Proton Transport in Metal–Organic Frameworks

Chemical Reviews 120, 8416-8467 DOI: 10.1021/acs.chemrev.9b00842

Citation Report

#	Article	IF	CITATIONS
1	Characterization of Proton Dynamics for the Understanding of Conduction Mechanism in Proton Conductive Metalâ€Organic Frameworks. Chemical Record, 2020, 20, 1297-1313.	5.8	53
2	From Molecules to Porous Materials: Integrating Discrete Electrocatalytic Active Sites into Extended Frameworks. ACS Central Science, 2020, 6, 1671-1684.	11.3	26
3	Proton conducting behavior of a microporous metal-organic framework assisted by ligand isomerization. Journal of Solid State Chemistry, 2020, 290, 121570.	2.9	6
4	Perfluoroalkyl-Functionalized Covalent Organic Frameworks with Superhydrophobicity for Anhydrous Proton Conduction. Journal of the American Chemical Society, 2020, 142, 14357-14364.	13.7	167
5	Superionic conduction in a zirconium-formate molecular solid. Journal of Materials Chemistry A, 2020, 8, 17951-17955.	10.3	2
6	Influence of Thermal and Mechanical Stimuli on the Behavior of Al-CAU-13 Metal–Organic Framework. Nanomaterials, 2020, 10, 1698.	4.1	3
7	Advances and challenges for experiment and theory for multi-electron multi-proton transfer at electrified solid–liquid interfaces. Physical Chemistry Chemical Physics, 2020, 22, 19401-19442.	2.8	38
8	Metal phosphonates incorporating metalloligands: assembly, structures and properties. Chemical Communications, 2020, 56, 12090-12108.	4.1	36
9	A 2D Mg(II)-MOF with High Density of Coordinated Waters as Sole Intrinsic Proton Sources for Ultrahigh Superprotonic Conduction. , 2020, 2, 1343-1350.		37
10	Proton conduction studies on four porous and nonporous coordination polymers with different acidities and water uptake. CrystEngComm, 2020, 22, 6935-6946.	2.6	13
11	Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers, 2020, 12, 1861.	4.5	84
12	A robust and multifunctional calcium coordination polymer as a selective fluorescent sensor for acetone and iron (+3) and as a tunable proton conductor. Journal of Materials Chemistry C, 2020, 8, 16784-16789.	5.5	18
13	A New Multifunctional Zinc–Organic Framework with Rare Interpenetrated Tripillared Bilayers as a Luminescent Probe for Detecting Ni ²⁺ and PO ₄ ^{3–} in Water. Crystal Growth and Design, 2020, 20, 5120-5128.	3.0	35
14	Porphyrinylphosphonateâ€Based Metal–Organic Framework: Tuning Proton Conductivity by Ligand Design. Chemistry - A European Journal, 2021, 27, 1598-1602.	3.3	16
15	Synthesis, structure and fluorescent sensing for nitrobenzene of a Zn-based MOF. Journal of Molecular Structure, 2021, 1223, 129217.	3.6	26
16	Electrically conductive 1D coordination polymers: design strategies and controlling factors. Dalton Transactions, 2021, 50, 29-38.	3.3	33
17	Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coordination Chemistry Reviews, 2021, 430, 213655.	18.8	56
18	An ultra-stable hafnium phosphonate MOF platform for comparing the proton conductivity of various guest molecules/ions. Chemical Communications, 2021, 57, 1238-1241.	4.1	24

#	Article	IF	CITATIONS
19	A Polyoxometalate-Based Inorganic Porous Material with both Proton and Electron Conductivity by Light Actuation: Photocatalysis for Baeyer–Villiger Oxidation and Cr(VI) Reduction. Inorganic Chemistry, 2021, 60, 682-691.	4.0	32
20	Structure-function Relationships of Porous Ionic Crystals (PICs) Based on Polyoxometalate Anions and Oxo-centered Trinuclear Metal Carboxylates as Counter Cations. Chemistry Letters, 2021, 50, 21-30.	1.3	20
21	A proton conductor showing an indication of single-ion magnet behavior based on a mononuclear Dy(<scp>iii</scp>) complex. Journal of Materials Chemistry C, 2021, 9, 481-488.	5.5	21
22	Proton conductivities of four low dimensional MOFs: affected by the amount of chelated ligands. CrystEngComm, 2021, 23, 5106-5115.	2.6	3
23	Role of Framework–Carrier Interactions in Proton-Conducting Crystalline Porous Materials. Crystal Growth and Design, 2021, 21, 1378-1388.	3.0	20
24	Polyoxometalate-based metal–organic frameworks for heterogeneous catalysis. Inorganic Chemistry Frontiers, 2021, 8, 1865-1899.	6.0	90
25	Water-Stable Europium(III) and Terbium(III)–Metal Organic Frameworks as Fluorescent Sensors to Detect Inorganic Ions, Antibiotics and Pesticides in Aqueous Solutions. SSRN Electronic Journal, 0, , .	0.4	1
26	Integrating molecular design and crystal engineering approaches in non-humidified intermediate-temperature proton conductors based on a Dawson-type polyoxometalate and poly(ethylene glycol) derivatives. Nanoscale, 2021, 13, 8049-8057.	5.6	21
27	A proton conductive hydrogen-bonded framework incorporating 18-crown-6-ether and dicarboxy- <i>o</i> -terphenyl moieties. Materials Advances, 2021, 2, 5639-5644.	5.4	16
28	Proton conductivity as a function of the metal center in porphyrinylphosphonate-based MOFs. Dalton Transactions, 2021, 50, 6549-6560.	3.3	13
29	A Rh-substituted polyoxometalate with an acetate-modified building block {As ₂ W ₂₂ O ₇₆ (CH ₃ COO) ₂ }. Chemical Communications, 2021, 57, 10250-10253.	4.1	8
30	Concluding remarks: current and next generation MOFs. Faraday Discussions, 2021, 231, 397-417.	3.2	17
31	Strategically improving the intrinsic proton conductivity of UiO-66-NH ₂ by post-synthesis modification. Dalton Transactions, 2021, 50, 5943-5950.	3.3	7
32	H2S Stability of Metal–Organic Frameworks: A Computational Assessment. ACS Applied Materials & Interfaces, 2021, 13, 4813-4822.	8.0	6
33	Metal–organic frameworks constructed from an [MS4Cux]xâ^'2 (M = W, Mo) unit: isomerization of the cluster unit induced by temperature. CrystEngComm, 0, , .	2.6	0
34	Argentophilicity induced anomalous thermal expansion behavior in a 2D silver squarate. Inorganic Chemistry Frontiers, 2021, 8, 1567-1573.	6.0	7
35	Proton Conductivity via Trapped Water in Phosphonate-Based Metal–Organic Frameworks Synthesized in Aqueous Media. Inorganic Chemistry, 2021, 60, 1086-1091.	4.0	20
36	Proton-conductive coordination polymer glass for solid-state anhydrous proton batteries. Chemical Science, 2021, 12, 5818-5824.	7.4	47

#	Article	IF	CITATIONS
37	Humidity-sensitive irreversible phase transformation of open-framework zinc phosphate and its water-assisted high proton conduction properties. Dalton Transactions, 2021, 50, 8070-8075.	3.3	5
38	Metal–organic frameworks as proton conductors: strategies for improved proton conductivity. Dalton Transactions, 2021, 50, 10655-10673.	3.3	36
39	Rational strategies for proton-conductive metal–organic frameworks. Chemical Society Reviews, 2021, 50, 6349-6368.	38.1	174
40	Dynamics studied by Quasielastic Neutron Scattering (QENS). Adsorption, 2021, 27, 875-889.	3.0	9
41	Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chemical Reviews, 2021, 121, 3751-3891.	47.7	442
42	Emerging Porous Solid Electrolytes for Hydroxide Ion Transport. Advanced Functional Materials, 2021, 31, 2100083.	14.9	27
43	Reversible Humidity-Driven Transformation of a Bimetallic {EuCo} Molecular Material: Structural, Sorption, and Photoluminescence Studies. Molecules, 2021, 26, 1102.	3.8	1
44	A Rare 2D Framework Cu(atz) 2 with Ferrimagnetic and High Proton Conductivity. Chemistry - an Asian Journal, 2021, 16, 931-936.	3.3	2
45	Phase Transformation Dynamics in Sulfate-Loaded Lanthanide Triphosphonates. Proton Conductivity and Application as Fillers in PEMFCs. ACS Applied Materials & Interfaces, 2021, 13, 15279-15291.	8.0	7
46	Unexpected Deprotonation from a Chemically Inert OH Group Promoted by Metal Ions in Lanthanide–Erythritol Complexes. Inorganic Chemistry, 2021, 60, 5172-5182.	4.0	3
47	Two acidic coordination polymers containing uncoordinated carboxyl groups: Syntheses, crystal structures and proton conductivities in Nafion composite membranes. Journal of Solid State Chemistry, 2021, 295, 121932.	2.9	7
48	MOF Nanosheet Reconstructed Twoâ€Dimensional Bionic Nanochannel for Protonic Fieldâ€Effect Transistors. Angewandte Chemie, 2021, 133, 10019-10023.	2.0	6
49	Control of Proton onductive Behavior with Nanoenvironment within Metal–Organic Materials. Small, 2021, 17, e2006189.	10.0	18
50	MOF Nanosheet Reconstructed Twoâ€Dimensional Bionic Nanochannel for Protonic Fieldâ€Effect Transistors. Angewandte Chemie - International Edition, 2021, 60, 9931-9935.	13.8	51
51	A 2D honeycomb coordination polymer of [Cd(TMA)]n (H2TMAÂ=Â3-thiophenemalonic acid) for humidity sensing applications. Inorganic Chemistry Communication, 2021, 125, 108440.	3.9	10
52	Proton conductive metal sulfonate frameworks. Coordination Chemistry Reviews, 2021, 431, 213747.	18.8	63
53	Enhanced CO2 Adsorption by Insertion Reaction in the Nanospace of a Porphyrin-based MOF. Chemistry Letters, 2021, 50, 640-643.	1.3	0
54	Multivariate Sulfonic-Based Titanium Metal–Organic Frameworks as Super-protonic Conductors. ACS Applied Materials & Interfaces, 2021, 13, 20194-20200.	8.0	11

#	Article	IF	CITATIONS
55	Proton conductive N-heterocyclic metal–organic frameworks. Coordination Chemistry Reviews, 2021, 432, 213754.	18.8	51
56	Assembly of 5â€Aminoimidazoles via Palladiumâ€Catalysed Double Isocyanide Insertion Reaction. Advanced Synthesis and Catalysis, 2021, 363, 2762-2766.	4.3	15
58	The Preparation of Metal–Organicâ€Framework/Boron Phosphate Hybrid Materials for Improved Performances in Proton Exchange Membranes. Macromolecular Materials and Engineering, 2021, 306, 2100053.	3.6	4
59	Study of Stability and Proton Conductivity of Znâ€based Metal–Organic Framework. Bulletin of the Korean Chemical Society, 2021, 42, 810-817.	1.9	5
60	Conductive Metallophthalocyanine Framework Films with High Carrier Mobility as Efficient Chemiresistors. Angewandte Chemie, 2021, 133, 10901-10908.	2.0	8
61	Conductive Metallophthalocyanine Framework Films with High Carrier Mobility as Efficient Chemiresistors. Angewandte Chemie - International Edition, 2021, 60, 10806-10813.	13.8	63
62	A voltammetric sensor based on mixed proton-electron conducting composite including metal-organic framework JUK-2 for determination of citalopram. Mikrochimica Acta, 2021, 188, 184.	5.0	18
63	Light enhanced proton conductivity in a terbium phosphonate photochromic chain complex. Science China Chemistry, 2021, 64, 1170-1176.	8.2	44
64	Anhydrous Superprotonic Conductivity of a Uranyl-Based MOF from Ambient Temperature to 110 °C. , 2021, 3, 744-751.		27
65	Superprotonic Conductivity of MOFâ€808 Achieved by Controlling the Binding Mode of Grafted Sulfamate. Angewandte Chemie - International Edition, 2021, 60, 14334-14338.	13.8	50
66	Simulation Meets Experiment: Unraveling the Properties of Water in Metal–Organic Frameworks through Vibrational Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 12451-12460.	3.1	16
67	TWO Zn(II) AND Co(II) COORDINATION POLYMERS WITH 3-FOLD RIGHT-HANDED HELICAL CHAINS: SYNTHESES, STRUCTURAL CHARACTERIZATION, AND PHOTOLUMINESCENT PROPERTY. Journal of Structural Chemistry, 2021, 62, 740-747.	1.0	4
68	Superprotonic Conductivity of MOFâ \in 808 Achieved by Controlling the Binding Mode of Grafted Sulfamate. Angewandte Chemie, 2021, 133, 14455-14459.	2.0	3
69	Chromic Ionic Liquids. ACS Applied Electronic Materials, 2021, 3, 2468-2482.	4.3	19
70	Superprotonic Conductivity of MOFs and Other Crystalline Platforms Beyond 10 ^{â^'1} S cm ^{â^'1} . Advanced Functional Materials, 2021, 31, 2101584.	14.9	93
71	High Proton Conduction Behavior of a Water-Stable Cadmium Organic Framework and Its Polymer Composite Membranes. Journal of the Electrochemical Society, 2021, 168, 064518.	2.9	3
72	Asymmetric catalysis using metal-organic frameworks. Coordination Chemistry Reviews, 2021, 437, 213845.	18.8	80
73	Covalent Organic Framework-Based Electrolytes for Fast Li ⁺ Conduction and High-Temperature Solid-State Lithium-Ion Batteries. Chemistry of Materials, 2021, 33, 5058-5066.	6.7	45

#	Article	IF	CITATIONS
74	Trojan Horse Thiocyanate: Induction and Control of High Proton Conductivity in CPO-27/MOF-74 Metal–Organic Frameworks by Metal Selection and Solvent-Free Mechanochemical Dosing. ACS Applied Materials & Interfaces, 2021, 13, 29820-29826.	8.0	5
75	High Enhancement in Proton Conductivity by Incorporating Sulfonic Acids into a Zirconium-Based Metal–Organic Framework via "Click―Reaction. Inorganic Chemistry, 2021, 60, 10089-10094.	4.0	17
76	Energy related ion transports in coordination polymers. Nano Select, 0, , .	3.7	6
77	Der derzeitige Stand von MOF―und COFâ€Anwendungen. Angewandte Chemie, 2021, 133, 24174-24202.	2.0	18
78	Void Space versus Surface Functionalization for Proton Conduction in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 20173-20177.	13.8	32
79	Host–Guest Assembly of H-Bonding Networks in Covalent Organic Frameworks for Ultrafast and Anhydrous Proton Transfer. ACS Applied Materials & Interfaces, 2021, 13, 37172-37178.	8.0	19
80	Efficiently Boosting Moisture Retention Capacity of Porous Superprotonic Conducting MOF-802 at Ambient Humidity via Forming a Hydrogel Composite Strategy. ACS Applied Materials & Interfaces, 2021, 13, 37231-37238.	8.0	17
81	Surface Plasmon Resonance from Gallium-Doped Zinc Oxide Nanoparticles and Their Electromagnetic Enhancement Contribution to Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2021, 13, 35038-35045.	8.0	33
82	Modern History of Organic Conductors: An Overview. Crystals, 2021, 11, 838.	2.2	23
83	Chemically Stable Metal–Organic Frameworks: Rational Construction and Application Expansion. Accounts of Chemical Research, 2021, 54, 3083-3094.	15.6	167
84	Void Space versus Surface Functionalization for Proton Conduction in Metal–Organic Frameworks. Angewandte Chemie, 2021, 133, 20335-20339.	2.0	2
85	The Current Status of MOF and COF Applications. Angewandte Chemie - International Edition, 2021, 60, 23975-24001.	13.8	450
86	<i>In Situ</i> Aliovalent Nickle Substitution and Acidic Modification of Nanowalls Promoted Proton Conductivity in InOF with 1D Helical Channel. ACS Applied Materials & amp; Interfaces, 2021, 13, 38289-38295.	8.0	9
87	Recent development on the alkaline earth MOFs (AEMOFs). Coordination Chemistry Reviews, 2021, 440, 213955.	18.8	24
88	Structure, Luminescent Sensing and Proton Conduction of a Boiling-Water-Stable Zn(II) Metal-Organic Framework. Molecules, 2021, 26, 5044.	3.8	2
89	Organic Sonosensitizers for Sonodynamic Therapy: From Small Molecules and Nanoparticles toward Clinical Development. Small, 2021, 17, e2101976.	10.0	105
90	Efficient Proton Transport in Stable Functionalized Channels of Zirconium Metal–Organic Frameworks. ACS Applied Energy Materials, 2021, 4, 8303-8310.	5.1	16
91	Anhydrous Proton Conduction in Crystalline Porous Materials with a Wide Working Temperature Range. ACS Applied Materials & Interfaces, 2021, 13, 41363-41371.	8.0	15

#	Article	IF	CITATIONS
92	Proton-Conducting Cobalt(II) 3D MOFs Incorporating Bis(imidazole) and Polycarboxylate Linkages: Framework Topology and Interpenetration. Crystal Growth and Design, 2021, 21, 5594-5602.	3.0	6
93	Lanthanideâ€Based Metalâ€Organicâ€Frameworks for Proton Conduction and Magnetic Properties. European Journal of Inorganic Chemistry, 2021, 2021, 4610-4618.	2.0	15
94	C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 2021, 442, 213998.	18.8	64
95	Covalentâ€Organic Frameworks (COFs) as Proton Conductors. Advanced Energy Materials, 2021, 11, 2102300.	19.5	106
96	Humidity-Sensing Properties of an 1D Antiferromagnetic Oxalate-Bridged Coordination Polymer of Iron(III) and Its Temperature-Induced Structural Flexibility. Materials, 2021, 14, 5543.	2.9	3
97	Developing Proton-Conductive Metal Coordination Polymer as Highly Efficient Electrocatalyst toward Oxygen Reduction. Journal of Physical Chemistry Letters, 2021, 12, 9197-9204.	4.6	15
98	Facile construction of a click-based robust porous organic polymer and its in-situ sulfonation for proton conduction. Microporous and Mesoporous Materials, 2021, 325, 111348.	4.4	7
99	Ultra-Stable Metal–Organic Framework with Concurrent High Proton Conductivity and Fluorescence Sensing for Nitrobenzene. Chemistry of Materials, 2021, 33, 7858-7868.	6.7	35
100	An updated status and trends in actinide metal-organic frameworks (An-MOFs): From synthesis to application. Coordination Chemistry Reviews, 2021, 446, 214011.	18.8	93
101	Conductive metal-organic frameworks for electrochemical energy conversion and storage. Coordination Chemistry Reviews, 2021, 446, 214119.	18.8	70
102	Solvent mediated photoluminescence responses over mixed-linker cadmium (II) based metal–organic frameworks. Polyhedron, 2021, 208, 115444.	2.2	1
103	Single-crystal-to-single-crystal transformations among three Mn-MOFs containing different water molecules induced by reaction time: crystal structures and proton conductivities. Dalton Transactions, 2021, 50, 11077-11090.	3.3	11
104	A comparative study of honeycomb-like 2D π-conjugated metal–organic framework chemiresistors: conductivity and channels. Dalton Transactions, 2021, 50, 13236-13245.	3.3	17
105	Aliphatic amine mediated assembly of [M6(mna)6] (M = Cu/Ag) into extended two-dimensional structures: synthesis, structure and Lewis acid catalytic studies. New Journal of Chemistry, 2021, 45, 6503-6511.	2.8	2
106	Robust ionic liquid@MOF composite as a versatile superprotonic conductor. Dalton Transactions, 2021, 50, 15914-15923.	3.3	4
107	An inorganic Co-containing heteropolyoxoniobate: reversible chemochromism and H ₂ O-dependent proton conductivity properties. Inorganic Chemistry Frontiers, 2021, 8, 5225-5233.	6.0	5
108	Tuning the dynamic magnetic behaviour and proton conductivity <i>via</i> water-induced reversible single-crystal to single-crystal structural transformation. Journal of Materials Chemistry C, 2021, 9, 15858-15867.	5.5	14
109	Quasielastic neutron scattering study on proton dynamics assisted by water and ammonia molecules confined in MIL-53. Structural Dynamics, 2021, 8, 054501.	2.3	1

#	Article	IF	CITATIONS
110	Multivariate Synergistic Flexible Metalâ€Organic Frameworks with Superproton Conductivity for Direct Methanol Fuel Cells. Angewandte Chemie, 2021, 133, 26781-26785.	2.0	4
111	Multivariate Synergistic Flexible Metalâ€Organic Frameworks with Superproton Conductivity for Direct Methanol Fuel Cells. Angewandte Chemie - International Edition, 2021, 60, 26577-26581.	13.8	34
112	Tunable Proton Conductivity and Color in a Nonporous Coordination Polymer via Lattice Accommodation to Small Molecules. Advanced Science, 2021, 8, e2102619.	11.2	7
113	Failureâ€Experimentâ€Supported Optimization of Poorly Reproducible Synthetic Conditions for Novel Lanthanide Metalâ€Organic Frameworks with Twoâ€Dimensional Secondary Building Units**. Chemistry - A European Journal, 2021, 27, 16347-16353.	3.3	6
114	Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coordination Chemistry Reviews, 2022, 451, 214273.	18.8	70
115	Sulfonic and phosphonic porous solids as proton conductors. Coordination Chemistry Reviews, 2022, 451, 214241.	18.8	63
116	Dual-Functional Coordination Polymer with High Proton Conductivity and a Low-Detection-Limit Fluorescent Probe. Journal of Physical Chemistry B, 2021, 125, 12627-12635.	2.6	1
117	The water-mediated proton conductivity of a 1D open framework inorganic-organic hybrid iron phosphate and its composite membranes. Inorganic Chemistry Communication, 2021, 134, 109032.	3.9	3
118	Ligand design strategy to construct metal-organic frameworks with high-density carboxylic groups and high protonic conduction. Solid State Sciences, 2022, 123, 106792.	3.2	4
119	Proton conductive metal–organic frameworks based on main-group metals. Coordination Chemistry Reviews, 2022, 452, 214301.	18.8	36
120	Optical-switched proton logic gate: Indocyanine green decorated HSB-W5 MOFs nanosheets. Science China Materials, 0, , 1.	6.3	4
121	Proton-Conductive Cerium-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 55358-55366.	8.0	23
122	Proton-Conducting Hydrogen-Bonded Organic Frameworks. ACS Energy Letters, 2021, 6, 4431-4453.	17.4	92
123	Microwave-Assisted Rapid Synthesis of Nanoscale MOF-303 for Hydrogel Composites with Superior Proton Conduction at Ambient-Humidity Conditions. ACS Applied Energy Materials, 2021, 4, 14681-14688.	5.1	9
124	Water-stable europium(III) and terbium(III)-metal organic frameworks as fluorescent sensors to detect ions, antibiotics and pesticides in aqueous solutions. Journal of Molecular Structure, 2022, 1251, 132009.	3.6	34
125	Thin Films of an Ultrastable Metal–Organic Framework for Formic Acid Sensing with High Selectivity and Excellent Reproducibility. , 2021, 3, 1746-1751.		13
126	MOFs in the time domain. Nature Reviews Chemistry, 2022, 6, 9-30.	30.2	34
127	Recent advances in structures and applications of coordination polymers based on cyclohexanepolycarboxylate ligands. Dalton Transactions, 2022, 51, 2992-3003.	3.3	15

	CITATION R	ation Report	
#	Article	IF	CITATIONS
128	A Three-Dimensional Porous Mn(II)-Metal–Organic Framework Based on a Caged Structure Showing High Room-Temperature Proton Conductivity. Crystal Growth and Design, 2022, 22, 1045-1053.	3.0	10
129	Fluorinated strategy of node structure of Zr-based MOF for construction of high-performance composite polymer electrolyte membranes. Journal of Membrane Science, 2022, 645, 120193.	8.2	15
130	New aspects of vapochromic metal complexes: Cooperative phenomena in functions and structures. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51, 100477.	11.6	13
131	Synthesis, structure and properties of three novel transition-metal-containing tantalum-phosphate clusters. Chinese Chemical Letters, 2022, 33, 4675-4678.	9.0	10
132	Metal–Organic Network-Forming Glasses. Chemical Reviews, 2022, 122, 4163-4203.	47.7	121
133	Stable isomeric layered indium coordination polymers for high proton conduction. CrystEngComm, 2022, 24, 294-299.	2.6	2
134	A proton-conductive metal–organic framework based on imidazole and sulphate ligands. Dalton Transactions, 2022, 51, 1313-1317.	3.3	3
135	A Preinstalled Protic Cation as a Switch for Superprotonic Conduction in a Metal–Organic Framework. Jacs Au, 2022, 2, 109-115.	7.9	18
136	Three new POM-based coordination polymers with 1,3,5-tris(1-imidazolyl)benzene ligand: syntheses, structures and proton conductivity. CrystEngComm, 2022, 24, 1556-1563.	2.6	3
137	Porosity regulation of metal–organic frameworks for high proton conductivity by rational ligand design: mono- <i>versus</i> disulfonyl-4,4′-biphenyldicarboxylic acid. Inorganic Chemistry Frontiers, 2022, 9, 1134-1142.	6.0	19
138	Proton Conductive Lanthanide-Based Metal–Organic Frameworks: Synthesis Strategies, Structural Features, and Recent Progress. Topics in Current Chemistry, 2022, 380, 9.	5.8	23
139	Superprotonic Conductivity of a Functionalized Metal–Organic Framework at Ambient Conditions. ACS Applied Materials & Interfaces, 2022, 14, 9264-9271.	8.0	20
140	Properties and Applications of Metal Phosphates and Pyrophosphates as Proton Conductors. Materials, 2022, 15, 1292.	2.9	20
141	Proton conduction in two highly stable cadmium(II) metal-organic frameworks built by substituted imidazole dicarboxylates. Journal of Solid State Chemistry, 2022, 309, 122948.	2.9	11
142	A dual-function Cd-MOF with high proton conduction and excellent fluorescence detection of pyridine. Dalton Transactions, 2022, 51, 6687-6695.	3.3	15
143	Unique protonconduction 3D Zn ^{II} metal organic framework exposure to aquaammonia vapor to enhance conductivity. New Journal of Chemistry, 0, , .	2.8	0
144	Selective luminescent sensing of metal ions and nitroaromatics over a porous mixed-linker cadmium(<scp>ii</scp>) based metal–organic framework. New Journal of Chemistry, 2022, 46, 8523-8533.	2.8	6
145	Nanochannel Engineering in Metal–Organic Frameworks by Grafting Sulfonic Groups for Boosting Proton Conductivity. ACS Applied Energy Materials, 2022, 5, 3235-3241.	5.1	5

#	Article	IF	CITATIONS
146	Exploiting the Multifunctionality of M ²⁺ /Imidazole–Etidronates for Proton Conductivity (Zn ²⁺) and Electrocatalysis (Co ²⁺ , Ni ²⁺) toward the HER, OER, and ORR. ACS Applied Materials & Interfaces, 2022, 14, 11273-11287.	8.0	8
147	Superprotonic Conductivity of UiO-66 with Missing-Linker Defects in Aqua-Ammonia Vapor. Inorganic Chemistry, 2022, 61, 3406-3411.	4.0	19
148	Supramolecular Proton Conductors Self-Assembled by Organic Cages. Jacs Au, 2022, 2, 819-826.	7.9	17
149	Mixed electronic-ionic conductors based on host-guest architectures of metal-organic frameworks. Matter, 2022, 5, 772-774.	10.0	4
150	High Protonic Conductivity of Three Highly Stable Nanoscale Hafnium(IV) Metal–Organic Frameworks and Their Imidazole-Loaded Products. Inorganic Chemistry, 2022, 61, 4938-4947.	4.0	27
151	Synthesis, Structure and Fluorescent Probes for Sensitive Detection for Nitrobenzene of a Cd-MOF. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 2763-2770. Molecular self-diffusivity and separation of CH <mmillmath Inorganic and Second 2008 (Moth/Math/Mill display="incluse" id="d1e520"</mmillmath 	3.7	6
152	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e529" altimg="si146.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:mrow </mml:msub> /H <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e537" altimg="si147.aug"><mml:msub></mml:msub>/H<mml:math< td=""><td>4.4</td><td>5</td></mml:math<></mml:math 	4.4	5
153	altimg="si147.svg"> <mml:msub><mml:mrow /><mml:mrow></mml:mrow><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/mml:mrow--><!--/m</td--><td>1.2</td><td>5</td></mml:mrow </mml:msub>	1.2	5
154	Proton conduction in ionic crystals based on polyoxometalates. Coordination Chemistry Reviews, 2022, 462, 214524.	18.8	48
155	Enhancement of Proton Conductivity in Fe-Metal–Organic Frameworks by Postsynthetic Oxidation and High-Performance Hybrid Membranes with Low Acidity. Inorganic Chemistry, 2021, 60, 18889-18898.	4.0	7
156	Acidic Groups Functionalized Carbon Dots Capping Channels of a Proton Conductive Metal–Organic Framework by Coordination Bonds to Improve the Water-Retention Capacity and Boost Proton Conduction. ACS Applied Materials & Interfaces, 2021, 13, 60084-60091.	8.0	18
157	Modulation of proton conductivity in coordination polymer mixed glasses. Chemical Communications, 2022, 58, 6064-6067.	4.1	9
158	Lanthanide–Organic Frameworks with Uncoordinated Lewis Base Sites: Tunable Luminescence, Antibiotic Detection, and Anticounterfeiting. Inorganic Chemistry, 2022, 61, 6101-6109.	4.0	23
159	Deprotonation from an OH on <i>myo</i> -Inositol Promoted by μ ₂ -Bridges with Possible Regioselectivity/Chiral Selectivity. Inorganic Chemistry, 2022, 61, 6138-6148.	4.0	1
160	Four Cd(II)–based metal organic frameworks: Syntheses, structures and fluorescent probes for highly selective, sensitive detection for nitrobenzene. Journal of Solid State Chemistry, 2022, 311, 123144.	2.9	1
161	Phosphorus or nitrogen – the first phosphatriptycene in coordination polymer chemistry. Dalton Transactions, 2022, 51, 7828-7837.	3.3	6
162	A visible light/heat responsive covalent organic framework for highly efficient and switchable proton conductivity. Chemical Science, 2022, 13, 5964-5972.	7.4	18
163	Sequential enhancement of proton conductivity by aliovalent cadmium substitution and post-synthetic esterolysis in a carboxylate-functionalized indium framework with dimethylaminium templates. Inorganic Chemistry Frontiers, 2022, 9, 2997-3002.	6.0	4

#	Article	IF	CITATIONS
164	An overview on the proton conductivity of Supramolecular Coordination Complexes. Results in Chemistry, 2022, 4, 100361.	2.0	1
165	Hydrated metal ions as weak BrÃ,nsted acids show promoting effects on proton conduction. CrystEngComm, 2022, 24, 3886-3893.	2.6	8
166	The pioneering role of metal–organic framework-5 in ever-growing contemporary applications – a review. RSC Advances, 2022, 12, 14282-14298.	3.6	18
167	Ionothermal synthesis of a highly crystalline zirconium phosphate proton conductor. Dalton Transactions, 2022, 51, 8182-8185.	3.3	3
168	Stable Lanthanide Metal–Organic Frameworks with Ratiometric Fluorescence Sensing for Amino Acids and Tunable Proton Conduction and Magnetic Properties. Inorganic Chemistry, 2022, 61, 6819-6828.	4.0	44
169	Developing a Unique Hydrogen-Bond Network in a Uranyl Coordination Framework for Fuel Cell Applications. Inorganic Chemistry, 2022, 61, 8036-8042.	4.0	8
170	Switched Proton Conduction in Metal–Organic Frameworks. Jacs Au, 2022, 2, 1043-1053.	7.9	30
171	A Porous Sulfonated 2D Zirconium Metal–Organic Framework as a Robust Platform for Proton Conduction. Chemistry - A European Journal, 2022, 28, .	3.3	8
172	Stable Metal–Organic Frameworks for Fluorescent Detection of Tetracycline Antibiotics. Inorganic Chemistry, 2022, 61, 8015-8021.	4.0	44
173	Cost-effective Prussian blue analogue composite proton exchange membranes for low humidity fuel cell operation. Journal of Power Sources, 2022, 537, 231542.	7.8	9
174	Constructing proton selective pathways using MOFs to enhance acid recovery efficiency of anion exchange membranes. Chemical Engineering Journal, 2022, 445, 136752.	12.7	19
175	Uncoordinated tetrazole ligands in metal–organic frameworks for <scp>protonâ€conductivity</scp> studies. Bulletin of the Korean Chemical Society, 2022, 43, 912-917.	1.9	11
176	Eco-friendly chitosan@silver/plant fiber membranes for masks with thermal comfortability and self-sterilization. Cellulose, 2022, 29, 5711-5724.	4.9	9
177	Zinc-Based Metalâ ''Organic Framework for Heavy Metal Sensing. ACS Symposium Series, 0, , 177-201.	0.5	0
178	Construction and application of base-stable MOFs: a critical review. Chemical Society Reviews, 2022, 51, 6417-6441.	38.1	147
179	Superprotonic conduction of intrinsically zwitterionic microporous polymers based on easy-to-make squaraine, croconaine and rhodizaine dyes. Nanoscale Advances, 2022, 4, 2922-2928.	4.6	6
180	METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS. Journal of Structural Chemistry, 2022, 63, 671-843.	1.0	35
181	Network Size Control in Coordination Polymer Glasses and Its Impact on Viscosity and H ⁺ Conductivity. Chemistry of Materials, 2022, 34, 5832-5841.	6.7	14

#	Article	IF	CITATIONS
182	Copper Metal Organic Framework-Encapsulated Ionic Liquid-Decorated Sulfonated Polystyrene- <i>block</i> -poly(ethylene-ranbutylene)- <i>block</i> -polystyrene Membranes for Fuel Cells. Industrial & Engineering Chemistry Research, 2022, 61, 8081-8090.	3.7	5
183	Improving proton conductivity of metal organic framework materials by reducing crystallinity. Applied Organometallic Chemistry, 2022, 36, .	3.5	10
184	Metal–Organic Frameworks for Ion Conduction. Angewandte Chemie, 2022, 134, .	2.0	5
185	Metal–Organic Frameworks for Ion Conduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
186	Facile construction of a highly proton-conductive matrix-mixed membrane based on a –SO ₃ H functionalized polyamide. Soft Matter, 0, , .	2.7	1
187	Photoresponsive proton conduction in Zr-based metal–organic frameworks using the photothermal effect. Chemical Communications, 2022, 58, 8372-8375.	4.1	7
188	Proton-conducting metal–organic frameworks with linkers containing anthracenyl and sulfonate groups. CrystEngComm, 2022, 24, 5450-5459.	2.6	3
189	Facilitating Proton Transport by Endowing Forward Osmosis Membrane with Proton Conductive S Ites in ÂOsmotic Microbial Fuel Cell. SSRN Electronic Journal, 0, , .	0.4	0
190	Highly Effective Proton-Conduction Matrix-Mixed Membrane Derived from an -SO3H Functionalized Polyamide. Molecules, 2022, 27, 4110.	3.8	2
191	Gate Opening without Volume Change Triggers Cooperative Gas Interactions, Underpins an Isotherm Step in Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 10810-10821.	4.0	2
192	Highly Efficient Proton Conduction in the Metal–Organic Framework Material MFM-300(Cr)·SO ₄ (H ₃ O) ₂ . Journal of the American Chemical Society, 2022, 144, 11969-11974.	13.7	26
193	Porous coordination polymer-based composite membranes for high-temperature polymer exchange membrane fuel cells. Matter, 2022, 5, 2031-2053.	10.0	16
194	A Novel Copper-Functionalized MOF Modified Composite Electrode for High-Efficiency Detection of Nitrite and Histamine. Journal of the Electrochemical Society, 2022, 169, 077511.	2.9	5
195	Improvement of the Proton Conduction of Copper(II)-Mesoxalate Metal–Organic Frameworks by Strategic Selection of the Counterions. Inorganic Chemistry, 2022, 61, 11651-11666.	4.0	2
196	Co-filling of ZIFs-derived porous carbon and silica in improvement of sulfonated poly(ether ether) Tj ETQq0 0 0 rg 2022, 543, 231853.	BT /Overlo 7.8	ock 10 Tf 50 3 7
197	Isomerous Al-BDC-NH2 metal-organic frameworks for metronidazole removal: Effect of topology structure. Journal of Solid State Chemistry, 2022, 314, 123376.	2.9	8
198	Applications of metal–organic framework-based bioelectrodes. Chemical Science, 2022, 13, 8727-8743.	7.4	19
199	Insight into the High Proton Conductivity of One-/Two-Dimensional Cadmium Phosphites. Inorganic Chemistry, 2022, 61, 11550-11555.	4.0	Ο

#	Article	IF	CITATIONS
200	Defect Engineering in a Metal–Organic Framework System to Achieve Super-Protonic Conductivity. Chemistry of Materials, 2022, 34, 6734-6743.	6.7	28
201	Conduction Mechanism in Graphene Oxide Membranes with Varied Water Content: From Proton Hopping Dominant to Ion Diffusion Dominant. ACS Nano, 2022, 16, 13771-13782.	14.6	5
202	Facilitating proton transport by endowing forward osmosis membrane with proton conductive sites in osmotic microbial fuel cell. Chemical Engineering Journal, 2023, 451, 138767.	12.7	11
203	Highly Effective Proton-Conductive Matrix-Mixed Membrane Based on a â~SO ₃ H-Functionalized Polyphosphazene. Langmuir, 2022, 38, 10503-10511.	3.5	4
204	Construction of Water-Stable Rare-Earth Organic Frameworks with Ambient High Proton Conductivity Based on Zirconium Sandwiched Heteropolytungstate. Inorganic Chemistry, 2022, 61, 13829-13835.	4.0	14
205	Metal–Organic Frameworks for CO ₂ Separation from Flue and Biogas Mixtures. Advanced Functional Materials, 2022, 32, .	14.9	46
206	Surface Assessment <i>via</i> Grid Evaluation (SuAVE) for Every Surface Curvature and Cavity Shape. Journal of Chemical Information and Modeling, 2022, 62, 4690-4701.	5.4	6
207	Synthesis and Proton Conductivity of Two Molybdate Polymers Based on [Mo ₈ O ₂₆] ^{4â^} Anions. ChemistrySelect, 2022, 7, .	1.5	5
208	Highly scalable and pH stable 2D Ni-MOF-based composites for high performance supercapacitor. Composites Part B: Engineering, 2022, 245, 110174.	12.0	30
209	Enhanced Mechanical Stability and Proton Conductivity Performance from the Dense Mn(II)-Metal–Organic Framework to Porous Mn(II)–Fe(III)-Metal–Organic Framework. Inorganic Chemistry, 2022, 61, 15166-15174.	4.0	4
210	Chiral templated synthesis of homochiral metal-organic frameworks. Coordination Chemistry Reviews, 2023, 474, 214852.	18.8	15
211	Hydroxide ion-conducting metal–organic frameworks for anion-exchange membrane applications. Materials Advances, 2022, 3, 8815-8829.	5.4	3
212	Water-driven reversible switching of single-ion magnetism and proton conduction in a dysprosium sulfonate. Inorganic Chemistry Frontiers, 2022, 9, 6147-6157.	6.0	21
213	Water adsorption in porous organic crystals of adamantane-bearing macrocycles. CrystEngComm, 2022, 24, 6449-6453.	2.6	2
214	Oriented construction of efficient intrinsic proton transport pathways in MOF-808. Journal of Materials Chemistry A, 2022, 10, 18592-18597.	10.3	35
215	Data-driven efficient synthetic exploration of anionic lanthanide-based metal–organic frameworks. Chemical Communications, 2022, 58, 11426-11429.	4.1	4
216	Post-synthesis functionalization of ZIF-90 with sulfonate groups for high proton conduction. Dalton Transactions, 2022, 51, 14054-14058.	3.3	4
217	Anionic lanthanide metal–organic frameworks with magnetic, fluorescence, and proton conductivity properties and selective adsorption of a cationic dye. Dalton Transactions, 2022, 51, 15762-15770.	3.3	10

ARTICLE IF CITATIONS # Melt-Quenched Glass Films of Coordination Polymers as Impermeable Barrier Layers and Protective 218 6.7 9 Anticorrosion Coatings. Chemistry of Materials, 2022, 34, 7878-7885. A Potential Roadmap to Integrated Metal Organic Framework Artificial Photosynthetic Arrays. Journal 13.7 of the American Chemical Society, 2022, 144, 17723-17736. Synthesis, Structure, and Catalytic Activities of Two Multi-Rh-Decorated Polyoxometalates. Inorganic 220 4.0 4 Chemistry, 2022, 61, 15310-15314. Enhancing Proton Conductivity of Nafion Membrane by Incorporating Porous Tb-Metal–Organic 4.0 Framework Modified with Nitro Groups. Inorganic Chemistry, 2022, 61, 16185-16196. Hydrogen Bond Activation by Pyridinic Nitrogen for the High Proton Conductivity of Covalent 222 6.8 8 Triazine Framework Loaded with H₃PO₄. ChemSusChem, 2022, 15, . Proton conductivity studies on two non-porous coordination complexes with different proton densities. New Journal of Chemistry, 2022, 46, 22088-22097. 2.8 Highâ€Performance Allâ€Solidâ€State Proton Rectifier Using a Heterogeneous Membrane Composed of 224 2.0 0 Coordination Polymer and Layered Double Hydroxide. Angewandte Chemie, 2022, 134, . Rocket-Shaped Telluroniobate with Efficient Catalytic Activity in the Transesterification Reaction. 4.0 Inorganic Chemistry, 2022, 61, 16528-16532. 226 A Proton Conducting Cobalt(II) Spin Crossover Complex. Chemistry - an Asian Journal, 2022, 17, . 3.3 6 Isotropic Anhydrous Superprotonic Conductivity Cooperated with Installed Imidazolium Molecular Motions in a 3D Hydrogenâ€Bonded Phosphate Network. Angewandte Chemie, 2022, 134, . Constructing a long-range proton conduction bridge in sulfonated polyetheretherketone membranes 228 with low DS by incorporating acid-base bi-functionalized metal organic frameworks. International 7.1 13 Journal of Hydrogen Energy, 2023, 48, 2001-2012. Highâ€Performance Allâ€Solidâ€State Proton Rectifier Using a Heterogeneous Membrane Composed of Coordination Polymer and Layered Double Hydroxide. Angewandte Chemie - International Edition, 13.8 2022, 61, . 230 2D conjugated metal-organic framework as a proton-electron dual conductor. CheM, 2023, 9, 143-153. 11.7 8 Isotropic Anhydrous Superprotonic Conductivity Cooperated with Installed Imidazolium Molecular Motions in a 3D Hydrogenâ€Bonded Phosphate Network. Angewandte Chemie - International Edition, 13.8 2022,61,. Enhanced Proton Conductivity of an Ionic Hydrogen-Bonded Organic Framework-Embedded Nafion 232 7 5.1Matrix. Energy & amp; Fuels, 2022, 36, 12772-12779. Correlation of Structures with Proton Conductivity of 1D Coordination Polymers: Higher Proton Conductivity Due to Synergy of Encapsulated Sulfate Ions and Water Molecules. Crystal Growth and Design, 2022, 22, 7215-7220. Synthesis, structure, magnetism and proton conductivity of a cyanide-bridged NillColll framework. 234 2.28 Polyhedron, 2022, 228, 116181. Preparation and applications of metal–organic frameworks composed of sulfonic acid. Coordination 18.8 Chemistry Reviews, 2023, 474, 214868.

#	Article	IF	CITATIONS
236	Electronic Effectâ€Modulated Enhancements of Proton Conductivity in Porous Organic Polymers. Angewandte Chemie, 0, , .	2.0	0
237	Solid-State Proton Conduction Driven by Coordinated Water Molecules in Metal–Organic Frameworks and Coordination Polymers. ACS Energy Letters, 2022, 7, 4490-4500.	17.4	36
238	Electronic Effectâ€Modulated Enhancements of Proton Conductivity in Porous Organic Polymers. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
239	Short hydrogen-bond network confined on COF surfaces enables ultrahigh proton conductivity. Nature Communications, 2022, 13, .	12.8	49
240	Bioâ€Inspired Synthetic Hydrogenâ€Bonded Organic Frameworks for Efficient Proton Conduction. Advanced Materials, 2023, 35, .	21.0	36
241	Recent progress in host–guest metal–organic frameworks: Construction and emergent properties. Coordination Chemistry Reviews, 2023, 476, 214921.	18.8	29
242	High proton conductivity modulated by active protons in 1D ultra-stable metal–organic coordination polymers: a new insight into the coordination interaction/ability of metal ions. Inorganic Chemistry Frontiers, 2023, 10, 1238-1254.	6.0	3
243	Metal–organic framework (MOF)-based fluorescence "turn-on―sensors. Materials Chemistry Frontiers, 2023, 7, 405-441.	5.9	38
244	A porous cobalt(<scp>ii</scp>)–organic framework exhibiting high room temperature proton conductivity and field-induced slow magnetic relaxation. Dalton Transactions, 2023, 52, 909-918.	3.3	8
245	Molecule-electron-proton transfer in enzyme-photo-coupled catalytic system. Chinese Journal of Catalysis, 2023, 44, 96-110.	14.0	6
246	Are complete metal-organic frameworks really responsible for improving the performance of high-temperature proton exchange membranes?. Materials Today Chemistry, 2023, 27, 101276.	3.5	3
247	Free-standing polymer-metal-organic framework membrane with high proton conductivity and water stability. Nano Research, 2023, 16, 7950-7957.	10.4	1
248	Metal–Organic Framework-Derived N-Doped Porous Carbon for a Superprotonic Conductor at above 100 °C. Inorganic Chemistry, 2022, 61, 20057-20063.	4.0	0
249	BrÃ,nsted Acid/Base Site Isolated in a Pentanuclear Scaffold. Chemistry - A European Journal, O, , .	3.3	0
250	Design of Flexible Metal–Organic Framework-Based Superprotonic Conductors and Their Fabrication with a Polymer into Proton Exchange Membranes. ACS Applied Energy Materials, 2023, 6, 9092-9107.	5.1	9
251	New Type of Nanocomposite CsH2PO4-UiO-66 Electrolyte with High Proton Conductivity. Molecules, 2022, 27, 8387.	3.8	4
252	Easy Handling and Cost-Efficient Processing of a Tb3+-MOF: The Emissive Capacity of the Membrane-Immobilized Material, Water Vapour Adsorption and Proton Conductivity. Nanomaterials, 2022, 12, 4380.	4.1	0
253	A Manganese(II) 3D Metal–Organic Framework with Siloxane-Spaced Dicarboxylic Ligand: Synthesis, Structure, and Properties. Inorganics, 2023, 11, 21.	2.7	0

#	Article	IF	CITATIONS
254	Hydrogen-Bond-Connected 2D Zn-LMOF with Fluorescent Sensing for Inorganic Pollutants and Nitro Aromatic Explosives in the Aqueous Phase. Inorganic Chemistry, 2023, 62, 1272-1278.	4.0	18
255	Controlled Manufacture of Heterogeneous Catalysts for the Hydrogenation of CO ₂ via Steam Pyrolysis of Different Metal–Organic Frameworks. ACS Catalysis, 2023, 13, 1804-1811.	11.2	6
256	Zwitterionic hydrogen-bonded organic framework (ZHOF): a metal-free water oxidation proton relay in alkaline and neutral media. Journal of Materials Chemistry A, 2023, 11, 1491-1502.	10.3	7
257	Strategies for designing metal–organic frameworks with superprotonic conductivity. Coordination Chemistry Reviews, 2023, 479, 214995.	18.8	19
258	Dynamics and Proton Conduction of Heterogeneously Confined Imidazole in Porous Coordination Polymers. Angewandte Chemie - International Edition, 2023, 62, .	13.8	7
259	Dynamics and Proton Conduction of Heterogeneously Confined Imidazole in Porous Coordination Polymers. Angewandte Chemie, 2023, 135, .	2.0	0
260	Charge Manipulation in a Series of π-Stacked Pillared-Layer Frameworks by Tuning Electron Donation Ability of Building Blocks. Crystal Growth and Design, 2023, 23, 1238-1246.	3.0	0
261	Proton Conductive Mononuclear Hydrogen-Bonded Cobalt(II) Spin Crossover Complex. Crystal Growth and Design, 2023, 23, 1633-1640.	3.0	7
262	Solvent-Free Mechanochemical Dense Pore Filling Yields CPO-27/MOF-74 Metal–Organic Frameworks with High Anhydrous and Water-Assisted Proton Conductivity. ACS Applied Energy Materials, 0, , .	5.1	2
263	Electrochemical membrane reactors. , 2023, , 285-313.		0
264	Trimetallic layered double hydroxides with a hierarchical heterostructure for high-performance supercapcitors. Journal of Energy Storage, 2023, 61, 106700.	8.1	6
265	Oxalate-assisted assembly of two polyoxotantalate supramolecular frameworks with proton conduction properties. Chemical Communications, 2023, 59, 3735-3738.	4.1	4
266	Bayesian optimization of the composition of the lanthanide metal–organic framework MIL-103 for white-light emission. Molecular Systems Design and Engineering, 2023, 8, 431-435.	3.4	4
267	Proton-conducting cobalt(II) hydrogen-bonded organic framework driven by coordinated water molecules with slow magnetic relaxation. Journal of Molecular Structure, 2023, 1286, 135544.	3.6	6
268	Two Dual-Function Zr/Hf-MOFs as High-Performance Proton Conductors and Amines Impedance Sensors. Inorganic Chemistry, 2023, 62, 3036-3046.	4.0	15
269	Isomerization of DASA Molecules in the Nanopores of Metal–Organic Frameworks: What Determines Its Reversibility?**. Chemistry - A European Journal, 2023, 29, .	3.3	3
270	Locking Effect in Metal@MOF with Superior Stability for Highly Chemoselective Catalysis. Journal of the American Chemical Society, 2023, 145, 4659-4666.	13.7	37
271	A 2D Cd-based metal organic framework: synthesis, structure, selectively and sensitive sensing of	2.2	1

#	Article	IF	CITATIONS
272	Morphology control through the synthesis of metal-organic frameworks. Advances in Colloid and Interface Science, 2023, 314, 102864.	14.7	14
273	Anhydrous Superprotonic Conductivity in the Zirconium Acid Triphosphate ZrH ₅ (PO ₄) ₃ **. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3

Anhydrous Superprotonic Conductivity in the Zirconium Acid Triphosphate ZrH ₅ (PO) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

275	Extra highways for proton diffusion in TiO2@MIL-101-Cr/Nafion composite membranes with high single-cell performance. Journal of Power Sources, 2023, 564, 232906.	7.8	6
276	A Cr(<scp>iii</scp>) supramolecular network composite membrane with high water stability and proton conductivity. CrystEngComm, 2023, 25, 2003-2010.	2.6	0
277	Cooperative Proton and Liâ€ion Conduction in a 2Dâ€Layered MOF via Mechanical Insertion of Lithium Halides. Angewandte Chemie - International Edition, 2023, 62, .	13.8	5
278	Cooperative Proton and Liâ€ion Conduction in a 2D‣ayered MOF via Mechanical Insertion of Lithium Halides. Angewandte Chemie, 2023, 135, .	2.0	0
279	Boosting the proton conduction in a magnetic dysprosium-organic framework by introducing conjugate NH4+-NH3 pairs. Chinese Chemical Letters, 2024, 35, 108320.	9.0	2
280	Elimination of grain boundary resistance in vanadoborate electrolyte <i>via</i> the hydrogen-bond interaction of glycerol. Chemical Communications, 2023, 59, 4312-4315.	4.1	1
281	Highly Conductive Proton Selectivity Membrane Enabled by Hollow Carbon Sieving Nanospheres for Energy Storage Devices. Engineering, 2023, 28, 69-78.	6.7	3
282	Interface chemistry of conductive crystalline porous thin films. Trends in Chemistry, 2023, 5, 588-604.	8.5	3
283	Efficient proton conduction in porous and crystalline covalent-organic frameworks (COFs). Journal of Energy Chemistry, 2023, 82, 198-218.	12.9	13
284	Electrocatalytic Synthesis of Essential Amino Acids from Nitric Oxide Using Atomically Dispersed Fe on Nâ€doped Carbon. Angewandte Chemie - International Edition, 2023, 62, .	13.8	34
285	Electrocatalytic Synthesis of Essential Amino Acids from Nitric Oxide Using Atomically Dispersed Fe on Nâ€doped Carbon. Angewandte Chemie, 2023, 135, .	2.0	1
286	Super Proton Conductivity Through Control of Hydrogenâ€Bonding Networks in Flexible Metal–Organic Frameworks. Small, 2023, 19, .	10.0	3
287	Charge Separation in Metalâ€Organic Framework Enables Heterogeneous Thiol Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
288	Charge Separation in Metalâ€Organic Framework Enables Heterogeneous Thiol Catalysis. Angewandte Chemie, 0, , .	2.0	0
289	Parallelogram 3d-4f-5d heterometallic clusters based on trilacunary tungstoantimonates with excellent proton conductivity. Chinese Chemical Letters, 2024, 35, 108486.	9.0	2

#	Article	IF	CITATIONS
290	Proton conducting metal–organic frameworks with light response for multistate logic gates. RSC Advances, 2023, 13, 12646-12653.	3.6	2
291	Enhanced proton conductivity by guest molecule exchange in an acylamide-functionalized metal–organic framework. Dalton Transactions, 2023, 52, 6847-6852.	3.3	1
292	Coordinated water molecule-induced solid-state superprotonic conduction by a highly scalable and pH-stable coordination polymer (CP). Materials Chemistry Frontiers, 2023, 7, 3373-3381.	5.9	6
293	A Significant Twoâ€Dimensional Structural Transformation in a Coordination Polymer that Changes Its Electronic and Protonic Behavior. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
294	An anionic porphyrinylphosphonate-based hydrogen-bonded organic framework: optimization of proton conductivity through the exchange of counterions. Dalton Transactions, 2023, 52, 8237-8246.	3.3	1
295	Proton Conduction through Water Chain in a Hydrogen-Bonded Molecular Crystal of Hexaimidazole Ruthenium(II) Complex and Dicarboxylate. Bulletin of the Chemical Society of Japan, 2023, 96, 654-658.	3.2	1
296	Two Proton Conductive Coordination Polymers Constructed by an Unprecedented Structural Transformation of a Phosphine-Based Tricarboxylate Ligand. Crystal Growth and Design, 0, , .	3.0	1
297	High Proton Conductivity of Magnetically Ordered 2D Oxalate-Bridged [Mn ^{II} Cr ^{III}] Coordination Polymers with Irregular Topology. Inorganic Chemistry, 2023, 62, 9418-9428.	4.0	3
298	Recent advances of two-dimensional metal-organic frameworks in alkaline electrolysis water for hydrogen production. Science China Chemistry, 2023, 66, 1924-1939.	8.2	4
299	pH-stable MOFs: Design principles and applications. Coordination Chemistry Reviews, 2023, 493, 215301.	18.8	18
299 300	pH-stable MOFs: Design principles and applications. Coordination Chemistry Reviews, 2023, 493, 215301. High single Zn-ion conductive porous organic conductors decorated with dense acidic groups via double post-synthetic sulfonations. Chemical Engineering Journal, 2023, 470, 144245.	18.8 12.7	18 0
	High single Zn-ion conductive porous organic conductors decorated with dense acidic groups via		
300	High single Zn-ion conductive porous organic conductors decorated with dense acidic groups via double post-synthetic sulfonations. Chemical Engineering Journal, 2023, 470, 144245. Superprotonic Conductivity in Metal–Organic Frameworks by Charged-Layer-Mediated Proton	12.7	0
300 301	 High single Zn-ion conductive porous organic conductors decorated with dense acidic groups via double post-synthetic sulfonations. Chemical Engineering Journal, 2023, 470, 144245. Superprotonic Conductivity in Metal–Organic Frameworks by Charged-Layer-Mediated Proton Conduction. ACS Energy Letters, 2023, 8, 3095-3101. Porous and chemically robust MIL-100(V) MOF as an efficient cathode material for zincâ€ion batteries. 	12.7 17.4	0
300 301 302	 High single Zn-ion conductive porous organic conductors decorated with dense acidic groups via double post-synthetic sulfonations. Chemical Engineering Journal, 2023, 470, 144245. Superprotonic Conductivity in Metal–Organic Frameworks by Charged-Layer-Mediated Proton Conduction. ACS Energy Letters, 2023, 8, 3095-3101. Porous and chemically robust MIL-100(V) MOF as an efficient cathode material for zinc‑ion batteries. Chemical Engineering Journal, 2023, 470, 144340. Recent progress of metal–organic coordination polymers built by aromatic fused-thiophen 	12.7 17.4 12.7	0 5 6
300 301 302 303	High single Zn-ion conductive porous organic conductors decorated with dense acidic groups via double post-synthetic sulfonations. Chemical Engineering Journal, 2023, 470, 144245. Superprotonic Conductivity in Metal–Organic Frameworks by Charged-Layer-Mediated Proton Conduction. ACS Energy Letters, 2023, 8, 3095-3101. Porous and chemically robust MIL-100(V) MOF as an efficient cathode material for zincâ€'ion batteries. Chemical Engineering Journal, 2023, 470, 144340. Recent progress of metal–organic coordination polymers built by aromatic fused-thiophen functionalized ligands. Coordination Chemistry Reviews, 2023, 493, 215300. Design, Preparation, and High Intrinsic Proton Conductivity of Two Highly Stable Hydrazone-Linked	12.7 17.4 12.7 18.8	0 5 6 2
300 301 302 303 304	 High single Zn-ion conductive porous organic conductors decorated with dense acidic groups via double post-synthetic sulfonations. Chemical Engineering Journal, 2023, 470, 144245. Superprotonic Conductivity in Metal–Organic Frameworks by Charged-Layer-Mediated Proton Conduction. ACS Energy Letters, 2023, 8, 3095-3101. Porous and chemically robust MIL-100(V) MOF as an efficient cathode material for zincâ€ion batteries. Chemical Engineering Journal, 2023, 470, 144340. Recent progress of metal–organic coordination polymers built by aromatic fused-thiophen functionalized ligands. Coordination Chemistry Reviews, 2023, 493, 215300. Design, Preparation, and High Intrinsic Proton Conductivity of Two Highly Stable Hydrazone-Linked Covalent Organic Frameworks. ACS Applied Materials & amp; Interfaces, 2023, 15, 33148-33158. Theoretical Calculations of Organic Salts and Their Correlation with Proton Conductivity. ACS 	12.7 17.4 12.7 18.8 8.0	0 5 6 2 3

#	Article	IF	CITATIONS
308	Superprotonic Conductivity of MOFs Confining Zwitterionic Sulfamic Acid as Proton Source and Conducting Medium. Angewandte Chemie - International Edition, 2023, 62, .	13.8	4
309	Superprotonic Conductivity of MOFs Confining Zwitterionic Sulfamic Acid as Proton Source and Conducting Medium. Angewandte Chemie, 2023, 135, .	2.0	0
310	A Significant Twoâ€Dimensional Structural Transformation in a Coordination Polymer that Changes Its Electronic and Protonic Behavior. Angewandte Chemie, 2023, 135, .	2.0	0
311	Molecular Catalysis of Energy Relevance in Metal–Organic Frameworks: From Higher Coordination Sphere to System Effects. Chemical Reviews, 2023, 123, 6545-6611.	47.7	15
312	The proton conduction behavior of two 1D open-framework metal phosphates with similar crystal structures and different hydrogen bond networks. RSC Advances, 2023, 13, 12703-12711.	3.6	0
313	Highly pH-stable lanthanide MOFs: a tunable luminescence and ratiometric luminescent probe for sulfamethazine. Dalton Transactions, 2023, 52, 8558-8566.	3.3	4
314	A stable 2D luminescent metal–organic framework as a highly sensitive sensor for Fe ³⁺ and Cr ₂ O ₇ ^{2â^`} /CrO ₄ ^{2â^`} in water. CrystEngComm, 2023, 25, 3539-3547.	2.6	1
315	A superprotonic membrane derived from proton-conducting metal-organic frameworks and cellulose nanocrystals. CheM, 2023, 9, 2547-2560.	11.7	1
316	Metal–organic framework and carbon hybrid nanostructures: Fabrication strategies and electrocatalytic application for the water splitting and oxygen reduction reaction. , 2023, 2, e9120078.		22
317	Construction of dense H-bond acceptors in the channels of covalent organic frameworks for proton conduction. Journal of Materials Chemistry A, 2023, 11, 13965-13970.	10.3	8
318	Metalo Hydrogen-Bonded Organic Frameworks Self-Assembled by Charge-Assisted Synthons for Ultrahigh Proton Conduction. Crystal Growth and Design, 2023, 23, 5035-5042.	3.0	9
319	Ionic liquids promoted synthesis, enhanced functions, and expanded applications of porous organic frameworks. Coordination Chemistry Reviews, 2023, 493, 215304.	18.8	5
320	Microporous metal-organic framework materials for efficient capture and separation of greenhouse gases. Science China Chemistry, 2023, 66, 2181-2203.	8.2	3
321	Proton conductive thin films of metal-organic framework for impedance detection of formic acid. Microporous and Mesoporous Materials, 2023, 360, 112722.	4.4	1
322	Locating Hydrogen Positions for COFâ€300 by Cryoâ€3D Electron Diffraction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
323	Locating Hydrogen Positions for COFâ€300 by Cryoâ€3D Electron Diffraction. Angewandte Chemie, 0, , .	2.0	0
324	Reducing defect density in UiO-68–CHO is key for its efficient and reliable post-synthetic modification. Molecular Systems Design and Engineering, 0, , .	3.4	0
325	Taming Multiscale Structural Complexity in Porous Skeletons: From Open Framework Materials to Micro/Nanoscaffold Architectures. Small Methods, 2023, 7, .	8.6	1

#	Article	IF	CITATIONS
326	Recent Progress of Crystalline Porous Frameworks for Intermediate-Temperature Proton Conduction. Langmuir, 2023, 39, 11166-11187.	3.5	4
327	Two proton-conductive metal-organic frameworks constructed by pyridyl imidazole dicarboxylate ligands. Journal of Solid State Chemistry, 2023, 327, 124268.	2.9	0
328	Achieving High Intrinsic Proton Conductivity via Functionalization of MOF-808 by Ionic Liquid. ACS Sustainable Chemistry and Engineering, 2023, 11, 13502-13507.	6.7	7
329	Protonâ€Conducting Hierarchical Composite Hydrogels Producing First Soft Memcapacitors with Switchable Memory. Advanced Functional Materials, 2023, 33, .	14.9	1
330	Understanding proton conduction enhancement of MOF-802 through in situ incorporation of imidazole into its channels. Inorganic Chemistry Communication, 2023, 157, 111340.	3.9	1
331	Interfacial chemistries in metal–organic framework (MOF)/covalent–organic framework (COF) hybrids. Nanoscale, 2023, 15, 13187-13201.	5.6	1
332	usCNT-assisted synthesis of water-stable MOF nanosheet for highly proton-conducting membrane. Applied Surface Science, 2023, 640, 158357.	6.1	1
333	Linkage conversions in single-crystalline covalent organic frameworks. Nature Chemistry, 2024, 16, 114-121.	13.6	12
334	Efficient proton exchange membranes based on bifunctional metal–organic frameworks. Journal of Materials Science, 2023, 58, 14154-14176.	3.7	3
335	Solvent-induced high proton conductivity of a water-stable three-dimensional Mn(II) metal-organic framework. Journal of Solid State Chemistry, 2023, 328, 124354.	2.9	0
336	Ultra-fast Proton Conduction and Photocatalytic Water Splitting in a Pillared Metal–Organic Framework. Journal of the American Chemical Society, 2023, 145, 19225-19231.	13.7	5
337	Acidified Nitrogen Selfâ€Doped Porous Carbon with Superprotonic Conduction for Applications in Solidâ€State Proton Battery. Small, 2024, 20, .	10.0	0
338	Portable nonâ€enzymatic electrochemical biosensor based on caffeine for Alzheimer's disease diagnosis. View, 2023, 4, .	5.3	0
339	Droplet-based millifluidic synthesis of a proton-conducting sulfonate metal–organic framework. Chemical Engineering Journal, 2023, 474, 145892.	12.7	1
340	A Zn-MOF functionalized with alkyne groups: ultrasensitive detection of Cu ⁺ and Pd ²⁺ ions in aqueous medium. Sensors & Diagnostics, 2023, 2, 1585-1596.	3.8	1
341	The assembly of [Mo ₂ O ₂ S ₂] ²⁺ based on polydentate phosphonate templates and their proton conductivity. Chemical Communications, 2023, 59, 13446-13449.	4.1	0
342	Synthesis and Characterization of Proton-Conducting Composites Prepared by Introducing Imidazole or 1,2,4-Triazole into AlPO-5 and SAPO-5 Molecular Sieves. Molecules, 2023, 28, 7312.	3.8	0
343	Exploration of single-crystal proton conduction in ordered networks. Coordination Chemistry Reviews, 2024, 499, 215516.	18.8	2

#	Article	IF	CITATIONS
344	A Pair of Multifunctional Cu(II)–Dy(III) Enantiomers with Zero–Field Single–Molecule Magnet Behaviors, Proton Conduction Properties and Magneto–Optical Faraday Effects. Molecules, 2023, 28, 7506.	3.8	1
345	Thiol and thioether-based metal–organic frameworks: synthesis, structure, and multifaceted applications. Dalton Transactions, 2023, 52, 17623-17655.	3.3	2
346	From a Collapse-Prone, Insulating Ni-MOF-74 Analogue to Crystalline, Porous, and Electrically Conducting PEDOT@MOF Composites. Inorganic Chemistry, 2023, 62, 18999-19005.	4.0	2
347	Postâ€synthetic modifications in <scp>metal–organic frameworks</scp> for high proton conductivity. Bulletin of the Korean Chemical Society, 2024, 45, 145-156.	1.9	0
348	Effect of alkaline-earth metal ion radius on the coordination number and proton conductivity of isomorphous MOFs. Journal of Molecular Structure, 2024, 1299, 137145.	3.6	1
349	Synthesis, crystal structure and proton conductive properties of one stable cobalt(II) coordination polymer from thiourea carboxylate. Journal of Solid State Chemistry, 2024, 330, 124491.	2.9	0
350	A Multifunctional Co-Based Metal–Organic Framework as a Platform for Proton Conduction and Ni trophenols Reduction. Inorganic Chemistry, 2023, 62, 20325-20339.	4.0	0
351	Synthesis of Phosphovanadate-Based Porous Inorganic Frameworks with High Proton Conductivity. Inorganic Chemistry, 2023, 62, 20506-20512.	4.0	0
352	Two Stable Bifunctional Zinc Metal–Organic Frameworks with Luminescence Detection of Antibiotics and Proton Conduction. Inorganic Chemistry, 2023, 62, 20314-20324.	4.0	1
353	Modular Gating of Ion Transport by Postsynthetic Charge Transfer Complexation in a Metal–Organic Framework. Journal of the American Chemical Society, 0, , .	13.7	0
354	Moisture-Triggered Proton Conductive Switch in Metal-Organic Frameworks: Role of Coordinating Solvents. Journal of Materials Chemistry A, 0, , .	10.3	0
355	Remarkably enhancing proton conductivity by intrinsic surface sulfonation of a pyrazine-linked covalent organic framework. Science China Materials, 0, , .	6.3	0
356	Subnanometer Nanowireâ€Reinforced Construction of COFâ€Based Membranes with Engineering Biomimetic Texture for Efficient and Stable Proton Conduction. Advanced Functional Materials, 0, , .	14.9	1
357	Flattening of a Bent Sulfonated MOF Linker: Impact on Structures, Flexibility, Gas Adsorption, CO ₂ /N ₂ Selectivity, and Proton Conduction. Inorganic Chemistry, 0, , .	4.0	0
358	Transparent-to-Brown-Black Patterned Electrochromic Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 0, , .	8.0	0
359	Two Terbium Metal–Organic Frameworks Showing Fluorescence Sensing and Proton Conductivity. Crystal Growth and Design, 0, , .	3.0	0
360	Functionalization of Cluster-Nodes in a Metal–Organic Framework for Light-Manipulating Proton Conduction. , 2024, 6, 461-465.		1
361	New group IIIA metal phosphate–oxalates containing dimethylammonium cations with proton conductivity. Dalton Transactions, 2024, 53, 2318-2323.	3.3	0

		CITATION REPORT		
#	Article		IF	Citations
362	An All-Climate Nonaqueous Hydrogen Gas–Proton Battery. Nano Letters, 2024, 24,	1729-1737.	9.1	0
363	High Proton Conduction for CPM-200 Achieved by Aliovalent-Predefinition of M ₃ (μ ₃ -O) Building Blocks and In Situ Encapsulation of Hyd 2024, 6, 765-771.	drated Metal Ions. ,		0
364	Ions and electron conductive porous coordination polymers for energy applications. , 2	2024, , 237-272.		0
365	Dimensional Crossover and Proton Conductivity in Copper-Based Coordination Polyme Coordinative Guest Insertion. Crystal Growth and Design, 2024, 24, 1612-1618.	ers by	3.0	0
366	A Threeâ€Dimensionally Extended Metal–Organic Ladder Compound Exhibiting Prot Angewandte Chemie - International Edition, 2024, 63, .	on Conduction.	13.8	0
367	A Threeâ€Ðimensionally Extended Metal–Organic Ladder Compound Exhibiting Prot Angewandte Chemie, 2024, 136, .	con Conduction.	2.0	0
368	Comparative Analysis of Proton Conductivity in Two Zn-Based MOFs Featuring Sulfate Functional Groups. Inorganic Chemistry, 2024, 63, 3870-3881.	e and Sulfonate	4.0	0
369	Advancing sustainable energy: Structurally organized proton and hydroxide ion-condu Current Opinion in Electrochemistry, 2024, 44, 101464.	ctive polymers.	4.8	1
370	Smart touchless human–machine interaction based on crystalline porous cages. Nat Communications, 2024, 15, .	ture	12.8	0
371	Superprotonic Conductivity in a Metalloporphyrin-Based SMOF (Supramolecular Meta	l–Organic) Tj ETQq1 1 0	.784314 r 4.1	gBT /Overloc
372	Recent advances of polyoxometalate-based materials applied for electron-related device Coordination Chemistry Reviews, 2024, 506, 215724.	ces.	18.8	0
373	Slow magnetic relaxation and proton conduction in a highly hydrogen-bonded dinucle complex. Journal of Molecular Structure, 2024, 1306, 137874.	ar holmium(III)	3.6	0
374	Protonâ€Conducting Polymers: Key to Nextâ€Generation Fuel Cells, Electrolyzers, Bat and Sensors. ChemElectroChem, 0, , .	teries, Actuators,	3.4	0
375	Four Lanthanide(III) Metal–Organic Frameworks Fabricated by Bithiophene Dicarbox Inherent Proton Conduction. ACS Applied Materials & Interfaces, 2024, 16, 1374		8.0	0
376	Facile one-step preparation of Co2CrO4 spinel from heterometallic compounds – St magnetic, electrical and photocatalytic studies. Journal of Alloys and Compounds, 202		5.5	0
377	Achieving High Proton Conductivity in MIL-91(Al) Aerogel. Inorganic Chemistry, 2024,	63, 4813-4818.	4.0	0
378	A robust Zr(IV)-based metal-organic framework featuring high-density free carboxylic g efficient uranium recovery. Chemical Engineering Journal, 2024, 486, 150251.	groups for	12.7	0
379	Hydrogenâ€Bonded Metal–Organic Framework Nanosheet as a Proton Conducting H ₂ /O ₂ Fuel Cell. Small, 0, , .	Membrane for an	10.0	0

Article IF Citations

Using bifunctionalized NH2-UiO-66-SO3H to improve the performance of sulfonated poly (ether ether) Tj ETQq0 0 0, rgBT /Overlock 10 T

381	New Dimensions of Flexible MOFs: Toward Complex Systems and Devices. , 2024, , 304-367.		0
382	Regulate transportation of ions and polysulfides in all–solid-state Li-S batteries using ordered-MOF composite solid electrolyte. Science Advances, 2024, 10, .	10.3	0