6
108	Confined Water Vapor in ZIF-8 Nanopores. ACS Omega, 2022, 7, 64-69.	1.6	8
109	Water Capture Mechanisms at Zeolitic Imidazolate Framework Interfaces. Journal of the American Chemical Society, 2021, 143, 21189-21194.	6.6	28
110	FriedlAAder, Knoevenagel, and Michael Reactions Employing the Same MOF: Synthesis, Structure, and		

#	Article	IF	CITATIONS
111	Linker Functionalization Strategy for Water Adsorption in Metal–Organic Frameworks. Molecules, 2022, 27, 2614.	1.7	7
112	Insights of the adsorbents surface chemical properties effect on water adsorption isotherms. International Journal of Heat and Mass Transfer, 2022, 192, 122842.	2.5	11
113	Heterogeneous wettability and radiative cooling for efficient deliquescent sorbents-based atmospheric water harvesting. Cell Reports Physical Science, 2022, 3, 100879.	2.8	20
114	Water Harvesting from Air: Current Passive Approaches and Outlook. , 2022, 4, 1003-1024.		51
115	Water-Stable Carborane-Based Eu ³⁺ /Tb ³⁺ Metalâ€"Organic Frameworks for Tunable Time-Dependent Emission Color and Their Application in Anticounterfeiting Bar-Coding. Chemistry of Materials, 2022, 34, 4795-4808.	3.2	27
116	Performance evaluation of a metal organic frameworksÂbased combined dehumidification and indirect evaporative cooling system in different climates. International Journal of Refrigeration, 2022, 140, 186-197.	1.8	8
117	Accessing 14-Connected Nets: Continuous Breathing, Hydrophobic Rare-Earth Metal Organic Frameworks Based on 14-c Hexanuclear Clusters with High Affinity for Non-Polar Vapors. ACS Applied Materials & Samp; Interfaces, 2022, 14, 22242-22251.	4.0	7
118	A composite coating based on metal–organic framework MIL-101(Cr) synthesised by L-malic acid as mineralising agent for thermal management. Advanced Composites and Hybrid Materials, 2022, 5, 2896-2905.	9.9	15
119	Trace removal of benzene vapour using double-walled metal–dipyrazolate frameworks. Nature Materials, 2022, 21, 689-695.	13.3	109
120	Hydrothermal Green Synthesis of a Robust Al Metal-Organic-Framework Effective for Water Adsorption Heat Allocations. ACS Sustainable Chemistry and Engineering, 2022, 10, 7010-7019.	3.2	9
121	Tailoring a robust Al-MOF for trapping C ₂ H ₆ and C ₂ H ₄ purification from quaternary mixtures. Chemical Science, 2022, 13, 7172-7180.	3.7	30
122	MOF supraparticles for atmosphere water harvesting at low humidity. Journal of Materials Chemistry A, 2022, 10, 15116-15126.	5.2	15
123	Construction and application of base-stable MOFs: a critical review. Chemical Society Reviews, 2022, 51, 6417-6441.	18.7	147
124	Sustainable water generation: grand challenges in continuous atmospheric water harvesting. Energy and Environmental Science, 2022, 15, 3223-3235.	15.6	37
125	Water Adsorption on AQSOA-FAM-Z02 Beads. Journal of Chemical & Engineering Data, 2022, 67, 1723-1731.	1.0	4
126	Metal-organic frameworks (MOF) based heat transfer: A comprehensive review. Chemical Engineering Journal, 2022, 449, 137700.	6.6	39
127	Topologically Driven Pore/Surface Engineering in a Recyclable Microporous Metal–Organic Vessel Decorated with Hydrogen-Bond Acceptors for Solvent-Free Heterogeneous Catalysis. ACS Applied Materials & Decorated with Hydrogeneous, 11, 27941-27954.	4.0	16
128	Binary/Ternary MOF Nanocomposites for Multiâ€Environment Indoor Atmospheric Water Harvesting. Advanced Functional Materials, 2022, 32, .	7.8	16

#	Article	IF	CITATIONS
129	Heat and mass transfer in hygroscopic hydrogels. International Journal of Heat and Mass Transfer, 2022, 195, 123103.	2.5	14
130	Water Vapor Adsorption by Porous Materials: From Chemistry to Practical Applications. Journal of Chemical & Ch	1.0	18
131	Synthesis of Hierarchicalâ€Porous Fluorinated Metal–Organic Frameworks with Superior Toluene Adsorption Properties. ChemSusChem, 2022, 15, .	3 . 6	3
132	Materials for evaporationâ€driven hydrovoltaic technology. , 2022, 1, 449-470.		16
133	Anti-corrosive propensity of naturally occurring aldehydes and 1-(3-aminopropyl)imidazole condensed Schiff bases: Comparison on the effect of extended conjugation over electron donating substituents. Journal of Molecular Structure, 2022, 1268, 133684.	1.8	10
134	Theoretical evaluation of adsorption desalination performance of metal-organic frameworks under varying scenarios. Applied Thermal Engineering, 2022, 215, 119000.	3.0	1
135	Competitive Adsorption of NH ₃ and H ₂ O in Metal–Organic Framework Materials: MOF-74. Chemistry of Materials, 2022, 34, 7906-7915.	3.2	4
136	Anion-induced morphology control of Al-fumarate MOFs via synergetic coordination and hydrogen bond effects for graded dehumidification. Microporous and Mesoporous Materials, 2022, 343, 112168.	2.2	3
137	Prospects for Simultaneously Capturing Carbon Dioxide and Harvesting Water from Air. Advanced Materials, 2022, 34, .	11.1	16
138	Flexible Coordination Network Exhibiting Water Vapor–Induced Reversible Switching between Closed and Open Phases. ACS Applied Materials & Interfaces, 2022, 14, 39560-39566.	4.0	6
139	Performance evaluation of silicoaluminophosphate with SFO topology for water-sorption-driven heating and cooling systems. Applied Thermal Engineering, 2022, 216, 119100.	3.0	0
140	Metal-organic frameworks composed of nitro groups: Preparation and applications in adsorption and catalysis. Chemical Engineering Journal, 2023, 451, 138538.	6.6	39
141	Two-linker MOFs-based glass fiber paper monolithic adsorbent for atmospheric water harvesting in arid climates. Journal of Cleaner Production, 2022, 373, 133838.	4.6	7
142	Adsorptive removal of carbamazepine and ibuprofen from aqueous solution using a defective Zr-based metal-organic framework. Journal of Environmental Chemical Engineering, 2022, 10, 108560.	3.3	7
143	Thermodynamic limits of atmospheric water harvesting. Energy and Environmental Science, 2022, 15, 4025-4037.	15.6	19
144	MOF and its application in electrochemistry. , 2022, , 219-253.		0
145	Fluorinated metal–organic frameworks for gas separation. Chemical Society Reviews, 2022, 51, 7427-7508.	18.7	76
147	Temperature Effect on Water Adsorption and Desorption Processes in the Mesoporous Metal–Organic Framework MIL-101(Cr). Journal of Physical Chemistry C, 2022, 126, 15538-15546.	1.5	5

#	Article	IF	Citations
148	Study of the Scale-Up Effect on the Water Sorption Performance of MOF Materials. ACS Materials Au, 2023, 3, 43-54.	2.6	13
149	Hierarchically porous composite fabrics with ultrahigh metal–organic framework loading for zero-energy-consumption heat dissipation. Science Bulletin, 2022, 67, 1991-2000.	4.3	15
150	Evaluation of PET-derived metal organic frameworks (MOFs) for water adsorption and heat storage. Journal of Porous Materials, 2023, 30, 387-401.	1.3	4
151	Metal-organic frameworks for solar-driven atmosphere water harvesting. Chemical Engineering Journal, 2023, 452, 139656.	6.6	19
152	Crystallographic Mapping and Tuning of Water Adsorption in Metal–Organic Frameworks Featuring Distinct Open Metal Sites. Journal of the American Chemical Society, 2022, 144, 19567-19575.	6.6	6
153	Hygroscopic Porous Polymer for Sorptionâ€Based Atmospheric Water Harvesting. Advanced Science, 2022, 9, .	5.6	23
154	Pathways to Energyâ€efficient Water Production from the Atmosphere. Advanced Science, 2022, 9, .	5.6	15
155	Historical Developments in Synthesis Approaches and Photocatalytic Perspectives of Metal-Organic Frameworks. , 0, , .		1
156	A Highly Stable <i>Ortho</i> â€Ketoenamine Covalent Organic Framework with Balanced Hydrophilic and Hydrophobic Sites for Atmospheric Water Harvesting. ChemSusChem, 2022, 15, .	3.6	18
157	Metal-organic frameworks (MOFs): A novel platform for laccase immobilization and application. Journal of Environmental Chemical Engineering, 2022, 10, 108795.	3.3	12
158	Recent advances in removal of toxic elements from water using MOFs: A critical review. Arabian Journal of Chemistry, 2022, 15, 104319.	2.3	13
159	Preparation and applications of metal–organic frameworks composed of sulfonic acid. Coordination Chemistry Reviews, 2023, 474, 214868.	9.5	25
160	MOFs with bridging or terminal hydroxo ligands: Applications in adsorption, catalysis, and functionalization. Coordination Chemistry Reviews, 2023, 475, 214912.	9.5	43
161	Dense packing of xenon in an ultra-microporous metal–organic framework for benchmark xenon capture and separation. Chemical Engineering Journal, 2023, 453, 139849.	6.6	9
162	Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting. Nature Communications, 2022, 13, .	5.8	41
163	Impacts of Surface Adsorption on Water Uptake within a Metal Organic Nanotube Material. Langmuir, 0, , .	1.6	0
164	Excellent ammonia sorption enabled by metal-organic framework nanocomposites for seasonal thermal battery. Energy Storage Materials, 2023, 54, 822-835.	9.5	7
165	Hollow fiber membrane supported metal organic framework-based packed bed for gas/vapor adsorption. Chemical Engineering Journal, 2023, 454, 140228.	6.6	1

#	Article	IF	CITATIONS
166	Systematic evaluation of water adsorption in isoreticular UiO-type metal–organic frameworks. Journal of Materials Chemistry A, 2023, 11, 1246-1255.	5.2	17
167	Ethanol adsorption onto various metal organic frameworks for cooling applications. Thermal Science and Engineering Progress, 2023, 37, 101602.	1.3	1
168	Approaching theoretical maximum energy performance for desiccant dehumidification using staged and optimized metal-organic frameworks. Applied Energy, 2023, 331, 120421.	5.1	3
169	墙"å¼¢©ºæ°"å⊷水物ç†å¢™"ææ−™ç"究进展. Chinese Science Bulletin, 2022, , .	0.4	0
170	Waterâ€Harvesting Metal–Organic Frameworks with Gigantic Al ₂₄ Units and their Deconstruction into Molecular Clusters. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
171	Nanoarchitectonics of metal–organic frameworks having hydroxy group for adsorption, catalysis, and sensing. Journal of Industrial and Engineering Chemistry, 2023, 119, 181-192.	2.9	8
172	Waterâ€Harvesting Metal–Organic Frameworks with Gigantic Al ₂₄ Units and their Deconstruction into Molecular Clusters. Angewandte Chemie, 2023, 135, .	1.6	0
173	Green Synthesis and Applications of Metal-Organic Frameworks. , 2022, , 1-20.		0
174	Confined Water Cluster Formation in Water Harvesting by Metal–Organic Frameworks: CAUâ€10â€H versus CAUâ€10â€CH ₃ . Advanced Materials, 0, , .	11.1	5
175	2D Covalent Organic Framework for Water Harvesting with Fast Kinetics and Low Regeneration Temperature. Angewandte Chemie, 2023, 135, .	1.6	2
176	2D Covalent Organic Framework for Water Harvesting with Fast Kinetics and Low Regeneration Temperature. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
177	Advanced Material Design and Engineering for Waterâ€Based Evaporative Cooling. Advanced Materials, 2024, 36, .	11.1	10
178	Metal-organic frameworks as regeneration optimized sorbents for atmospheric water harvesting. Cell Reports Physical Science, 2023, 4, 101252.	2.8	11
179	Molecular understanding of the impacts of structural characteristics on ethanol adsorption performance for adsorption heat pumps. Molecular Systems Design and Engineering, 2023, 8, 733-742.	1.7	1
180	Metal–Organic Frameworks for Water Harvesting and Concurrent Carbon Capture: A Review for Hygroscopic Materials. Advanced Materials, 2024, 36, .	11.1	25
181	Catalytic adsorptive elimination of deleterious contaminant in a pilot fluidised-bed reactor by granulated Fe3O4/Cu-MOF/cellulose nanocomposites: RSM optimisation and CFD approach. International Journal of Environmental Analytical Chemistry, 0, , 1-22.	1.8	5
182	Quantitatively Visualizing the Thermal Dehydration Process and Isotope Effect in Single HKUST-1 Metal–Organic Framework Particles. Journal of Physical Chemistry Letters, 2023, 14, 2099-2105.	2.1	2
183	Isomer of NU-1000 with a Blocking <i>c</i> -pore Exhibits High Water–Vapor Uptake Capacity and Greatly Enhanced Cycle Stability. Journal of the American Chemical Society, 2023, 145, 4150-4157.	6.6	14

#	Article	IF	CITATIONS
184	A Novel Aluminumâ€Based Metalâ€Organic Framework with Uniform Micropores for Trace BTEX Adsorption. Angewandte Chemie, 2023, 135, .	1.6	1
185	A Novel Aluminumâ€Based Metalâ€Organic Framework with Uniform Micropores for Trace BTEX Adsorption. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
186	Progress on fundamentals of adsorption transport of metal-organic frameworks materials and sustainable applications for water harvesting and carbon capture. Journal of Cleaner Production, 2023, 393, 136253.	4.6	6
187	A systematic review of metal organic frameworks materials for heavy metal removal: Synthesis, applications and mechanism. Chemical Engineering Journal, 2023, 460, 141710.	6.6	55
188	Surface-Functionalized Metal–Organic Frameworks for Binding Coronavirus Proteins. ACS Applied Materials & Coronavirus Proteins & Coron	4.0	9
189	Polyoxometalates immobilized on MIL-100 (Fe) as an emerging platform for eliminating breast cancer tumor cells. Results in Chemistry, 2023, 5, 100857.	0.9	2
190	Construction of MOFs-based nanocomposite membranes for emerging organic contaminants abatement in water. Frontiers of Environmental Science and Engineering, 2023, 17, .	3.3	7
191	Morphology control through the synthesis of metal-organic frameworks. Advances in Colloid and Interface Science, 2023, 314, 102864.	7.0	14
192	Water harvesting properties of a zwitterionic metal–organic framework. Molecular Systems Design and Engineering, 2023, 8, 580-585.	1.7	1
193	Effect of the Heterocyclic Groups on the Anti-corrosion Performance of Heterocyclic Schiff Bases of Benzothiazole for Mild Steel in 1ÂM Aqueous HCl. Journal of Bio- and Tribo-Corrosion, 2023, 9, .	1.2	2
194	Sorptionâ€Based Atmospheric Water Harvesting: Materials, Components, Systems, and Applications. Advanced Materials, 2023, 35, .	11.1	16
195	Techno-economic Assessment of Atmospheric Water Harvesting (AWH) Technologies. Water Science and Technology Library, 2023, , 153-183.	0.2	2
196	When Polymorphism in Metal–Organic Frameworks Enables Water Sorption Profile Tunability for Enhancing Heat Allocation and Water Harvesting Performance. Advanced Materials, 2024, 36, .	11.1	8
197	Monolithic Zirconiumâ€Based Metal–Organic Frameworks for Energyâ€Efficient Water Adsorption Applications. Advanced Materials, 2023, 35, .	11.1	7
198	Hierarchical 3D Flowerâ€like Metal Oxides Micro/Nanostructures: Fabrication, Surface Modification, Their Crucial Role in Environmental Decontamination, Mechanistic Insights, and Future Perspectives. Small, 2023, 19, .	5.2	8
199	Hydrogels improved parsley (<i>Petroselinium crispum</i> (Mill.) Nyman) growth and development under water deficit stress. PeerJ, 0, 11, e15105.	0.9	1
200	Mesoporous Silicaâ€Guided Synthesis of Metal–Organic Framework with Enhanced Water Adsorption Capacity for Smart Indoor Humidity Regulation. Small Structures, 2023, 4, .	6.9	1
201	Covalent Organic Frameworks for Extracting Water from Air. Angewandte Chemie - International Edition, 2023, 62, .	7.2	14

#	Article	IF	CITATIONS
202	Covalent Organic Frameworks for Extracting Water from Air. Angewandte Chemie, 0, , .	1.6	1
203	Understanding the Role of Synthetic Parameters in the Defect Engineering of UiO-66: A Review and Meta-analysis. Chemistry of Materials, 2023, 35, 3057-3072.	3.2	7
204	Carbon monoxide separation: past, present and future. Chemical Society Reviews, 2023, 52, 3741-3777.	18.7	7
205	Microencapsulated paraffin with SiO2 and Cu-BTC composite shell as shape-stabilized thermal energy storage materials. Energy and Buildings, 2023, 290, 113102.	3.1	4
207	Green Synthesis and Applications of Metal-Organic Frameworks. , 2023, , 91-110.		0
217	MOFganic Chemistry: Challenges and Opportunities for Metal–Organic Frameworks in Synthetic Organic Chemistry. Chemistry of Materials, 2023, 35, 4883-4896.	3.2	4
220	Hydrothermal Treatment of Biomass Feedstocks for Sustainable Production of Chemicals, Fuels, and Materials: Progress and Perspectives. Chemical Reviews, 2023, 123, 7193-7294.	23.0	39
224	Ultrafast Water H-Bond Rearrangement in a Metal–Organic Framework Probed by Femtosecond Time-Resolved Infrared Spectroscopy. Journal of the American Chemical Society, 2023, 145, 11482-11487.	6.6	11
225	Recent advances in metal–organic framework/carbon nanotube nanocomposites for developing analytical applications. Nanoscale, 2023, 15, 11457-11465.	2.8	1
228	Sorbents, processes and applications beyond water production in sorption-based atmospheric water harvesting., 2023, 1, 573-586.		4
234	MOF–ammonia working pairs in thermal energy conversion and storage. Nature Reviews Materials, 2023, 8, 636-638.	23.3	2
241	Interfacial chemistries in metal–organic framework (MOF)/covalent–organic framework (COF) hybrids. Nanoscale, 2023, 15, 13187-13201.	2.8	1
261	Industrial aspects of water-based metal–organic frameworks. , 2024, , 303-312.		0
278	Recent advances in metal–organic frameworks for water absorption and their applications. Materials Chemistry Frontiers, 2024, 8, 1171-1194.	3.2	0
284	EFFECT OF POLYMER NETWORK ON SORPTION MASS TRANSFER IN HYGROSCOPIC HYDROGELS. , 2023, , .		0
285	Investigation of porous coordination polymers for gas storage and separation. , 2024, , 137-176.		0
286	Stability of Metal–Organic Frameworks: Recent Advances and Future Trends. , 0, , .		0
292	Application of DUT-4 MOF structure switching for optical and electrical humidity sensing. Dalton Transactions, 2024, 53, 3459-3464.	1.6	0

Article IF Citations