Design of robust superhydrophobic surfaces

Nature

582, 55-59

DOI: 10.1038/s41586-020-2331-8

Citation Report

#	Article	IF	Citations
1	Gas-Wetting Alteration by Fluorochemicals and Its Application for Enhancing Gas Recovery in Gas-Condensate Reservoirs: A Review. Energies, 2020, 13, 4591.	1.6	17
2	Evaluation of the Engineering Applications of Superhydrophobic Metal Surfaces Achieved by a Spraying–Adhering Process Using Different Combinations of Hydrophobic Particles and Adhesives. Industrial & Different Research, 2020, 59, 18873-18886.	1.8	5
3	Enhanced Condensation on Liquid-Infused Nanoporous Surfaces by Vibration-Assisted Droplet Sweeping. ACS Nano, 2020, 14, 13367-13379.	7.3	41
4	Fabrication and Potential Applications of Highly Durable Superhydrophobic Polyethylene Terephthalate Fabrics Produced by In-Situ Zinc Oxide (ZnO) Nanowires Deposition and Polydimethylsiloxane (PDMS) Packaging. Polymers, 2020, 12, 2333.	2.0	11
5	Programming Multiphase Media Superwetting States in the Oil–Water–Air System: Evolutions in Hydrophobic–Hydrophilic Surface Heterogeneous Chemistry. Advanced Materials, 2020, 32, e2004875.	11.1	38
6	Laplace Pressure Driven Single-Droplet Jumping on Structured Surfaces. ACS Nano, 2020, 14, 12796-12809.	7.3	73
7	Scalable-Manufactured Superhydrophobic Multilayer Nanocomposite Coating with Mechanochemical Robustness and High-Temperature Endurance. ACS Applied Materials & Samp; Interfaces, 2020, 12, 35502-35512.	4.0	39
8	Facile preparation of economical, eco-friendly superhydrophobic surface on paper substrate with excellent mechanical durability. Progress in Organic Coatings, 2020, 147, 105877.	1.9	15
9	Facile Strategy to Generate Charged Droplets with Desired Polarities. ACS Omega, 2020, 5, 26908-26913.	1.6	5
10	A Glance at Antimicrobial Strategies to Prevent Catheter-Associated Medical Infections. ACS Infectious Diseases, 2020, 6, 3109-3130.	1.8	34
11	Customizing oil-wettability in airâ€"without affecting extreme water repellency. Nanoscale, 2020, 12, 24349-24356.	2.8	12
12	Nanostructured Cobaltâ€Based Electrocatalysts for CO ₂ Reduction: Recent Progress, Challenges, and Perspectives. Small, 2020, 16, e2004158.	5.2	45
13	Counterintuitive Wetting Transitions in Doubly Reentrant Cavities as a Function of Surface Makeâ€Up, Hydrostatic Pressure, and Cavity Aspect Ratio. Advanced Materials Interfaces, 2020, 7, 2001268.	1.9	11
14	Biomimetic fog collection and its influencing factors. New Journal of Chemistry, 2020, 44, 20495-20519.	1.4	14
15	Durability of Superamphiphobic Polyester Fabrics in Simulated Aerodynamic Icing Conditions. Coatings, 2020, 10, 1058.	1.2	5
16	A Superhydrophobic Dropletâ€Based Magnetoelectric Hybrid System to Generate Electricity and Collect Water Simultaneously. Advanced Materials, 2020, 32, e2006839.	11.1	76
17	Antisoiling Performance of Lotus Leaf and Other Leaves after Prolonged Outdoor Exposure. ACS Applied Materials & Diterfaces, 2020, 12, 53394-53402.	4.0	19
18	Flexible superhydrophobic surfaces with condensate microdrop self-propelling functionality based on carbon nanotube films. Nanoscale Advances, 2020, 2, 4147-4152.	2.2	5

#	Article	IF	CITATIONS
19	Facile preparation of a superamphiphobic fabric coating with hierarchical TiO ₂ particles. New Journal of Chemistry, 2020, 44, 19192-19200.	1.4	10
20	Effect of CS2/NaOH activation on the hydrophobic durability of cotton filter fabric modified via ARGET-ATRP. European Polymer Journal, 2020, 141, 110087.	2.6	7
21	A Mini Review on Superhydrophobic and Transparent Surfaces. Chemical Record, 2020, 20, 1257-1268.	2.9	33
22	Designing Re-Entrant Geometry: Construction of a Superamphiphobic Surface with Large-Sized Particles. ACS Applied Materials & Samp; Interfaces, 2020, 12, 49155-49164.	4.0	21
23	Bioinspired materials for water-harvesting: focusing on microstructure designs and the improvement of sustainability. Materials Advances, 2020, 1, 2592-2613.	2.6	23
24	Site-specific Positioning of MoS ₂ on Fabric Weaves by Post Treatment or <i>In-situ</i> Method for Hydrophobic Stability and Photoluminescence Enhancement. Chemistry Letters, 2020, 49, 1376-1378.	0.7	0
25	Superhydrophobic and Sustainable Nanostructured Powdered Iron for the Efficient Separation of Oil-in-Water Emulsions and the Capture of Microplastics. ACS Applied Materials & Samp; Interfaces, 2020, 12, 45629-45640.	4.0	29
26	A Stable and Indurative Superhydrophobic Film with Excellent Anti-Bioadhesive Performance for 6061 Al Protection. Materials, 2020, 13, 5564.	1.3	5
27	Understanding the Solid–Ice Interface Mechanism on the Hydrophobic Nano-Pillar Structure Epoxy Surface for Reducing Ice Adhesion. Coatings, 2020, 10, 1043.	1,2	4
28	Versatile, mechanochemically robust, sprayed superomniphobic coating enabling low surface tension and high viscous organic liquid bouncing. Chemical Engineering Journal, 2020, 402, 126160.	6.6	21
29	An innovative armour-strategy for robust superhydrophobic surfaces. Science China Chemistry, 2020, 63, 1578-1579.	4.2	1
30	A sky-blue superhydrophobic coating and applications. Progress in Organic Coatings, 2020, 147, 105863.	1.9	16
31	Oil-immersion stable superamphiphobic coatings for long-term super liquid-repellency. Chemical Engineering Journal, 2021, 420, 127606.	6.6	28
32	Volcano-like hierarchical superhydrophobic surface synthesized via facile one-step secondary anodic oxidation. Applied Surface Science, 2021, 540, 148337.	3.1	27
33	Durable fire retardant, superhydrophobic, abrasive resistant and air/UV stable coatings. Journal of Colloid and Interface Science, 2021, 582, 301-311.	5.0	39
34	Droplet Retention on Superhydrophobic Surfaces: A Critical Review. Advanced Materials Interfaces, 2021, 8, 2001205.	1.9	56
35	Transferring the structure of paper for mechanically durable superhydrophobic surfaces. Surface and Coatings Technology, 2021, 405, 126543.	2.2	36
36	Functional Liquid Crystal Polymer Surfaces with Switchable Topographies. Small Structures, 2021, 2, 2000107.	6.9	14

#	Article	IF	Citations
37	Robust Superhydrophobic Fabric for Durability, Self leaning, and Oil/Water Separation via Thiol–Acrylate Polymerization. Macromolecular Materials and Engineering, 2021, 306, 2000504.	1.7	4
38	Contact line-based model for the Cassie-Wenzel transition of a sessile droplet on the hydrophobic micropillar-structured surfaces. Applied Surface Science, 2021, 542, 148611.	3.1	41
39	Water droplet bouncing dynamics. Nano Energy, 2021, 81, 105647.	8.2	57
40	Fabrication of superhydrophobic composite coating of hydroxyapatite/stearic acid on magnesium alloy and its corrosion resistance, antibacterial adhesion. Journal of Materials Science, 2021, 56, 5233-5249.	1.7	23
41	Facile Formation of Hierarchical Textures for Flexible, Translucent, and Durable Superhydrophobic Film. Advanced Functional Materials, 2021, 31, 2008574.	7.8	68
42	Maintenance of superhydrophobic concrete for high compressive strength. Journal of Materials Science, 2021, 56, 4588-4598.	1.7	14
43	Textile coatings configured by double-nanoparticles to optimally couple superhydrophobic and antibacterial properties. Chemical Engineering Journal, 2021, 420, 127680.	6.6	84
44	Metallic skeleton promoted two-phase durable icephobic layers. Journal of Colloid and Interface Science, 2021, 587, 47-55.	5.0	14
45	Is superhydrophobicity equal to underwater superoleophilicity? Hydrophilic wetting defects on a superhydrophobic matrix with switchable superdewetting in both air and water. Journal of Materials Chemistry A, 2021, 9, 1471-1479.	5.2	16
46	Superhydrophobic Films with Enhanced Corrosion Resistance and Self-Cleaning Performance on an Al Alloy. Langmuir, 2021, 37, 524-541.	1.6	35
47	Green-Solvent-Processed Fibrous Membranes with Water/Oil/Dust-Resistant and Breathable Performances for Protective Textiles. ACS Applied Materials & Samp; Interfaces, 2021, 13, 2081-2090.	4.0	37
48	Quantitative characterization of surface wettability by friction force. Applied Surface Science, 2021, 536, 147788.	3.1	16
49	Employing micro pyramidal holes and porous nanostructures for enhancing the durability of lubricant-infused surfaces in anti-icing. Surface and Coatings Technology, 2021, 405, 126568.	2.2	24
50	Bioinspired superwetting surfaces for biosensing. View, 2021, 2, 20200053.	2.7	33
51	A simple superhydrophobic/superhydrophilic Janus-paper with enhanced biocompatibility by PDMS and candle soot coating for actuator. Chemical Engineering Journal, 2021, 406, 126532.	6.6	65
52	Bioinspired Surface with Superwettability for Controllable Liquid Dynamics. Advanced Materials Interfaces, 2021, 8, 2000824.	1.9	21
53	Recent advances in femtosecond laser-structured Janus membranes with asymmetric surface wettability. Nanoscale, 2021, 13, 2209-2226.	2.8	120
54	Robust superhydrophobicity: mechanisms and strategies. Chemical Society Reviews, 2021, 50, 4031-4061.	18.7	334

#	Article	IF	Citations
55	Large-area fabrication of superhydrophobic micro-conical pillar arrays on various metallic substrates. Nanoscale, 2021, 13, 14023-14034.	2.8	32
56	Deformable Superoleophobic Surfaces with High Mechanical Resilience. , 2021, , .		0
57	Modulation of solid surface with desirable under-liquid wettability based on molecular hydrophilic–lipophilic balance. Chemical Science, 2021, 12, 6136-6142.	3.7	17
58	Does Expanding or Contracting MgO Lattice Really Help with Corrosion Resistance of Mg Surface: Insights from Molecular Dynamics Simulations. ACS Omega, 2021, 6, 1099-1107.	1.6	1
59	Electricity generation from the interaction of liquid–solid interface: a review. Journal of Materials Chemistry A, 2021, 9, 8870-8895.	5.2	50
60	Design of â€~tolerant and hard' superhydrophobic coatings to freeze physical deformation. Materials Horizons, 2021, 8, 2717-2725.	6.4	15
61	Spatio-temporal maneuvering of impacting drops. Materials Horizons, 2021, 8, 3133-3140.	6.4	16
62	Large-scale fabrication of a durable and self-healing super-hydrophobic coating with high thermal stability and long-term corrosion resistance. Nanoscale, 2021, 13, 7810-7821.	2.8	33
63	The effects of bio-inspired micro/nano scale structures on anti-icing properties. Soft Matter, 2021, 17, 447-466.	1.2	24
64	How to Achieve a Monostable Cassie State on a Micropillar-Arrayed Superhydrophobic Surface. Journal of Physical Chemistry B, 2021, 125, 883-894.	1.2	14
65	A simple and energy-saving route for the fabrication of superhydrophobic surfaces based on modified hyperbranched polyethyleneimine and nano silica. New Journal of Chemistry, 2021, 45, 3692-3698.	1.4	4
66	A robust surface with superhydrophobicity and underwater superoleophobicity for on-demand oil/water separation. Nanoscale, 2021, 13, 15334-15342.	2.8	23
67	Laser Fabrication of Bioinspired Gradient Surfaces for Wettability Applications. Advanced Materials Interfaces, 2021, 8, 2001610.	1.9	48
68	Robust Superomniphobic Microâ€Hyperbola Structures Formed by Capillary Wrapping of a Photocurable Liquid around Micropillars. Advanced Functional Materials, 2021, 31, 2010053.	7.8	10
69	Superefficient and robust polymer coating for bionic manufacturing of superwetting surfaces with "rose petal effect―and "lotus leaf effect― Progress in Organic Coatings, 2021, 151, 106090.	1.9	16
70	Preparation of transparent and hydrophobic cerium oxide films with stable mechanical properties by magnetron sputtering. Vacuum, 2021, 184, 109888.	1.6	13
71	Functional and versatile superhydrophobic coatings via stoichiometric silanization. Nature Communications, 2021, 12, 982.	5.8	132
72	Precise Droplet Manipulation Based on Surface Heterogeneity. Accounts of Materials Research, 2021, 2, 230-241.	5.9	22

#	ARTICLE	IF	CITATIONS
73	Hard yet Flexible Transparent Omniphobic GPOSS Coatings Modified with Perfluorinated Agents. ACS Applied Materials & Samp; Interfaces, 2021, 13, 10467-10479.	4.0	38
74	One-step fabrication of regular hierarchical micro/nano-structures on glassy carbon by nanosecond pulsed laser irradiation. Journal of Manufacturing Processes, 2021, 62, 108-118.	2.8	15
75	Transparent Super-Repellent Surfaces with Low Haze and High Jet Impact Resistance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 13813-13821.	4.0	26
76	A Superhydrophobic and Oleophobic Silicone Sponge with Hierarchical Structures. Macromolecular Rapid Communications, 2021, 42, 2000761.	2.0	5
77	Facile fabrication of crystallized superhydrophobic hybrid coatings via solid-state hydrolysis/polycondensation of n-octadecyltrimethoxysilane. Journal of Sol-Gel Science and Technology, 2021, 98, 271-279.	1.1	0
78	Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives. Progress in Organic Coatings, 2021, 152, 106117.	1.9	97
79	Controlled Integration of Interconnected Pores under Polymeric Surfaces for Low Adhesion and Antiscaling Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 13684-13692.	4.0	10
80	Superhydrophobic silane-based surface coatings on metal surface with nanoparticles hybridization to enhance anticorrosion efficiency, wearing resistance and antimicrobial ability. Surface and Coatings Technology, 2021, 410, 126966.	2.2	30
81	Review of interface tailoring techniques and applications to improve insulation performance. High Voltage, 2022, 7, 12-31.	2.7	31
82	Microtube Surfaces for the Simultaneous Enhancement of Efficiency and Critical Heat Flux during Pool Boiling. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12629-12635.	4.0	36
83	Tunable self-jumping of melting frost on macro-patterned anisotropic superhydrophobic surfaces. Surface and Coatings Technology, 2021, 409, 126858.	2.2	9
84	Robust Hybrid Omniphobic Surface for Stain Resistance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 14562-14568.	4.0	19
85	Multifunctional superamphiphobic fluorinated silica with a core-shell structure for anti-fouling and anti-corrosion applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126155.	2.3	30
86	Suppressing the Universal Occurrence of Microscopic Liquid Residues on Super-Liquid-Repellent Surfaces. Journal of Physical Chemistry Letters, 2021, 12, 3577-3585.	2.1	8
87	Liquidâ€Based Adaptive Structural Materials. Advanced Materials, 2021, 33, e2005664.	11.1	34
88	Ultra-durable superhydrophobic surfaces from 3D self-similar network via co-spraying of polymer microspheres and nanoparticles. Chemical Engineering Journal, 2021, 410, 128314.	6.6	26
89	One-step environment-friendly process to design fire-resistant superhydrophobic carbon felts with excellent durability and oil–water separation performance. Journal of Materials Science, 2021, 56, 12183-12197.	1.7	9
90	A Facile Method for Fabrication of Hybrid Hydrophobic-Hydrophilic Surfaces on Anodized Aluminum Template by Electrophoretic Deposition. Thin Solid Films, 2021, 724, 138597.	0.8	10

#	Article	IF	CITATIONS
91	Polymeric Microparticles Generated via Confinementâ€Free Fluid Instability. Advanced Materials, 2021, 33, e2007154.	11.1	7
92	Fabrication of self-cleaning photocatalytic durable building coating based on WO3-TNs/PDMS and NO degradation performance. Chemical Engineering Journal, 2021, 409, 128187.	6.6	27
93	Numerical analysis of laser ablated structural size effect on enhanced anti-icing property of TC4 surface**Research supported by Fujian Provincial Science and Technology Programme (Industry) Tj ETQq0 0 0 rg (2020A1515010519), 2021, , .	BT /Overlo	ock 10 Tf 50 6
94	Tunable Superhydrophobicity from 3D Hierarchically Nanoâ€Wrinkled Microâ€Pyramidal Architectures. Advanced Functional Materials, 2021, 31, 2101068.	7.8	34
95	Robust and durable transparent superhydrophobic boehmite (\hat{l}^3 -AlOOH) film by a simple hydrothermal method. Ceramics International, 2021, 47, 11694-11701.	2.3	13
96	Durable and Flexible Hydrophobic Surface with a Micropatterned Composite Metal–Polymer Structure. Langmuir, 2021, 37, 5838-5845.	1.6	21
97	Transparent and Robust Amphiphobic Surfaces Exploiting Nanohierarchical Surface-grown Metal–Organic Frameworks. Nano Letters, 2021, 21, 3480-3486.	4.5	20
98	Anisotropic spreading of droplets on striped electrodes. , 2021, , .		0
99	How to Efficiently Prepare Transparent Lubricant-Infused Surfaces: Inspired by Candle Soot. Langmuir, 2021, 37, 4869-4878.	1.6	5
100	Facile etching fabrication of superhydrophobic 7055 aluminum alloy surface towards chloride environment anticorrosion. Corrosion Science, 2021, 182, 109262.	3.0	51
101	Spontaneous Directional Selfâ€Cleaning on the Feathers of the Aquatic Bird <i>Anser cygnoides domesticus</i> Induced by a Transient Superhydrophilicity. Advanced Functional Materials, 2021, 31, 2010634.	7.8	25
102	A superhydrophobic magnetoelectric generator for high-performance conversion from raindrops to electricity. Nano Energy, 2021, 83, 105846.	8.2	13
103	Facile one-step hydrothermal fabrication of Allium giganteum-like superhydrophobic coating on Mg alloy with self-cleaning and anti-corrosion properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617, 126370.	2.3	30
104	Ultrafast Flame-Induced Pyrolysis of Poly(dimethylsiloxane) Foam Materials toward Exceptional Superhydrophobic Surfaces and Reliable Mechanical Robustness. ACS Applied Materials & Emp; Interfaces, 2021, 13, 23161-23172.	4.0	78
105	Disordered Assembly of Donors and Acceptors on Layered Double Hydroxides for High-Efficiency Chemiluminescence Resonance Energy Transfer. Analytical Chemistry, 2021, 93, 7724-7731.	3.2	20
106	Superhydrophobic composite graphene oxide membrane coated with fluorinated silica nanoparticles for hydrogen isotopic water separation in membrane distillation. Journal of Membrane Science, 2021, 626, 119136.	4.1	17
107	Super liquid repellent coatings against the everyday life wear: Heating, freezing, scratching. IScience, 2021, 24, 102460.	1.9	6
108	Superhydrophobic Coating Derived from the Spontaneous Orientation of Janus Particles. ACS Applied Materials & Derived Frances, 2021, 13, 25392-25399.	4.0	21

#	ARTICLE	IF	CITATIONS
109	A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances. Journal of Colloid and Interface Science, 2021, 590, 301-310.	5.0	128
110	Maximum spreading and energy analysis of ellipsoidal impact droplets. Physics of Fluids, 2021, 33, .	1.6	18
111	Spider Silks: An Overview of Their Component Proteins for Hydrophobicity and Biomedical Applications. Protein and Peptide Letters, 2021, 28, 255-269.	0.4	3
112	Directional Metastable Wetting Evolution of Droplets on Artificial Patterned Microcavity Surfaces. Advanced Materials Interfaces, 2021, 8, 2100174.	1.9	4
113	Mechanical impact test methods for hard coatings of cutting tools: a review. International Journal of Advanced Manufacturing Technology, 2021, 115, 1367.	1.5	16
114	A mosquito-eye-like superhydrophobic coating with super robustness against abrasion. Materials and Design, 2021, 203, 109552.	3.3	34
115	Oneâ€Step Synthesis of a Durable and Liquidâ€Repellent Poly(dimethylsiloxane) Coating. Advanced Materials, 2021, 33, e2100237.	11.1	77
116	Abrasion Resistant/Waterproof Stretchable Triboelectric Yarns Based on Fermat Spirals. Advanced Materials, 2021, 33, e2100782.	11.1	68
117	Flexibility-Patterned Liquid-Repelling Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 29092-29100.	4.0	8
118	Multifunctional magnesium oxychloride based composite with stable superhydrophobicity, self-luminescence and reusability. Construction and Building Materials, 2021, 286, 122978.	3.2	6
119	Oneâ€step fabrication of wearâ€resistant superhydrophobic coating based on aminosilaneâ€functionalized diatomaceous earth. Journal of Applied Polymer Science, 2021, 138, 51227.	1.3	5
120	Horizontal Motion of a Superhydrophobic Substrate Affects the Drop Bouncing Dynamics. Physical Review Letters, 2021, 126, 234503.	2.9	44
121	Controllable water behaviors on V-shape micro-grooved titanium alloy surfaces depending on the depth-to-width aspect ratio. Materials Today Physics, 2021, 20, 100461.	2.9	7
122	Recent advances in hydrothermal modification of calcium phosphorus coating on magnesium alloy. Journal of Magnesium and Alloys, 2022, 10, 62-80.	5.5	45
123	Facile Fabrication of Povidone Iodineâ€Embedded Polytetrafluoroethylene Superhydrophobic Films with Improved Antiadhesive and Bactericidal Properties in Bacterial Environments. Macromolecular Materials and Engineering, 2021, 306, 2100193.	1.7	0
124	Design of Hybrid Superwetting Surfaces with Selfâ€Driven Droplet Transport Feature for Enhanced Condensation. Advanced Materials Interfaces, 2021, 8, 2100284.	1.9	14
125	Multiple Wetting–Dewetting States of a Water Droplet on Dual-Scale Hierarchical Structured Surfaces. Jacs Au, 2021, 1, 955-966.	3.6	3
126	Biotemplated Fabrication of a Multifunctional Superwettable Shape Memory Film for Wearable Sensing Electronics and Smart Liquid Droplet Manipulation. ACS Applied Materials & Electronics and Smart Liquid Droplet Manipulation. ACS Applied Materials & Electronics and Smart Liquid Droplet Manipulation. ACS Applied Materials & Electronics &	4.0	23

#	Article	IF	CITATIONS
127	Robust, Multiresponsive, Superhydrophobic, and Oleophobic Nanocomposites via a Highly Efficient Multifluorination Strategy. ACS Applied Materials & Interfaces, 2021, 13, 28949-28961.	4.0	31
128	Longâ€Term Superâ€Amphiphilic Shapedâ€Fiber with Multiâ€Scale Grooved Structures: Toward Spontaneous Selfâ€Cleaning. Advanced Functional Materials, 2021, 31, 2102877.	7.8	8
129	Drag reduction and hairpin packets of the turbulent boundary layer over the superhydrophobic-riblets surface. Journal of Hydrodynamics, 2021, 33, 621-635.	1.3	7
130	Thermodynamic analysis and prediction on the wetting properties of pore array superhydrophobic laser-texturing surfaces. Journal of Applied Physics, 2021, 129, .	1.1	2
131	Multifunctional Textiles Based on Three-Dimensional Hierarchically Structured TiO ₂ Nanowires. ACS Applied Materials & Interfaces, 2021, 13, 27557-27566.	4.0	14
132	Preparation of Superhydrophobic Fabric Based on the SiO 2 @PDFMA Nanocomposites by an Emulsion Graft Polymerization and a Hotâ€Pressing Process. ChemistrySelect, 2021, 6, 5646-5654.	0.7	4
133	SERS substrate with wettability difference for molecular self-concentrating detection. Nanotechnology, 2021, 32, 375603.	1.3	4
134	Superhydrophobic Surface and Lubricantâ€Infused Surface: Implementing Two Extremes on Electrodeposited NiTiO ₂ Surface to Drive Optimal Wettability Regimes for Droplets' Multifunctional Behaviors. Advanced Engineering Materials, 2021, 23, 2100266.	1.6	8
136	Biomimetic Water-Repelling Surfaces with Robustly Flexible Structures. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31310-31319.	4.0	14
137	One-step fabrication of robust and durable superamphiphobic, self-cleaning surface for outdoor and in situ application on building substrates. Journal of Colloid and Interface Science, 2021, 591, 239-252.	5.0	37
138	Femtosecond laser fabrication of square pillars integrated Siberian-Cocklebur-like microstructures surface for anti-icing. Materials and Design, 2021, 204, 109689.	3.3	21
139	Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere. Science Advances, 2021, 7, .	4.7	100
140	Organic Nonâ€Wettable Superhydrophobic Fullerite Films. Advanced Materials, 2021, 33, e2102108.	11.1	8
141	A universal, multifunctional, high-practicability superhydrophobic paint for waterproofing grass houses. NPG Asia Materials, 2021, 13, .	3.8	26
142	Drag reduction methods at solid-liquid interfaces. Friction, 2022, 10, 491-515.	3.4	20
143	Robust photothermal anti-icing/deicing via flexible CMDSP carbon nanotube films. Nanotechnology, 2021, , .	1.3	5
144	Superhydrophobic surface with excellent mechanical robustness, water impact resistance and hydrostatic pressure resistance by two-step spray-coating technique. Composites Part A: Applied Science and Manufacturing, 2021, 146, 106405.	3.8	37
145	Slippery surfaces: A decade of progress. Physics of Fluids, 2021, 33, .	1.6	43

#	Article	IF	CITATIONS
146	Condensation frosting and passive anti-frosting. Cell Reports Physical Science, 2021, 2, 100474.	2.8	35
147	Effect of Surface Structure Complexity on Interfacial Droplet Behavior of Superhydrophobic Titanium Surfaces for Robust Dropwise Condensation. Materials, 2021, 14, 4107.	1.3	3
148	Recent Progress of Bioinspired Scalephobic Surfaces with Specific Barrier Layers. Langmuir, 2021, 37, 8639-8657.	1.6	15
149	Frosting behavior of louvered-fin and tube heat exchanger after surface treatment: Experimental analysis. Applied Thermal Engineering, 2021, 194, 117066.	3.0	8
150	Functional surface microstructures inspired by nature – From adhesion and wetting principles to sustainable new devices. Progress in Materials Science, 2021, 120, 100823.	16.0	117
151	Small Structure, Large Effect: Functional Surfaces Inspired by <i>Salvinia</i> Leaves. Small Structures, 2021, 2, 2100079.	6.9	29
152	Multifunctional Superhydrophobic Composite Coatings with Remarkable Passive Heat Dissipation and Anticorrosion Properties. Industrial & Engineering Chemistry Research, 2021, 60, 11019-11029.	1.8	9
153	Hot embossing of moth eye-like nanostructure array on transparent glass with enhanced antireflection for solar cells. Ceramics International, 2021, 47, 18367-18375.	2.3	10
154	Wide-temperature antifouling characteristic of a double re-entrant pillar array surface. International Journal of Heat and Mass Transfer, 2021, 175, 121178.	2.5	2
155	Slippery coatings with mechanical robustness and self-replenishing properties as potential application on magnesium alloys. Chemical Engineering Journal, 2021, 418, 129079.	6.6	24
156	Bioinspired Universal Approaches for Cavity Regulation during Cylinder Impact Processes for Drag Reduction in Aqueous Media: Macrogeometry Vanquishing Wettability. ACS Applied Materials & Samp; Interfaces, 2021, 13, 38808-38815.	4.0	7
157	Effects of the slip wall on the drag and coherent structures of turbulent boundary layer. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 1278-1290.	1.5	8
158	Mechanisms and guidelines on the sustainable engineering of self-assembling; nanostars and nanoflowers. Journal of Cleaner Production, 2021, 312, 127570.	4.6	3
159	Origin of friction and the new frictionless technologyâ€"Superlubricity: Advancements and future outlook. Nano Energy, 2021, 86, 106092.	8.2	93
160	Wettability of a surface engraved with the periodic nanoscale trenches: Effects of geometry and pressure. Journal of Molecular Liquids, 2021, 335, 116276.	2.3	7
161	Flow Fieldâ€Induced Oneâ€Step Electrodeposition Process to Fabricate Superhydrophobic Films for Flexible Electronics. Advanced Materials Interfaces, 2021, 8, 2100932.	1.9	3
162	Durable superhydrophobic surface with hierarchical microstructures for efficient water collection. Surface and Coatings Technology, 2021, 419, 127279.	2.2	36
164	Highly Efficient Self-Repairing Slippery Liquid-Infused Surface with Promising Anti-Icing and Anti-Fouling Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 40032-40041.	4.0	44

#	Article	IF	CITATIONS
165	Microstructured Surfaces for Reducing Chances of Fomite Transmission via Virus-Containing Respiratory Droplets. ACS Nano, 2021, 15, 14049-14060.	7.3	8
166	Influence of materials and fabrication strategies in tailoring the anticorrosive property of superhydrophobic coatings. Surfaces and Interfaces, 2021, 25, 101238.	1.5	14
167	Ultra-thin self-healing vitrimer coatings for durable hydrophobicity. Nature Communications, 2021, 12, 5210.	5.8	89
168	Nanomaterials and their applications on bio-inspired wearable electronics. Nanotechnology, 2021, 32, 472002.	1.3	19
169	Super-regular femtosecond laser nanolithography based on dual-interface plasmons coupling. Nanophotonics, 2021, 10, 3831-3842.	2.9	21
170	Facile fabrication and repair of superhydrophobic metal surfaces via electric spark deposition with oil. Surface and Coatings Technology, 2021, 422, 127560.	2.2	4
171	3D Photovoltaic Router of Water Microdroplets Aiming at Free-Space Microfluidic Transportation. ACS Applied Materials & Samp; Interfaces, 2021, 13, 45018-45032.	4.0	11
172	Durable Super-repellent Surfaces: From Solid–Liquid Interaction to Applications. Accounts of Materials Research, 2021, 2, 920-932.	5.9	21
173	Tree root-inspired robust superhydrophobic coatings with high permeation for porous structures. IScience, 2021, 24, 103197.	1.9	6
174	Underwater Drag Reduction and Buoyancy Enhancement on Biomimetic Antiabrasive Superhydrophobic Coatings. ACS Applied Materials & Superhydrophobic Coatings.	4.0	40
175	Brome-like rare-earth film for durable protection of magnesium alloy. Journal of the Taiwan Institute of Chemical Engineers, 2021, 128, 409-416.	2.7	6
176	Design robust, degradable and recyclable superhydrophobic materials. Chemical Engineering Journal, 2021, 420, 129806.	6.6	24
177	Robust liquid repellency by stepwise wetting resistance. Applied Physics Reviews, 2021, 8, .	5.5	34
178	Superhydrophobic micro-tube fabricated via one-step plasma polymerization for lossless droplet transfer. Surface and Coatings Technology, 2021, 421, 127272.	2.2	6
179	Optimal designÂof micro-topography on natural leaf surface. AIP Advances, 2021, 11, 095019.	0.6	2
180	3D Printing of Superhydrophobic Objects with Bulk Nanostructure. Advanced Materials, 2021, 33, e2106068.	11.1	84
181	Robust Micro-Nanostructured Superhydrophobic Surfaces for Long-Term Dropwise Condensation. Nano Letters, 2021, 21, 9824-9833.	4.5	64
182	Superhydrophobic UHMWPE Foams with High Mechanical Robustness and Durability Fabricated by Supercritical CO ₂ Foaming. ACS Sustainable Chemistry and Engineering, 2021, 9, 12663-12673.	3.2	11

#	Article	IF	CITATIONS
183	Preparation of a superhydrophobic AgNP/GF substrate and its SERS application in a complex detection environment. Optics Express, 2021, 29, 34085.	1.7	4
184	Oxygen Vacancy Defects and a Field Effect-Mediated ZnO/WO _{2.92} Heterojunction for Enhanced Corrosion Resistance. Inorganic Chemistry, 2021, 60, 15390-15403.	1.9	14
185	A Superhydrophobic/Electrothermal/Photothermal Synergistically Anti-icing Strategy with Excellent Self-healable and Anti-abrasion Property. Journal of Bionic Engineering, 2021, 18, 1147-1156.	2.7	10
186	Superhydrophobic Al2O3–Polymer Composite Coating for Self-Cleaning Applications. Coatings, 2021, 11, 1162.	1.2	14
187	Recent progress of hydrophobic cement-based materials: Preparation, characterization and properties. Construction and Building Materials, 2021, 299, 124255.	3. 2	29
188	Fast Self-Healing Superhydrophobic Thermal Energy Storage Coatings Fabricated by Bio-Based Beeswax and Artificially Cultivated Diatom Frustules. ACS Applied Materials & Samp; Interfaces, 2021, 13, 48088-48100.	4.0	21
189	Bioinspired Multifunctional Glass Surfaces through Regenerative Secondary Mask Lithography. Advanced Materials, 2021, 33, e2102175.	11.1	13
190	Small molecules derived Tailored-Superhydrophobicity on fibrous and porous Substrates—with superior tolerance. Chemical Engineering Journal, 2022, 430, 132597.	6.6	8
191	Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces. Advances in Colloid and Interface Science, 2021, 295, 102503.	7.0	34
192	Super liquid repellent surfaces for anti-foaming and froth management. Nature Communications, 2021, 12, 5358.	5. 8	20
193	Lubricant-grafted omniphobic surfaces with anti-biofouling and drag-reduction performances constructed by reactive organic–inorganic hybrid microspheres. Chemical Engineering Journal, 2021, 422, 130113.	6.6	18
194	Superhydrophobic composite coatings in bacterial culture media: Durable antibacterial activity and enhanced corrosion resistance. Composites Communications, 2021, 27, 100857.	3.3	23
195	Recycling of waste glass as raw materials for the preparation of self-cleaning, light-weight and high-strength porous ceramics. Journal of Cleaner Production, 2021, 317, 128395.	4.6	20
196	Multi-type nanoparticles in superhydrophobic PU-based coatings towards self-cleaning, self-healing and mechanochemical durability. Progress in Organic Coatings, 2021, 159, 106451.	1.9	10
197	Laser textured dimple-patterns to govern the surface wettability of superhydrophobic aluminum plates. Journal of Materials Science and Technology, 2021, 89, 59-67.	5 . 6	30
198	A modeling study of sessile water droplet on the cold plate surface during freezing under natural convection with gravity effect considered. International Journal of Multiphase Flow, 2021, 143, 103749.	1.6	7
199	Integrated molecular dynamics and experimental approach to characterize low-free-energy perfluoro-decyl-acrylate (PFDA) coated silicon. Materials and Design, 2021, 208, 109902.	3. 3	6
200	Anchoring metal organic frameworks on nanofibers via etching-assisted strategy: Toward water-in-oil emulsion separation membranes. Separation and Purification Technology, 2022, 281, 119812.	3.9	30

#	Article	IF	CITATIONS
201	Fabrication of Janus cellulose nanocomposite membrane for various water/oil separation and selective one-way transmission. Journal of Environmental Chemical Engineering, 2021, 9, 106016.	3.3	20
202	Superhydrophobicity preventing surface contamination asÂa novel strategy against COVID-19. Journal of Colloid and Interface Science, 2021, 600, 613-619.	5.0	21
203	Superhydrophobic surface based on the self-growing structure of BaAl2Si2O8 glass-ceramics. Ceramics International, 2022, 48, 1990-1998.	2.3	6
204	Biomass-based superhydrophobic coating with tunable colors and excellent robustness. Carbohydrate Polymers, 2021, 270, 118401.	5.1	11
205	Simple and low cost fabrication of large area nanocoatings with mechanical robustness, enhanced broadband transmittance and antifogging. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127522.	2.3	10
206	Wearable, self-cleaning, wireless integrated tactile sensory system with superior sensitivity. Sensors and Actuators A: Physical, 2021, 331, 113027.	2.0	5
207	Facile fabrication of durable mesh with reversible photo-responsive wettability for smart oil/water separation. Progress in Organic Coatings, 2021, 160, 106520.	1.9	10
208	A critical review of passive condensation prevention for radiant cooling. Building and Environment, 2021, 205, 108230.	3.0	28
209	Preparation and self-cleaning property of a superhydrophobic coating based on micro–nano integrated TiO2 microspheres. Ceramics International, 2021, 47, 32456-32459.	2.3	12
210	Durable tetra-scale superhydrophobic coatings with virus-like nanoparticles for oil–water separations. Applied Surface Science, 2021, 570, 151088.	3.1	10
211	Recent developments in usage of fluorine-free nano structured materials in oil-water separation: A review. Surfaces and Interfaces, 2021, 27, 101455.	1.5	7
212	An experimental study of condensation on an aluminum radiant ceiling panel surface with superhydrophobic treatment. Energy and Buildings, 2021, 252, 111393.	3.1	13
213	Fully organic and biodegradable superhydrophobic sponges derived from natural resources for efficient removal of oil from water. Separation and Purification Technology, 2021, 277, 119411.	3.9	9
214	Water-repellent surfaces of metallic glasses: fabrication and application. Materials Today Advances, 2021, 12, 100164.	2.5	8
215	Heterogeneous nucleation on surfaces of the three-dimensional cylindrical substrate. Journal of Crystal Growth, 2021, 575, 126340.	0.7	7
216	Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor. Chemical Engineering Journal, 2021, 425, 130462.	6.6	87
217	Robust superhydrophilic and underwater superoleophobic membrane optimized by Cu doping modified metal-organic frameworks for oil-water separation and water purification. Journal of Membrane Science, 2021, 640, 119755.	4.1	64
218	Equilibrium droplet shapes on chemically patterned surfaces: theoretical calculation, phase-field simulation, and experiments. Journal of Colloid and Interface Science, 2022, 606, 1077-1086.	5.0	18

#	Article	IF	Citations
219	Advances in Facemasks during the COVID-19 Pandemic Era. ACS Applied Bio Materials, 2021, 4, 3891-3908.	2.3	60
220	Recent advances in membrane distillation using electrospun membranes: advantages, challenges, and outlook. Environmental Science: Water Research and Technology, 2021, 7, 1002-1019.	1.2	11
221	Directional sliding of water: biomimetic snake scale surfaces. Opto-Electronic Advances, 2021, 4, 210008-210008.	6.4	43
222	The intrigue of directional water collection interface: mechanisms and strategies. Journal of Materials Chemistry A, 2021, 9, 22729-22758.	5.2	9
223	Fabrication of Unmodified Bionic Copper Surfaces with Highly Stable Hydrophobicity and Antiâ€kcing Properties via a Transfer with Zrâ€Based Metallic Glasses. Advanced Materials Interfaces, 2021, 8, 2001743.	1.9	4
224	Solvent-Free Fabrication of Robust Superhydrophobic Powder Coatings. ACS Applied Materials & Samp; Interfaces, 2021, 13, 1323-1332.	4.0	33
225	A robust all-inorganic hybrid energy harvester for synergistic energy collection from sunlight and raindrops. Nanotechnology, 2021, 32, 075401.	1.3	19
226	Manufacturing of a microlens array mold by a two-step method combining microindentation and precision polishing. Applied Optics, 2020, 59, 6945.	0.9	5
227	Liquid repellency enabled antipathogen coatings. Materials Today Bio, 2021, 12, 100145.	2.6	7
228	Demonstration of an Enhanced "Interconnect Topology―Based Superhydrophobic Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and Temperature-Controlled Aging Treatment. Journal of Physical Chemistry C, 2021, 125, 24196-24210.	1.5	3
229	Formulating Multiphase Medium Anti-wetting States in an Air–Water–Oil System: Engineering Defects for Interface Chemical Evolutions. ACS Applied Materials & Evolutions.	4.0	10
230	Simultaneous Realization of Superoleophobicity and Strong Substrate Adhesion in Water via a Unique Segment Orientation Mechanism. Advanced Materials, 2022, 34, e2106908.	11.1	20
231	Enhanced air stability of ridged superhydrophobic surface with nanostructure. AIP Advances, 2021, 11, .	0.6	4
232	A Versatile Metasurface Enabling Superwettability for Selfâ€Cleaning and Dynamic Color Response. Advanced Optical Materials, 2022, 10, 2101781.	3. 6	6
233	Heterogeneously-wetting glass with enhanced anti-fingerprint properties. Chemical Engineering Journal, 2022, 430, 132902.	6.6	8
234	Hydrophobicity of Cr3C2-NiCr coating under mechanical abrasion and thermal annealing. Applied Surface Science, 2022, 574, 151600.	3.1	3
235	Durable superhydrophobic coating derived from hard-soft technology with enhanced anticorrosion performance. Corrosion Science, 2021, 193, 109889.	3.0	21
236	Flame-Retardant Silanized Boron Nitride Nanosheet-Infused Superhydrophobic Sponges for Oil/Water Separation. ACS Applied Nano Materials, 2021, 4, 11809-11819.	2.4	21

#	Article	IF	CITATIONS
237	Water-Responsive Self-Repairing Superomniphobic Surfaces via Regeneration of Hierarchical Topography. ACS Materials Au, 0 , , .	2.6	4
238	Super-robust self-healing superhydrophobic coating with triboelectrification induced liquid self-repellency. Materials and Design, 2021, 211, 110145.	3.3	19
239	An inspiration from purple orchid leaves: Surface characteristics and wettability of nanoscale organometallic coatings electrodeposited on laser-patterned microstructures. Surface and Coatings Technology, 2021, 427, 127817.	2,2	16
240	In situ jet electrolyte micromachining and additive manufacturing. Applied Physics Letters, 2021, 119, 171602.	1.5	8
241	Superhydrophobic materials used for anti-icing Theory, application, and development. IScience, 2021, 24, 103357.	1.9	52
242	Preparation strategy and evaluation method of durable superhydrophobic rubber composites. Advances in Colloid and Interface Science, 2022, 299, 102549.	7.0	14
243	Lotus Metasurface for Wide-Angle Intermediate-Frequency Water–Air Acoustic Transmission. ACS Applied Materials & Details &	4.0	15
244	Mimicking nature to control bio-material surface wetting and adhesion. International Materials Reviews, 2022, 67, 658-681.	9.4	50
245	Self-assembly of supraparticles on a lubricated-superamphiphobic patterned surface. Applied Surface Science, 2022, 576, 151684.	3.1	14
246	Effect of groove depth on the slurry erosion of V-shaped grooved surfaces. Wear, 2022, 488-489, 204133.	1.5	19
247	Facile fabrication of robust superhydrophobic aluminum surfaces with enhanced corrosion protection and antifouling properties. Progress in Organic Coatings, 2022, 162, 106560.	1.9	36
248	A novel Janus sponge fabricated by a green strategy for simultaneous separation of oil/water emulsions and dye contaminants. Journal of Hazardous Materials, 2022, 424, 127543.	6.5	45
249	In-situ design, characterization and use of durable superhydrophobic thin coatings applied on polymeric films. Materials Research Bulletin, 2022, 146, 111598.	2.7	4
250	Application and Prospect of Bionic Superhydrophobic Surface. Material Sciences, 2020, 10, 713-727.	0.0	0
251	Experimental Study on CaCO3 Fouling Characteristics During Falling Film Evaporation. Journal of Solar Energy Engineering, Transactions of the ASME, 2022, 144, .	1.1	5
252	Effect of Steam Flow Rate and Storage Period of Superhydrophobic-Coated Surfaces on Condensation Heat Flux and Wettability. Processes, 2021, 9, 1958.	1.3	1
253	Micropatterned Amorphous Zr-Based Alloys Coated with Silica Nanoparticles as Superhydrophobic Surfaces against Abrasion. ACS Applied Nano Materials, 2021, 4, 12300-12307.	2.4	12
254	One-step fabrication of biodegradable superhydrophobic PLA fabric for continuous oil/water separation. Applied Surface Science, 2022, 576, 151766.	3.1	28

#	Article	IF	CITATIONS
255	Research on the influence of Micro-morphology on the hydrophobicity of material surface. Colloids and Interface Science Communications, 2022, 46, 100556.	2.0	9
256	Bioinspired functional SLIPSs and wettability gradient surfaces and their synergistic cooperation and opportunities for enhanced condensate and fluid transport. Advances in Colloid and Interface Science, 2022, 299, 102564.	7.0	27
257	Ice nucleation. , 2022, , 209-248.		2
258	Preparation and anti-icing performance of cross-linked polysiloxane coatings containing silicone oil. Reactive and Functional Polymers, 2022, 170, 105124.	2.0	7
259	Superhydrophobic MXene based fabric composite for high efficiency solar desalination. Desalination, 2022, 524, 115475.	4.0	90
260	A chemically robust and self-healing superhydrophobic polybenzoxazine coating without fluorocarbon resin modification: Fabrication and failure mechanism. Progress in Organic Coatings, 2022, 163, 106630.	1.9	9
261	Bioinspired marine antifouling coatings: Status, prospects, and future. Progress in Materials Science, 2022, 124, 100889.	16.0	181
262	A facile strategy to fabricate silver-functionalized superhydrophobic cotton fabrics with long-term antibacterial properties. Cellulose, 2022, 29, 1163-1174.	2.4	5
263	Dropwise Condensation by Nanoengineered Surfaces: Design, Mechanism, and Enhancing Strategies. Advanced Materials Interfaces, 2021, 8, 2101603.	1.9	8
264	Robust and self-healing superhydrophobic aluminum surface with excellent anti-icing performance. Surfaces and Interfaces, 2022, 28, 101588.	1.5	16
265	Functional Colloidal Assemblies Based on Superwettable Substrates. Particle and Particle Systems Characterization, 2022, 39, 2100196.	1.2	3
266	Wetting and anti-fouling properties of groove-like microstructured surfaces for architectural ceramics. Ceramics International, 2022, 48, 6497-6505.	2.3	7
267	Aqueous Dropâ€onâ€Drop Impact on Superâ€Repellent Surface. Advanced Materials Interfaces, 2022, 9, .	1.9	7
268	Biomimetic Superhydrophobic Concrete with Enhanced Anticorrosive, Freeze Thaw, and Deicing Resistance. Advanced Engineering Materials, 2022, 24, 2101445.	1.6	11
269	Advanced triboelectric materials for liquid energy harvesting and emerging application. Materials Today, 2022, 52, 299-326.	8.3	75
270	Effect of Chemical Surface Texturing on the Superhydrophobic Behavior of Micro–Nano-Roughened AA6082 Surfaces. Materials, 2021, 14, 7161.	1.3	11
271	Temperature-triggered switchable superwettability on a robust paint for controllable photocatalysis. Cell Reports Physical Science, 2021, 2, 100669.	2.8	6
272	Michael Addition Reaction Assisted Derivation of Functional and Durable Superhydrophobic Interfaces. Chemistry of Materials, 2021, 33, 8941-8959.	3.2	14

#	Article	IF	CITATIONS
273	Oriented immobilization of Pep19-2.5 on antifouling brushes suppresses the development of Staphylococcus aureus biofilms. Progress in Organic Coatings, 2022, 163, 106609.	1.9	3
274	FRACTAL SURFACE RECOVERY AND SELF-HEALING CONTRIBUTED TO SUSTAINABLE SUPERHYDROPHOBICITY: A REVIEW. Fractals, 2024, 32, .	1.8	O
275	The kapok petal: superhydrophobic surface induced by microscale trichomes. Bioinspiration and Biomimetics, 2022, 17, 026007.	1.5	4
276	A Review on Applications of Superhydrophobic Materials in Civil Engineering. Advanced Engineering Materials, 2022, 24, .	1.6	15
277	Fabrication of abrasion-resistant micro-nano hierarchical structure on glass surface by a hydrothermal corrosion method. Ceramics International, 2022, 48, 8012-8024.	2.3	5
278	Allâ€organic Superhydrophobic Coating Comprising Raspberryâ€like Particles and Fluorinated Polyurethane Prepared via Thiolâ€click Reaction. Macromolecular Rapid Communications, 2021, , 2100599.	2.0	3
279	Numerical study of droplet impingement on surfaces with hierarchical structures. International Journal of Multiphase Flow, 2021, 147, 103908.	1.6	3
280	Highly durable spray-coated superhydrophobic surface: Pre-anodizing and fatty acid chain length effect. Korean Journal of Chemical Engineering, 2022, 39, 775-784.	1.2	3
281	A superhydrophobic TPU/CNTs@SiO2 coating with excellent mechanical durability and chemical stability for sustainable anti-fouling and anti-corrosion. Chemical Engineering Journal, 2022, 434, 134605.	6.6	66
282	Recent Developments in Artificial Super-Wettable Surfaces Based on Bioinspired Polymeric Materials for Biomedical Applications. Polymers, 2022, 14, 238.	2.0	14
283	Opportunities in Nano-Engineered Surface Designs for Enhanced Condensation Heat and Mass Transfer. Journal of Heat Transfer, 2022, 144, .	1.2	18
284	Stable superhydrophobic and conductive surface: Fabrication of interstitial coral-like copper nanostructure by self-assembly and spray deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 638, 128299.	2.3	8
285	Study on preparation of modified antifreezing micro-surfacing and its road performance and antifreezing effect. Construction and Building Materials, 2022, 320, 126316.	3.2	10
286	Corrosion-resistant and superhydrophobic nickel‑phosphorus/nickel/PFDTMS triple-layer coating on magnesium alloy. Surface and Coatings Technology, 2022, 432, 128054.	2.2	28
287	Modified epoxy resin with SEBS-g-MAH to fabricate crack-free and robust hydrophobic coatings on the surface of PP/SEBS matrix. Surfaces and Interfaces, 2022, 28, 101662.	1.5	3
288	A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating. Renewable Energy, 2022, 185, 1034-1061.	4.3	40
289	Fabrication of superhydrophobic surfaces with hierarchical structure and their corrosion resistance and self-cleaning properties. Surfaces and Interfaces, 2022, 28, 101608.	1.5	6
290	Realization of integrative hierarchy by in-situ solidification of  semi-cured' microcilia array in candle flame for robust and flexible superhydrophobicity. Chemical Engineering Journal, 2022, 432, 134400.	6.6	6

#	Article	IF	CITATIONS
291	A multifunction superhydrophobic surface with excellent mechanical/chemical/physical robustness. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128258.	2.3	10
292	Difference and association of antibacterial and bacterial anti-adhesive performances between smart Ag/AgCl/TiO2 composite surfaces with switchable wettability. Chemical Engineering Journal, 2022, 431, 134103.	6.6	21
293	Facile synthesis of superwetting FeNi foam for oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128152.	2.3	6
294	A novel flexible and fluoride-free superhydrophobic thermal energy storage coating for photothermal energy conversion. Composites Part B: Engineering, 2022, 232, 109588.	5.9	17
295	Robust network-like superhydrophobic magnesium hydroxide surface via cathodic electrodeposition with xanthan gum. Surfaces and Interfaces, 2022, 29, 101712.	1.5	8
296	A multifunctional and environmentally safe superhydrophobic membrane with superior oil/water separation, photocatalytic degradation and anti-biofouling performance. Journal of Colloid and Interface Science, 2022, 611, 93-104.	5.0	69
297	Semi-analytical model for the heat conduction resistance of a single spherical condensate droplet. International Journal of Heat and Mass Transfer, 2022, 185, 122419.	2.5	2
298	One-step efficient separation of heavy/light oils, dyes and water by simple filtration with a 3D architecture of functional mesh and sisal fiber felt. Separation and Purification Technology, 2022, 286, 120461.	3.9	8
299	A Universally Defined Standard to Evaluate the Mechanical Stability of Microtextured Surfaces is Necessitated. Research & Development in Material Science, 2020, 14 , .	0.1	0
300	Ambient-Illumination Facilitated Antibacterial Activity of Large-Size Silicon with Light-Trapping Micron-Pyramids and p-n Junction. SSRN Electronic Journal, 0, , .	0.4	0
301	Facial fabrication of superhydrophobic cellulose film with hierarchical morphologies. Surface and Interface Analysis, 2022, 54, 254-261.	0.8	0
302	Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chemical Reviews, 2022, 122, 7010-7060.	23.0	44
303	Bioinspired Fatty Acid Amideâ€Based Slippery Oleogels for Shearâ€Stable Lubrication. Advanced Science, 2022, 9, e2105528.	5.6	12
304	Combination of Universal Chemical Deposition and Unique Liquid Etching for the Design of Superhydrophobic Aramid Paper with Bioinspired Multiscale Hierarchical Dendritic Structure. ACS Applied Materials & Dendritic Structure. ACS Applied Materials & Dendritic Structure. ACS Applied Materials & Dendritic Structure.	4.0	12
305	High resistance to impalement of highly hydrophobic polycarbonate surfaces with nanosilica-coated rectangular pyramid arrays. Journal of Materials Science, 2022, 57, 2305-2317.	1.7	2
306	Sustaining Robust Cavities with Slippery Liquid–Liquid Interfaces. Advanced Science, 2022, 9, e2103568.	5.6	8
307	Exploiting Molecular Dynamics in Composite Coatings to Design Robust Superâ€Repellent Surfaces. Advanced Science, 2022, 9, e2104331.	5.6	9
308	Strategies applied to modify structured and smooth surfaces: A step closer to reduce bacterial adhesion and biofilm formation. Colloids and Interface Science Communications, 2022, 46, 100560.	2.0	42

#	Article	IF	CITATIONS
309	Highly Transparent and Selfâ€Healable Solar Thermal Antiâ€∤Deicing Surfaces: When Ultrathin MXene Multilayers Marry a Solid Slippery Selfâ€Cleaning Coating. Advanced Materials, 2022, 34, e2108232.	11.1	76
310	Spontaneous dewetting transitions of droplets during icing & amp; melting cycle. Nature Communications, 2022, 13, 378.	5.8	113
311	Recent advances in emerging integrated antifouling and anticorrosion coatings. Materials and Design, 2022, 213, 110307.	3.3	59
312	One-step fabrication of soft calcium superhydrophobic surfaces by a simple electrodeposition process. RSC Advances, 2021, 12, 297-308.	1.7	5
313	Superhydrophobic and mechanically robust polysiloxane composite coatings containing modified silica nanoparticles and PS-grafted halloysite nanotubes. Chinese Journal of Chemical Engineering, 2022, 52, 56-65.	1.7	4
314	Non-Fluorinated Flexible Superhydrophobic Surface with Excellent Mechanical Durability and Self-Cleaning Performance. ACS Applied Materials & Self-Cleaning Performance. ACS Applied Materials & Self-Cleaning Performance.	4.0	42
315	Fabrication of Stretchable Superamphiphobic Surfaces with Deformationâ€Induced Rearrangeable Structures. Advanced Materials, 2022, 34, e2107901.	11.1	27
316	Superhydrophobic Composite Coating with Excellent Mechanical Durability. Coatings, 2022, 12, 185.	1.2	7
317	Anti-gas hydrate surfaces: perspectives, progress and prospects. Journal of Materials Chemistry A, 2022, 10, 379-406.	5.2	14
318	Oblique pancake bouncing. Cell Reports Physical Science, 2022, 3, 100721.	2.8	12
319	Sustainable Superhydrophobic Surface with Tunable Nanoscale Hydrophilicity for Water Harvesting Applications. Angewandte Chemie, 2022, 134, .	1.6	4
320	Bioinspired antifouling Fe-based amorphous coating via killing-resisting dual surface modifications. Scientific Reports, 2022, 12, 819.	1.6	17
321	Sustainable Superhydrophobic Surface with Tunable Nanoscale Hydrophilicity for Water Harvesting Applications. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
322	Tailoring micro/nanostructured porous polytetrafluoroethylene surfaces for dual-reversible transition of wettability and transmittance. Chemical Engineering Journal, 2022, 434, 134756.	6.6	43
323	Multi-slice Ni-doped brochantite modified and polymer crosslinked cellulose paper with high wet stability and oil repellency for water disposal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 638, 128137.	2.3	4
324	Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation. Separation and Purification Technology, 2022, 286, 120504.	3.9	43
325	Super-alcohol-repellent coatings. Journal of Colloid and Interface Science, 2022, 613, 146-154.	5.0	3
326	Facile fabrication of novel superhydrophobic Al2O3/polysiloxane hybrids coatings for aluminum alloy corrosion protection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128444.	2.3	12

#	Article	IF	Citations
327	Silicone/graphene oxide co-cross-linked aerogels with wide-temperature mechanical flexibility, super-hydrophobicity and flame resistance for exceptional thermal insulation and oil/water separation. Journal of Materials Science and Technology, 2022, 114, 131-142.	5.6	89
328	The long-term degradation behavior of the durable superhydrophobic coating on Al matrix. Surface and Coatings Technology, 2022, 434, 128203.	2.2	9
329	Self-cleaning of superhydrophobic nanostructured surfaces at low humidity enhanced by vertical electric field. Nano Research, 2022, 15, 4732-4738.	5.8	11
330	Functionally Integrated Device with Robust and Durable Superhydrophobic Surface for Efficient, Continuous, and Recyclable Oil–Water Separation. Advanced Materials Interfaces, 2022, 9, .	1.9	4
331	Nature-Inspired Superwettability Achieved by Femtosecond Lasers. Ultrafast Science, 2022, 2022, .	5.8	50
332	Efficient oil–water separation coating with robust superhydrophobicity and high transparency. Scientific Reports, 2022, 12, 2187.	1.6	14
333	Temperature field simulation of chalcogenide glass ablation by nanosecond pulsed laser-based on pump–probe technology. Optics and Laser Technology, 2022, 149, 107771.	2.2	3
334	Double-Functionalization of Water Repellence and Anti-Reflectance by Multiple-Laser-Based Fabrication of Triple-Scale Hierarchical Surface Structures. SSRN Electronic Journal, 0, , .	0.4	0
335	Fabrication of highly efficient nano core–shell structure for the development of super-hydrophobic polymeric coating on mild steel. Polymers and Polymer Composites, 2022, 30, 096739112210878.	1.0	3
336	Design of robust superamphiphobic surfaces with enlarged area fractions: the considerable role of Laplace pressure in dynamics of contact lines. Physical Chemistry Chemical Physics, 2022, 24, 9308-9315.	1.3	2
337	Fabrication and Characterization of Highperformance Superhydrophobic Organosilane Coated Fly Ash Composites with Novel Micro-Nano Hierarchy Roughness. SSRN Electronic Journal, 0, , .	0.4	0
338	Emerging Separation Applications of Surface Superwettability. Nanomaterials, 2022, 12, 688.	1.9	12
339	Regulation of Droplet Rebound Behavior with Contact Time Control on a Flexible and Superhydrophobic Film. Langmuir, 2022, 38, 2942-2953.	1.6	7
340	Laserâ€Induced Graphene Superhydrophobic Surface Transition from Pinning to Rolling for Multiple Applications. Small Methods, 2022, 6, e2200096.	4.6	13
341	Synthesis of Carbonaceous Hydrophobic Layers through a Flame Deposition Process. Applied Sciences (Switzerland), 2022, 12, 2427.	1.3	1
342	Saturated Surface Charging on Micro/Nanoporous Polytetrafluoroethylene for Droplet Manipulation. ACS Applied Nano Materials, 2022, 5, 3342-3351.	2.4	7
343	Toward Surfaces with Droplet Impact Robustness and Low Contact Angle Hysteresis. Advanced Materials Interfaces, 2022, 9, .	1.9	2
344	Droplet cleaning method and water consumption analysis for superhydrophobic solar photovoltaic glass. Solar Energy, 2022, 235, 94-104.	2.9	7

#	Article	IF	Citations
345	Preparation of Stable Superhydrophobic Coatings on Complexâ€Shaped Substrates. Advanced Materials Interfaces, 2022, 9, .	1.9	11
346	Experimental verification of the potential of superhydrophobic surfaces in reducing audible noise on HVAC overhead line conductors. High Voltage, 2022, 7, 692-704.	2.7	9
347	Redirecting marine antibiofouling innovations from sustainable horizons. Trends in Ecology and Evolution, 2022, 37, 469-472.	4.2	15
348	A sprayable superhydrophobic dental protectant with photo-responsive anti-bacterial, acid-resistant, and anti-fouling functions. Nano Research, 2022, 15, 5245-5255.	5.8	12
349	Mechanically durable, super-repellent 3D printed microcell/nanoparticle surfaces. Nano Research, 2022, 15, 5678-5686.	5.8	6
350	Wetting States and Departure Diameters of Bubbles on Micro-/Nanostructured Surfaces. Langmuir, 2022, 38, 3180-3188.	1.6	12
351	Amphibious superlyophobic shape memory arrays with tunable wettability in both air and water. Advanced Composites and Hybrid Materials, 2022, 5, 788-797.	9.9	4
352	Block Copolymer Nanopatterning for Nonsemiconductor Device Applications. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 12011-12037.	4.0	36
353	A Lipid-Inspired Highly Adhesive Interface for Durable Superhydrophobicity in Wet Environments and Stable Jumping Droplet Condensation. ACS Nano, 2022, 16, 4251-4262.	7.3	21
354	Successive Rebounds of Impinging Water Droplets on Superhydrophobic Surfaces. Langmuir, 2022, 38, 3860-3867.	1.6	17
355	Phaseâ€Changeâ€Enabled, Rapid, Highâ€Resolution Direct Ink Writing of Soft Silicone. Advanced Materials, 2022, 34, e2109240.	11.1	26
356	Antibacterial Activity of Electrodeposited Copper and Zinc on Metal Injection Molded (MIM) Micropatterned WC-CO Hard Metals. Coatings, 2022, 12, 485.	1.2	1
357	Sunlight Recovering the Superhydrophobicity of a Femtosecond Laser-Structured Shape-Memory Polymer. Langmuir, 2022, 38, 4645-4656.	1.6	14
358	Nonâ€Hookean Droplet Spring for Enhancing Hydropower Harvest. Small, 2022, 18, e2200875.	5.2	7
359	Femtosecond Laser Thermal Accumulation-Triggered Micro-/Nanostructures with Patternable and Controllable Wettability Towards Liquid Manipulating. Nano-Micro Letters, 2022, 14, 97.	14.4	58
360	Rational construction of superhydrophobic PDMS/PTW@cotton fabric for efficient UV/NIR light shielding. Cellulose, 2022, 29, 4673-4685.	2.4	5
361	Durable ER@SiO2@PDMS superhydrophobic composite designed by double crosslinking strategy for efficient oil-water separation. Polymer, 2022, 245, 124722.	1.8	22
362	Double-peak characteristic of droplet impact force on superhydrophobic surfaces. Extreme Mechanics Letters, 2022, 52, 101665.	2.0	33

#	Article	IF	CITATIONS
363	Upcycling of biomass waste into photothermal superhydrophobic coating for efficient anti-icing and deicing. Materials Today Physics, 2022, 24, 100683.	2.9	23
364	Influence of structural change by heat treatment on the wettability of borosilicate glass. International Journal of Applied Glass Science, 2022, 13, 549-553.	1.0	2
365	A review on recent advances in the fabrication and evaluation of superhydrophobic concrete. Composites Part B: Engineering, 2022, 237, 109867.	5.9	56
366	Fluorine-free fabrication of robust self-cleaning and anti-corrosion superhydrophobic coating with photocatalytic function for enhanced anti-biofouling property. Surface and Coatings Technology, 2022, 438, 128406.	2,2	52
367	Bristle worm inspired ultra-durable superhydrophobic coating with repairable microstructures and anti-corrosion/scaling properties. Chemical Engineering Journal, 2022, 436, 135273.	6.6	43
368	A mechanically robust slippery coating for anti-corrosion, Photothermal deicing, and anti-sticking applications. Surface and Coatings Technology, 2022, 438, 128395.	2.2	24
369	Enhancing the cooling capacity of radiant ceiling panels by latent heat transfer of superhydrophobic surfaces. Energy and Buildings, 2022, 263, 112036.	3.1	9
370	Brass wires with different surface wettability used for in-tube solid-phase microextraction. Journal of Chromatography A, 2022, 1670, 462948.	1.8	8
371	Polypeptide coatings on biominerals with superior antimicrobial and antifouling properties inspired by human salivary proteins. Applied Materials Today, 2022, 27, 101446.	2.3	1
372	Synthesis of ultra-high strength structured material from steam-modified delignification of wood. Journal of Cleaner Production, 2022, 351, 131531.	4.6	19
373	A comparative study of mechanical and chemical durability of non-wetting superhydrophobic and lubricant-infused surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128711.	2.3	5
374	An all-in-one bio-inspired superhydrophobic coating with mechanical/chemical/physical robustness. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128803.	2.3	10
375	A universal strategy to prepare hot liquid super-repellent surfaces for anti-scalding and anti-scaling. Chemical Engineering Journal, 2022, 441, 136044.	6.6	4
376	Recent Developments of Superhydrophobic Surfaces (SHS) for Underwater Drag Reduction Opportunities and Challenges. Advanced Materials Interfaces, 2022, 9, .	1.9	23
377	Utilization of Melt Fracture Phenomenon for the Preparation of Shark Skin Structured Hydrophobic Film. Polymers, 2021, 13, 4299.	2.0	1
378	Material Strategies for Ice Accretion Prevention and Easy Removal. , 2022, 4, 246-262.		38
379	Membrane Distillation for Wastewater Treatment: A Mini Review. Water (Switzerland), 2021, 13, 3480.	1.2	15
380	Realâ€Time Monitoring and Quantification of Underwater Superhydrophobicity. Advanced Materials Interfaces, 2022, 9, .	1.9	6

#	Article	IF	CITATIONS
381	Superhydrophobic Carbon Nanotube–Metal Rubber Composites for Emulsion Separation. ACS Applied Nano Materials, 2021, 4, 13643-13654.	2.4	5
382	Recent developments and future perspectives of biorenewable nanocomposites for advanced applications. Nanotechnology Reviews, 2022, 11, 1696-1721.	2.6	11
384	Lotus-Like Water Repellency of Gas-Phase-Synthesized Graphene. , 2022, 4, 995-1002.		3
385	Asymmetric permittivity enhanced bilayer polycaprolactone nanofiber with superior inner interfacial polarization and charge retention for high-output and humidity-resistant triboelectric nanogenerators. Nano Energy, 2022, 98, 107289.	8.2	15
386	Superhydrophobic Carbon Nanotube Network Membranes for Membrane Distillation: High-Throughput Performance and Transport Mechanism. Environmental Science & Environmental Science & 2022, 56, 5775-5785.	4.6	21
387	Toward real-world applications: promoting fast and efficient photoswitching in the solid state. Journal of Materials Chemistry C, 2022, 10, 13700-13716.	2.7	16
388	A Robust and Transparent Hydrogel Coating for Sustainable Antifogging with Excellent Self-Cleaning and Self-Healing Ability. SSRN Electronic Journal, 0, , .	0.4	0
389	Unidirectional transport of both wettable and nonwettable liquids on an asymmetrically concave structured surface. Fundamental Research, 2022, , .	1.6	1
390	A robust, room-temperature curable and molecular-level superhydrophobic coating with excellent antibacterial and antifouling properties. Chemical Engineering Journal, 2022, 450, 136557.	6.6	12
391	Sustainable and Versatile Superhydrophobic Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 2022, 10, 5939-5948.	3.2	36
392	Non-toxic self-cleaning large area cement blocks fabrication by biomimicking superhydrophobic periwinkle flowers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129112.	2.3	5
393	Surface Wettability for Skinâ€Interfaced Sensors and Devices. Advanced Functional Materials, 2022, 32, .	7.8	67
394	Research on super-hydrophobic surface treatment and performance of tennis hand glue. Journal of Polymer Research, 2022, 29, 1.	1.2	0
395	High stability superhydrophobic glass-ceramic surface with micro–nano hierarchical structure. Ceramics International, 2022, 48, 23527-23535.	2.3	6
396	Capillaryâ€Bridge Mediated Manipulation of Nonmagnetic Droplets Using Low Magnetic Fields with Self‣ocking Feature. Advanced Materials Technologies, 2022, 7, .	3.0	3
397	Double-functionalization of water repellence and anti-reflectance by multiple-laser-based fabrication of triple-scale hierarchical surface structures. Materials and Design, 2022, 219, 110734.	3.3	4
398	Surface design strategies for mitigating ice and snow accretion. Matter, 2022, 5, 1423-1454.	5.0	31
399	Biodegradable, superhydrophobic walnut wood membrane for the separation of oil/water mixtures. Frontiers of Chemical Science and Engineering, 2022, 16, 1377-1386.	2.3	3

#	Article	IF	CITATIONS
400	Electroâ€ Photoâ€ Thermal Promoted Antiâ€ cing Materials: A New Strategy Combined with Passive Antiâ€ cing and Active Deâ€ cing. Advanced Materials Interfaces, 2022, 9, .	1.9	38
401	A soft gripper with contamination resistance and large friction coefficient. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	1
402	Bioinspired robust top-perforated micro-conical array of TC4 surface fabricated by pulsed laser ablation for enhanced anti-icing property. Journal of Materials Science, 2022, 57, 8890-8903.	1.7	9
403	Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chemical Reviews, 2023, 123, 2276-2310.	23.0	32
404	Micro–Nano-Nanowire Triple Structure-Held PDMS Superhydrophobic Surfaces for Robust Ultra-Long-Term Icephobic Performance. ACS Applied Materials & 2022, 14, 23973-23982.	4.0	39
405	Durable Liquid- and Solid-Repellent Elastomeric Coatings Infused with Partially Crosslinked Lubricants. ACS Applied Materials & Interfaces, 2022, 14, 22466-22475.	4.0	7
406	Electrowetting-on-dielectric powered by triboelectric nanogenerator. Nano Energy, 2022, 98, 107310.	8.2	8
407	Droplet motion on superhydrophobic/superhydrophilic wedge-shaped patterned surfaces with different micro-morphologies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 128999.	2.3	27
408	Bioinspired superhydrophobic surface via one-step electrodeposition and its corrosion inhibition for Mg-Li alloy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129145.	2.3	24
409	Slippery surface with honeycomb structures for enhancing chemical durability of aluminum. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129187.	2.3	10
410	One-pot Fabrication of Superhydrophilic/Underwater Superoleophobic Membrane Based on Mussel-Inspired Chemistry for High-Efficiency Oil-in-Water Separation. Nano, 0, , .	0.5	0
411	Nanosecond laser fabrication of superhydrophobic copper and anti-frost surface on copper. Surface and Coatings Technology, 2022, 441, 128514.	2.2	18
412	Adhesion behaviors of water droplets on bioinspired superhydrophobic surfaces. Bioinspiration and Biomimetics, 2022, 17, 041003.	1.5	6
413	Bioinspired Superspreading Surface: From Essential Mechanism to Application. Accounts of Chemical Research, 2022, 55, 1467-1479.	7.6	52
414	AlPO ₄ film with rose surface structure: Oneâ€step coating process, superhydrophilic and rapid superâ€spreading. Nano Select, 0, , .	1.9	0
415	Liquidâ€Pressureâ€Guided Superhydrophobic Surfaces with Adaptive Adhesion and Stability. Advanced Materials, 2022, 34, .	11.1	20
416	Facile Fabrication of Robust and Photo-Thermal Super-Hydrophobic Coating with Efficient Ice Removal and Long-Term Corrosion Protection. SSRN Electronic Journal, 0, , .	0.4	0
417	In-Situ Fabrication of Superhydrophobic Surface on Copper with Excellent Anti-Icing and Anti-Corrosion Properties. SSRN Electronic Journal, 0, , .	0.4	O

#	Article	IF	CITATIONS
418	Fabrication of robust ceramic based superhydrophobic coating on aluminum substrate via plasma electrolytic oxidation and chemical vapor deposition methods. Journal of Materials Processing Technology, 2022, 306, 117641.	3.1	29
419	Printable and Versatile Superhydrophobic Paper via Scalable Nonsolvent Armor Strategy. ACS Nano, 2022, 16, 9442-9451.	7.3	6
420	Selfâ€Lubricative Organic–Inorganic Hybrid Coating with Antiâ€Icing and Antiâ€Waxing Performances by Grafting Liquidâ€Like Polydimethylsiloxane. Advanced Materials Interfaces, 2022, 9, .	1.9	14
421	Dynamic behavior and maximum width of impact droplets on single-pillar superhydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129355.	2.3	11
422	A mussel-inspired self-repairing superhydrophobic coating with good anti-corrosion and photothermal properties. Carbon, 2022, 197, 27-39.	5.4	34
423	Bioinspired Robust Water Repellency in High Humidity by Micro-meter-Scaled Conical Fibers: Toward a Long-Time Underwater Aerobic Reaction. Journal of the American Chemical Society, 2022, 144, 10950-10957.	6.6	23
424	Recent advances in chemical durability and mechanical stability of superhydrophobic materials: Multi-strategy design and strengthening. Journal of Materials Science and Technology, 2022, 129, 40-69.	5.6	55
425	Facile, fluorine-free fabrication of bacterial antifouling titanium alloy Ti6Al4V surfaces for surgically implanted devices. Surface and Coatings Technology, 2022, 443, 128580.	2.2	5
426	Mechanically robust superamphiphobic ceramic coatings with releasable nanoparticle-capsules. Chemical Engineering Journal, 2022, 446, 137336.	6.6	14
427	Fabrication of Robust, Anti-reflective, Transparent Superhydrophobic Coatings with a Micropatterned Multilayer Structure. Langmuir, 2022, 38, 7129-7136.	1.6	19
428	3D-printed bionic superhydrophobic surface with petal-like microstructures for droplet manipulation, oil-water separation, and drag reduction. Materials and Design, 2022, 219, 110765.	3.3	24
429	The synergetic effects of laser texturing and super-hydrophobic coatings on improving wear properties of steel. Tribology International, 2022, 173, 107657.	3.0	20
430	Efficient Oil-Water Separation by a Robust Superhydrophobic Coating Prepared Directly from Commercial Lacquer Using Silanized Multi-Walled Carbon Nanotubes as Filler. SSRN Electronic Journal, 0, , .	0.4	0
431	Role of chemistry in bio-inspired liquid wettability. Chemical Society Reviews, 2022, 51, 5452-5497.	18.7	53
432	Template assisted preparation of silicone (polydimethylsiloxane) elastomers and their self-cleaning application. RSC Advances, 2022, 12, 16835-16842.	1.7	0
433	Waterborne superamphiphobic coatings with network structure for enhancing mechanical durability. RSC Advances, 2022, 12, 16510-16516.	1.7	1
434	Facile fabrication of hierarchical textures for substrate-independent and durable superhydrophobic surfaces. Nanoscale, 2022, 14, 9392-9400.	2.8	112
435	A bio-inspired solid–liquid compositing fluid-infused surface for prohibiting abiotic and microbiologically induced corrosion. Journal of Materials Science, 2022, 57, 10100-10117.	1.7	3

#	Article	IF	CITATIONS
436	Fabrication of Transparent Silica/PEG Smooth Thin Coatings on Polymeric Films for Antifogging Applications. ACS Omega, 2022, 7, 20505-20514.	1.6	4
437	Durable superhydrophobic cotton fabric from cardanol/POSS-based polybenzoxazine for high-efficiency oil/water separation. Cellulose, 2022, 29, 6425-6440.	2.4	7
438	Nanostructured Superhydrophobic Titanium-Based Materials: A Novel Preparation Pathway to Attain Superhydrophobicity on TC4 Alloy. Nanomaterials, 2022, 12, 2086.	1.9	11
439	Robust Super-Amphiphobic Titanium Surface for Liquid/Liquid Mini Separations. Coatings, 2022, 12, 805.	1.2	O
440	Enhancing the abrasion resistance of hydrophobic coatings by flower bush-like micro rough structure of alumina. Ceramics International, 2022, 48, 27429-27438.	2.3	3
441	Rational Design of Durable Anti-fouling Coatings with High Transparency, Hardness, and Flexibility. ACS Applied Materials & Diterfaces, 2022, 14, 29156-29166.	4.0	19
442	Nontoxic Liquid-Infused Slippery Coating Prepared on Steel Substrates Inhibits Corrosion and Biofouling Adhesion. ACS Applied Materials & Early; Interfaces, 2022, 14, 29386-29397.	4.0	16
443	A Skinâ€Inspired Design Integrating Mechano–Chemical–Thermal Robustness into Superhydrophobic Coatings. Advanced Materials, 2022, 34, .	11.1	40
444	Conformal fabrication of thick superhydrophobic coatings via reduction of sorption barrier against multiple damages. Surface and Coatings Technology, 2022, 444, 128658.	2.2	1
445	Investigation on fabrication of durable superhydrophobic surface based on multi-adhesive strategy. Applied Surface Science, 2022, 600, 154049.	3.1	10
446	Sprayable superhydrophobic coating with high mechanical/chemical robustness and anti-corrosion. Surface and Coatings Technology, 2022, 443, 128609.	2.2	21
447	A robust superhydrophobic anti-icing/de-icing composite coating with electrothermal and auxiliary photothermal performances. Composites Science and Technology, 2022, 227, 109578.	3.8	48
448	Simultaneous realization of superhydrophobicity and multiple droplet bouncing through laser ablation, organic adsorption and fluorination treatment. Materials Today Physics, 2022, 26, 100739.	2.9	4
449	On the conversion of point-to-linear hierarchical micro/nano-structures on the glassy carbon surface by nanosecond pulsed laser irradiation. Applied Surface Science, 2022, 599, 153978.	3.1	0
450	A fully waterborne coating system based on thiol-ene click reaction for robust and self-healing superhydrophobic surfaces. Chemical Engineering Journal, 2022, 447, 137499.	6.6	16
451	Improving Surface Performance of Composite Insulators by Multifunctional Nano-Coating. SSRN Electronic Journal, 0, , .	0.4	0
452	An Eco-Friendly and Durable Anti-Fogging Coating Based on SulfobetaineÂAnd Silicone. SSRN Electronic Journal, 0, , .	0.4	0
453	An autocatalytic CO hydrogenation approach for the fabrication of stable Fe-based superhydrophobic surfaces. Chemical Communications, 2022, 58, 8706-8709.	2.2	2

#	Article	IF	CITATIONS
454	Quantifying Wetting Dynamics with Triboelectrification. Advanced Science, 2022, 9, .	5.6	6
455	Slippery Mechanism for Enhancing Separation and Anti-fouling of the Superhydrophobic Membrane in a Water-in-Oil Emulsion: Evaluating Water Adhesion of the Membrane Surface. Langmuir, 2022, 38, 8312-8323.	1.6	8
456	Nanoengineering of Metallic Glasses. Advanced Engineering Materials, 0, , 2200659.	1.6	2
457	Large-area, daily, on-site-applicable antiadhesion coatings formed via ambient self-crosslinking. Chemical Engineering Journal, 2022, 450, 138156.	6.6	2
458	Hydrophobic or superhydrophobic modification of cement-based materials: A systematic review. Composites Part B: Engineering, 2022, 243, 110104.	5.9	41
459	Rapid forming of nanowire array on PVDF polymer surfaces at room temperature by ultrasonic loading. Advanced Engineering Materials, 0, , .	1.6	0
460	Recent Advances in Multifunctional Mechanical–Chemical Superhydrophobic Materials. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	8
461	A robust and transparent hydrogel coating for sustainable antifogging with excellent self-cleaning and self-healing ability. Chemical Engineering Journal, 2023, 451, 137879.	6.6	27
462	Ultrascalable Surface Structuring Strategy of Metal Additively Manufactured Materials for Enhanced Condensation. Advanced Science, 2022, 9, .	5.6	8
463	A Reactive Superhydrophobic Platform for Living Photolithography. Advanced Materials, 2022, 34, .	11.1	12
464	Organic–Inorganic Double-Gel System Thermally Insulating and Hydrophobic Polyimide Aerogel. Polymers, 2022, 14, 2818.	2.0	3
465	Bio-Inspired Hierarchical Micro-/Nanostructures for Anti-Icing Solely Fabricated by Metal-Assisted Chemical Etching. Micromachines, 2022, 13, 1077.	1.4	4
466	Smart fire-warning materials and sensors: Design principle, performances, and applications. Materials Science and Engineering Reports, 2022, 150, 100690.	14.8	91
467	Functional and versatile colorful superhydrophobic nanocellulose-based membrane with high durability, high-efficiency oil/water separation and oil spill cleanup. Surface and Coatings Technology, 2022, 445, 128714.	2.2	36
468	Anti-icing strategies are on the way. Innovation(China), 2022, 3, 100278.	5.2	3
469	General mechanism and mitigation for strong adhesion of frozen oil sands on solid substrates. Fuel, 2022, 325, 124797.	3.4	2
470	Slippery concrete for sanitation. Progress in Organic Coatings, 2022, 171, 107022.	1.9	8
471	Robust highly conductive fabric with fluorine-free healable superhydrophobicity for the efficient deicing of outdoor's equipment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129639.	2.3	4

#	Article	IF	CITATIONS
472	Fabrication of transparent wear-resistant superhydrophobic SiO2 film via phase separation and chemical vapor deposition methods. Ceramics International, 2022, 48, 32143-32151.	2.3	24
473	Robust Superhydrophobic Surfaces via the Sand-In Method. ACS Applied Materials & Samp; Interfaces, 2022, 14, 35053-35063.	4.0	10
474	Transparent and robust omniphobic surface using colloidal polymer layers. Journal of the Iranian Chemical Society, 0, , .	1,2	0
475	Robust Superhydrophobic Coating with Mullite Fiber Framework. Coatings, 2022, 12, 1037.	1.2	0
476	Inorganicâ€Nanoparticleâ€Based Superâ€Hydrophobic Colored Coatings for Sustainable Buildingâ€Integrated Photovoltaics. Advanced Materials Technologies, 0, , 2200358.	3.0	3
477	Liquid-Repellent Surfaces. Langmuir, 2022, 38, 9073-9084.	1.6	16
478	A two-dimensional thermodynamic model based on Helmholtz free energy for wettability regulation of textured metal surfaces. Applied Surface Science, 2022, 602, 154364.	3.1	4
479	Recent progress of bioinspired interfacial materials towards efficient and sustainable scale resistance. Giant, 2022, 11, 100116.	2.5	2
480	A Robust Superhydrophobic Smart Coating with Reversible Thermochromic and Photochromic Property. Journal of Bionic Engineering, 2022, 19, 1589-1600.	2.7	1
481	Superhydrophobic ultra-high molecular weight polyethylene nanocomposite foams fabricated by supercritical CO2 foaming for selective oil absorption. Applied Surface Science, 2022, 602, 154344.	3.1	5
482	The wetting transition of low surface tension droplet on the special-shaped microstructure surface. Colloids and Interface Science Communications, 2022, 50, 100649.	2.0	6
483	A Multifunctional Heterogeneous Superwettable Coating for Water Collection, Oil/Water Separation and Oil Absorption. SSRN Electronic Journal, 0, , .	0.4	0
484	Bioâ€inspired spontaneous splitting of underwater bubbles along a superhydrophobic open pathway without perturbation. , 2022, 1, 65-75.		14
485	Fabrication and characterization of high performance superhydrophobic organosilane-coated fly ash composites with novel micro–nano-hierarchy roughness. Journal of Materials Science, 2022, 57, 13914-13927.	1.7	9
486	Hydrophobic Antiwetting of Aquatic UAVs: Static and Dynamic Experiment and Simulation. Applied Sciences (Switzerland), 2022, 12, 7626.	1.3	3
487	A Scalable Hazeâ€Free Antireflective Hierarchical Surface with Selfâ€Cleaning Capability. Advanced Science, 2022, 9, .	5.6	19
488	A practical strategy for fabrication of transparent, robust and environmentally friendly superhydrophobic surfaces for toys and games. SN Applied Sciences, 2022, 4, .	1.5	1
489	Topographical Design and Thermal-Induced Organization of Interfacial Water Structure to Regulate the Wetting State of Surfaces. Jacs Au, 2022, 2, 1989-2000.	3.6	4

#	Article	IF	CITATIONS
491	Oneâ€Step Synthesis of Dynamically Shaped Stiff Nanorods Using Soft Silicone Materials to Control Water Repulsion and Collection. Small, 2022, 18, .	5.2	2
492	Scalable Robust Superamphiphobic Coatings Enabled by Selfâ€Similar Structure, Protective Microâ€Skeleton, and Adhesive for Practical Antiâ€Icing of Highâ€Voltage Transmission Tower. Advanced Functional Materials, 2022, 32, .	7.8	48
493	Microskeleton Magnetic Nanofiller Composite with Highly Reliable Superhydrophobic Protection for Long-Lived Electromagnetic Interface Shielding. ACS Applied Materials & Samp; Interfaces, 2022, 14, 37039-37050.	4.0	19
494	Ultrafast Self-Healing Superhydrophobic Surface for Underwater Drag Reduction. Langmuir, 2022, 38, 10875-10885.	1.6	17
495	Particulate–Droplet Coalescence and Self-Transport on Superhydrophobic Surfaces. ACS Nano, 2022, 16, 12910-12921.	7.3	31
496	Highly durable superhydrophobic surfaces based on a protective frame and crosslinked PDMS-candle soot coatings. Materials Research Express, 0, , .	0.8	1
497	Preparation of superhydrophobic coatings with alkyltrichlorosilanes for <i>Pinus kesiya</i> wood. Journal of Wood Chemistry and Technology, 2022, 42, 409-418.	0.9	2
498	Rigidâ€"flexible hybrid surfaces for water-repelling and abrasion-resisting. Friction, 2023, 11, 635-646.	3.4	1
499	Velocity-Dependent Contact Angle and Energy Dissipations of Dynamic Wetting Nanodroplets on Nanopillared Surfaces. Langmuir, 2022, 38, 9822-9832.	1.6	3
500	Nanoarray-Embedded Hierarchical Surfaces for Highly Durable Dropwise Condensation. Research, 2022, 2022, .	2.8	3
501	D-Cysteine Functionalized Superhydrophobic Nanocomposite Coating with Multiple-Action Antibacterial Property and Enhanced Mechanical Durability. Coatings, 2022, 12, 1158.	1.2	3
502	Superhydrophobic polyaniline/TiO2 composite coating with enhanced anticorrosion function. Reactive and Functional Polymers, 2022, 179, 105381.	2.0	22
503	Superhydrophobic Shape-Stable Phase-Change Materials Based on Artificially Cultured Diatom Frustule-Derived Porous Ceramics. ACS Sustainable Chemistry and Engineering, 2022, 10, 11977-11989.	3.2	4
504	One-Step Preparation of a Superhydrophobic Surface by Electric Discharge Machining with a Carbon Fiber Brush Electrode. Langmuir, 2022, 38, 9853-9862.	1.6	4
505	Transparent Composite Films Showing Durable Antifogging and Repeatable Self-Healing Properties Based on an Integral Blend Method. Langmuir, 2022, 38, 9874-9883.	1.6	5
506	Manufacture of porous metallic glass using dissolvable templates. Science China Materials, 2022, 65, 2833-2841.	3.5	6
507	Superhydrophobic ultra-high molecular weight polyethylene porous material with self-cleaning ability, long-term stability, and high durability. Surface and Coatings Technology, 2022, 446, 128792.	2.2	5
508	Optimization of coating parameters for fabrication of robust superhydrophobic (SHP) aluminum and evaluation of corrosion performance in aggressive medium. Progress in Organic Coatings, 2022, 172, 107076.	1.9	15

#	Article	IF	CITATIONS
509	An extreme environment-tolerant anti-icing coating. Chemical Engineering Science, 2022, 262, 118010.	1.9	6
510	Anti-icing and anti-frost properties of structured superhydrophobic coatings based on aluminum honeycombs. Materials Chemistry and Physics, 2022, 291, 126683.	2.0	11
511	Fabrication of robust superhydrophobic magnetic multifunctional coatings and liquid marbles. Journal of Colloid and Interface Science, 2022, 628, 619-630.	5.0	7
512	Facile synthesis of mechanically flexible and super-hydrophobic silicone aerogels with tunable pore structure for efficient oil-water separation. Materials Today Chemistry, 2022, 26, 101068.	1.7	13
513	Improving surface performance of silicone rubber for composite insulators by multifunctional Nano-coating. Chemical Engineering Journal, 2023, 451, 138679.	6.6	16
514	Facile fabrication of robust and photo-thermal super-hydrophobic coating with efficient ice removal and long-term corrosion protection. Chemical Engineering Journal, 2022, 450, 138429.	6.6	23
515	Superhydrophobic Materials: Versatility and Translational Applications. Advanced Materials Interfaces, 2022, 9, .	1.9	17
516	Condensation droplet sieve. Nature Communications, 2022, 13, .	5.8	34
517	Fabrication of a superhydrophobic micron-nanoscale hierarchical structured surface for delayed icing and reduced frosting. Surfaces and Interfaces, 2022, 34, 102353.	1.5	5
518	Efficient fabrication of ternary coupling biomimetic superhydrophobic surfaces with superior performance of anti-wetting and self-cleaning by a simple two-step method. Materials and Design, 2022, 223, 111145.	3.3	9
519	One-step solvent-free fabrication of superhydrophobic cellulose powder with reversible wettability. Progress in Organic Coatings, 2022, 173, 107170.	1.9	4
520	Multifunctional electro-thermal superhydrophobic shape memory film with in situ reversible wettability and anti-icing/deicing properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 129960.	2.3	17
521	Study on anisotropic contact angle of rectangular convex structure on fluorine rubber surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655, 130047.	2.3	3
522	Facile preparation of pliable superamphiphobic papers with high and durable liquid repellency for anti-corrosion and open surface microfluidics. Applied Surface Science, 2022, 606, 154845.	3.1	7
523	Introduction to the biomimetic design of interfacial materials for water overflow control. Chemical Communications, 2022, 58, 9051-9059.	2.2	3
524	A Super-Robust Armoured Superhydrophobic Surface with Excellent Anti-Icing Ability. SSRN Electronic Journal, 0, , .	0.4	0
525	A Durable Superhydrophobic Composite Coating Based on Inherent Nano/Micro-Integrated Materials. SSRN Electronic Journal, 0, , .	0.4	0
526	A superhydrophobic surface with a synergistic abrasion–corrosion resistance effect prepared by femtosecond laser treatment on an FeMnSiCrNiNb shape memory alloy coating. New Journal of Chemistry, 2022, 46, 19188-19197.	1.4	17

#	Article	IF	CITATIONS
527	Robust and durable liquid-repellent surfaces. Chemical Society Reviews, 2022, 51, 8476-8583.	18.7	105
528	Theoretical Calculation and Analysis of Microdroplet Evaporation on Micropipette Force Sensor. Lecture Notes in Computer Science, 2022, , 617-625.	1.0	0
529	Scalable-Manufactured Anti-Corrosion and Wear-Resistant Superhydrophobic Surfaces. SSRN Electronic Journal, 0, , .	0.4	0
530	A fluorine-free and nanoparticle-free superhydrophobic coating: A mechanism and self-cleaning application investigation. Applied Surface Science, 2023, 608, 155103.	3.1	16
531	Flexible biomimetic materials with excellent photothermal performance and superhydrophobicity. Journal of Colloid and Interface Science, 2023, 629, 581-590.	5.0	15
532	Customizing multiple superlyophobic surfaces in water-oil-air systems: From controllable preparation to smart switching via manipulating heterogeneous surface chemistry. Applied Surface Science, 2023, 607, 155028.	3.1	4
533	Mechanostructures: Rational mechanical design, fabrication, performance evaluation, and industrial application of advanced structures. Progress in Materials Science, 2023, 131, 101021.	16.0	30
534	A Fully Transparent, Stretchable Multiâ€Layered Water Barrier Thin Film for the Passivation of Underwater Device Applications. Advanced Materials Interfaces, 2022, 9, .	1.9	4
535	Oneâ€Step Spraying Fabrication of Superomniphobic Coatings with Antiâ€Flame, Antiâ€Corrosive, and Mechanochemically Durable Ability. Advanced Materials Interfaces, 0, , 2201321.	1.9	1
536	Whether and When Superhydrophobic/Superoleophobic Surfaces Are Fingerprint Repellent. Research, 2022, 2022, .	2.8	2
537	Biomimetic Super "Silicate―Phobicity and Superhydrophobicity of Ceramic Material. Advanced Materials Interfaces, 2022, 9, .	1.9	2
538	Superhydrophobic Coating Deposited on Foamed Concrete with Superâ€robust Mechanical and Selfâ€repairing Properties. Physica Status Solidi (A) Applications and Materials Science, 0, , .	0.8	0
539	Ideas Inspired by Nature to Combat Marine Biofouling and Corrosion. Coatings, 2022, 12, 1434.	1.2	5
540	A review on control of droplet motion based on wettability modulation: principles, design strategies, recent progress, and applications. Science and Technology of Advanced Materials, 2022, 23, 473-497.	2.8	10
541	Effect of Fine Structures Formed by Nanoimprinting Using Anodic Porous Alumina Mold on Surface Hydrophobicity. ECS Journal of Solid State Science and Technology, 2022, 11, 103004.	0.9	4
542	Facile dynamic current deposition of high tensile gradient Cu foil with (110) preferred orientation. Science China Materials, 2023, 66, 597-602.	3.5	1
543	Preparation and Evaluation of PDMS/Carbon Soot Particles Superhydrophobic Biomimetic Composite Coating with Self-Cleaning and Durability. Biomimetics, 2022, 7, 132.	1.5	5
544	Manipulation of droplets and bubbles for thermal applications. , 2022, 1, 80-91.		26

#	Article	IF	Citations
545	Bio-based and nature inspired solutions: A step toward carbon-neutral economy. , 2022, 2, 221-242.		9
547	Prediction of the Lotus Effect on Solid Surfaces by Machine Learning. Small, 2022, 18, .	5. 2	7
548	Utilizing Cell Culture Assisted Anodization to Fabricate Aluminium Oxide with a Gradient Microstep and Nanopore Structure. ACS Omega, 2022, 7, 35668-35676.	1.6	1
549	Large-scale synthesis of macroscopic layered inorganic-organic hybrid nanobelt aerogel monoliths with multifunctionality. Cell Reports Physical Science, 2022, , 101079.	2.8	0
550	Special Superwetting Materials from Bioinspired to Intelligent Surface for Onâ€Demand Oil/Water Separation: A Comprehensive Review. Small, 2022, 18, .	5. 2	44
551	Preparation of super-hydrophobic surface with micro-nano layered structure on 316 stainless steel by one-step wet chemical method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655, 130291.	2.3	10
552	In-situ fabrication of superhydrophobic surface on copper with excellent anti-icing and anti-corrosion properties. Materials Today Communications, 2022, 33, 104633.	0.9	6
553	Bioinspired Stable Single-Layer Janus Fabric with Directional Water/Moisture Transport Property for Integrated Personal Cooling Management. Advanced Fiber Materials, 2023, 5, 138-153.	7.9	29
554	Armored Nanocones Engraved by Selective Laser Doping Enhanced Plasma Etching for Robust Supertransmissivity. ACS Applied Materials & Supertransmissivity.	4.0	3
555	Formation, evolution and characterization of nanoporous structures on the Ti6Al4V surface induced by nanosecond pulse laser irradiation. Materials and Design, 2022, 223, 111243.	3.3	3
556	A substrate-independent transparent UV-curable coating with excellent anti-smudge performance. Progress in Organic Coatings, 2022, 173, 107185.	1.9	2
557	Fiber-based photothermal, UV-resistant, and self-cleaning coatings fabricated by silicon grafted copolymers of chitosan derivatives and gallic acid. International Journal of Biological Macromolecules, 2022, 222, 1560-1577.	3.6	4
558	Degradation mechanisms of corrosion and biofouling resistance of superhydrophobic coatings in harsh marine conditions. Progress in Organic Coatings, 2022, 173, 107222.	1.9	4
559	A facile strategy to simultaneously increase surface roughness and reduce surface energy for the preparation of water-repellent, recyclable and self-cleaning expanded perlite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655, 130253.	2.3	3
560	Superhydrophobic microstructures for better anti-icing performances: open-cell or closed-cell?. Materials Horizons, 2023, 10, 209-220.	6.4	20
561	Superhydrophobic PDMS/SiNPs/T-ZnOw coating with reduced adhesion of Streptococcus mutans for dental caries prevention. Ceramics International, 2023, 49, 6228-6237.	2.3	1
562	Mechanically Robust and Flame-Retardant Superhydrophobic Textiles with Anti-Biofouling Performance. Langmuir, 2022, 38, 12961-12967.	1.6	4
563	Dual-Layered SiO ₂ Nanoparticles and Epoxy Polymers for Self-Cleaning Coatings on Ceramic Glaze. ACS Applied Nano Materials, 2022, 5, 15934-15941.	2.4	4

#	Article	IF	CITATIONS
564	Superhydrophobic Biological Fluidâ€Repellent Surfaces: Mechanisms and Applications. Small Methods, 2022, 6, .	4.6	13
565	Surface Modification, Topographic Design and Applications of Superhydrophobic Systems. Chemistry - A European Journal, 2022, 28, .	1.7	4
566	Ultrastable Super-Hydrophobic Surface with an Ordered Scaly Structure for Decompression and Guiding Liquid Manipulation. ACS Nano, 2022, 16, 16843-16852.	7.3	19
567	Preparation of Janus Droplets and Hydrogels with Controllable Morphologies by an Aqueous Two-Phase System on the Superamphiphobic Surface. ACS Applied Materials & Diterfaces, 2022, 14, 50434-50443.	4.0	3
568	In Situ Shale Wettability Regulation Using Sophisticated Nanoemulsion to Maintain Wellbore Stability in Deep Well Drilling. Langmuir, 2022, 38, 12539-12550.	1.6	2
569	Synthesis and characterization of superhydrophobic magnesium oxysulfate whiskers. Particuology, 2023, 78, 111-121.	2.0	2
570	3D Printed Fractal Metamaterials with Tunable Mechanical Properties and Shape Reconfiguration. Advanced Functional Materials, 2023, 33, .	7.8	16
571	Durable and robust superhydrophobic fluororubber surface fabricated by template method with exceptional thermostability and mechanical stability. Separation and Purification Technology, 2023, 306, 122423.	3.9	11
572	Functional Microtextured Superhydrophobic Surface with Excellent Anti-Wear Resistance and Friction Reduction Properties. Langmuir, 2022, 38, 13166-13176.	1.6	10
573	Experimental investigation on hydrophobic/superhydrophobic micro patterns: New manufacture method and performance. Materials Today Communications, 2022, 33, 104666.	0.9	1
574	Construction of mechanically robust superamphiphobic surfaces on fiber using large particles. Frontiers of Materials Science, 2022, 16, .	1.1	1
575	Facile Preparation of Robust Superamphiphobic Coatings on Complex Substrates via Nonsolvent-Induced Phase Separation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 49047-49058.	4.0	18
576	Engineering Gas–Solid–Liquid Triple-Phase Interfaces for Electrochemical Energy Conversion Reactions. Electrochemical Energy Reviews, 2022, 5, .	13.1	20
577	Laminar drag reduction in a closed channel using bioinspired textured surfaces. Surface Innovations, 0, , 1-13.	1.4	1
578	Recent progress in optimal design of superhydrophobic surfaces. APL Materials, 2022, 10, .	2.2	3
579	Construction and anti-corrosion behavior study of silanol-modified Ni-WS2 superhydrophobic composite coating. Surface and Coatings Technology, 2022, 450, 129008.	2.2	10
580	Robust superhydrophobic composite fabricated by a dual-sized particle design. Composites Science and Technology, 2023, 231, 109785.	3.8	14
581	Constructing Janus Microsphere Membranes for Particulate Matter Filtration, Directional Water Vapor Transfer, and Highâ€Efficiency Broadâ€Spectrum Sterilization. Small, 2022, 18, .	5.2	5

#	Article	IF	CITATIONS
582	Scalable-Manufactured Anticorrosion and Wear-Resistant Superhydrophobic Surfaces. , 2023, 1, 519-529.		5
583	Durable superhydrophobic engineered mesh with self-healing and anti-corrosive capabilities for efficient oil/water separation. Journal of Environmental Chemical Engineering, 2022, 10, 108823.	3.3	4
584	Asymmetric freezing behaviors of inclined impact of water droplets on cold hydrophobic surfaces. International Communications in Heat and Mass Transfer, 2022, 139, 106485.	2.9	4
585	Hierachical micro/nano structures fabrication by a novel tri-axial piezoelectric servo system. Materials and Design, 2022, 224, 111330.	3.3	6
586	Enhancing the lifespan and durability of superamphiphobic surfaces for potential industrial applications: A review. Advances in Colloid and Interface Science, 2022, 310, 102797.	7.0	18
587	Superhydrophobic double layered MgAl-LDH/epoxy composite coatings for enhanced anticorrosion performance of magnesium alloys. Progress in Organic Coatings, 2023, 174, 107300.	1.9	9
588	Construction of a fluorine-free anti-smudge waterborne polyurethane coating. Progress in Organic Coatings, 2023, 174, 107254.	1.9	2
589	Efficient oil-water separation by a robust superhydrophobic coating prepared directly from commercial lacquer using silanized multi-walled carbon nanotubes as filler. Applied Surface Science, 2023, 609, 155208.	3.1	10
590	Research progress on flow and heat transfer characteristics of fluids in metal foams. Renewable and Sustainable Energy Reviews, 2023, 171, 113010.	8.2	12
591	Robust interface-free superhydrophobic polymer-based composites with recoverable and anti-icing properties. Progress in Organic Coatings, 2023, 174, 107224.	1.9	4
592	A multifunctional heterogeneous superwettable coating for water collection, oil/water separation and oil absorption. Journal of Hazardous Materials, 2023, 443, 130166.	6.5	16
593	Photothermal and Concus Finn capillary assisted superhydrophobic fibrous network enabling instant viscous oil transport for crude oil cleanup. Journal of Hazardous Materials, 2023, 443, 130193.	6.5	14
594	Wetting thresholds for long-lasting superwettability: From intrinsic wetting boundary to critical roughness value. Chemical Engineering Journal, 2023, 454, 140058.	6.6	2
595	Mass-transfer-enhanced hydrophobic Bi microsheets for highly efficient electroreduction of CO2 to pure formate in a wide potential window. Applied Catalysis B: Environmental, 2023, 322, 122127.	10.8	14
596	Experimental assessment of Soil/metal interface adhesion behaviours of EPB shield Machines. Tunnelling and Underground Space Technology, 2023, 131, 104835.	3.0	4
597	Removal of dyes, oils, alcohols, heavy metals and microplastics from water with superhydrophobic materials. Chemosphere, 2023, 311, 137148.	4.2	13
598	Hierarchical composite structure to simultaneously realize superior superhydrophobicity and anti-reflection. Applied Surface Science, 2023, 611, 155652.	3.1	3
599	Superhydrophobic graphene nanowalls for electromagnetic interference shielding and infrared photodetection via a two-step transfer method. Chemical Engineering Journal, 2023, 454, 140159.	6.6	7

#	Article	IF	CITATIONS
600	Achieving hierarchical structure with superhydrophobicity and enhanced anti-corrosion via electrochemical etching and chemical vapor deposition. Applied Surface Science, 2023, 610, 155362.	3.1	17
601	Fabrication of a Robust Superhydrophobic Ti6Al4V Surface. , 2022, , .		0
602	Experimental Study on Wear-resistant Superhydrophobic Surface of 5083 Aluminum Magnesium Alloy Prepared by Mask Electrolysis. , 2022, , .		0
603	Robust air cavity generation on sacrificial microstructures for sustainable underwater drag reduction. Applied Physics Letters, 2022, 121, .	1.5	3
604	Advances in the Fabrication and Characterization of Superhydrophobic Surfaces Inspired by the Lotus Leaf. Biomimetics, 2022, 7, 196.	1.5	12
605	Biomimetic slippery liquid-infused porous surface on the basis of hierarchical ZIF-67@Cu dendrite: Preparation and corrosion inhibition. Journal of Industrial and Engineering Chemistry, 2023, 118, 298-308.	2.9	7
606	Multifunctional superhydrophobic copper mesh for efficient oil/water separation and fog collection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130603.	2.3	8
607	Magnetic field–driven particle assembly and jamming for bistable memory and response plasticity. Science Advances, 2022, 8, .	4.7	5
608	Highly reliable transparent superhydrophobic composite by organosilane/denture base resin-modified alkylated silica nanoparticles against contaminants. Surfaces and Interfaces, 2022, 35, 102460.	1.5	3
609	Fabrication and application of superhydrophobic nonwovens: a review. Materials Today Chemistry, 2022, 26, 101227.	1.7	7
610	Hairy superhydrophobic surfaces with excellent mechanical robustness, underwater stability and drag-reduction property. Progress in Organic Coatings, 2023, 174, 107323.	1.9	3
611	Antibacterial features of material surface: strong enough to serve as antibiotics?. Journal of Materials Chemistry B, 2023, 11, 280-302.	2.9	4
612	Durability and corrosion behaviors of superhydrophobic amorphous coatings: a contrastive investigation. RSC Advances, 2022, 12, 32813-32824.	1.7	4
613	Self-healing system of superhydrophobic surfaces inspired from and beyond nature. Nanoscale, 2023, 15, 1493-1512.	2.8	14
614	Hydrogen bubble-templated electrodeposition of superhydrophobic Zn–Ni films. New Journal of Chemistry, 0, , .	1.4	0
615	Fully transparent and superhydrophobic electrodes enabled by soft interfaces. Surfaces and Interfaces, 2023, 36, 102576.	1.5	2
616	Facile fabrication of robust epoxy resin monolithic superhydrophobic materials with excellent mechanical-chemical stability, biocompatibility and photothermal conversion capacity. Surfaces and Interfaces, 2023, 36, 102556.	1.5	0
617	High-hydrophobic ZIF-67@PLA honeycomb aerogel for efficient oil–water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130768.	2.3	10

#	Article	IF	CITATIONS
618	Designing a superhydrophobic quality and strengthening mechanism for foam concrete. Construction and Building Materials, 2023, 365, 130073.	3.2	7
619	One-step spraying achieved superhydrophobic fluoroSiO2@epoxy coating with corrosion-wear resistance and anti-wetting stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130702.	2.3	13
620	Design and synthesis of robust superhydrophobic coating based on epoxy resin and polydimethylsiloxane interpenetrated polymer network. Progress in Organic Coatings, 2023, 175, 107336.	1.9	11
621	Comparative of diatom frustules, diatomite, and silica particles for constructing self-healing superhydrophobic materials with capacity for thermal energy storage. Applied Energy, 2023, 332, 120482.	5.1	5
622	Robust superhydrophobic Ni-Co electrodeposited carbon felt for hot water repellency and controllable oil/water separation. Journal of Environmental Chemical Engineering, 2023, 11, 109102.	3.3	5
623	Nanoscale patterning of metallic surfaces with laser patterned tools using a nanoimprinting approach. Applied Surface Science, 2023, 613, 155786.	3.1	4
624	Robust and durable transparent superhydrophobic F-TNTs/TiN coating fabricated by structure tuning on surface of TiN hard coating. Applied Surface Science, 2023, 613, 155967.	3.1	9
625	Tailoring micro/nano-materials with special wettability for biomedical devices. , 2023, 2, 15-30.		10
626	Gradient Micropillar Array Inspired by Tree Frog for Robust Adhesion on Dry and Wet Surfaces. Biomimetics, 2022, 7, 209.	1.5	6
627	Drop impact dynamics on solid surfaces. Applied Physics Letters, 2022, 121, .	1.5	27
628	Superhydrophobic Poplar Scrimber Via In Situ Synthesis of Cu ₇ Cl ₄ (OH) ₁₀ ·H ₂ O Heterostructure Inspired by Pine Cone with Superultraviolet Resistance. ACS Sustainable Chemistry and Engineering, 2022, 10, 16169-16181.	3.2	6
629	Effects of surface air injection on the air stability of superhydrophobic surface under partial replenishment of plastron. Physics of Fluids, 2022, 34, .	1.6	5
630	Durable Nanofluidsâ€Infused Hierarchical Surfaces with High Corrosion and Abrasion Resistance. Advanced Engineering Materials, 2023, 25, .	1.6	1
631	Sonochemical Routes to Superhydrophobic Soft Matter Coatings: Comparing Silica and Copper Oxide Coatings on Polyester Fabric. Industrial & Engineering Chemistry Research, 2022, 61, 18729-18743.	1.8	1
632	Corrosion in Mg-alloy biomedical implants- the strategies to reduce the impact of the corrosion inflammatory reaction and microbial activity. Journal of Magnesium and Alloys, 2022, 10, 3306-3326.	5 . 5	20
633	Transparent sunlight-activated antifogging metamaterials. Nature Nanotechnology, 2023, 18, 137-144.	15.6	26
634	Revealing the nano-grained microstructure and mechanical properties of electrochemical boronized AlCoCrFeNi2.1 eutectic high entropy alloy. Journal of Alloys and Compounds, 2023, 938, 168515.	2.8	3
635	Facile Preparation of a Robust Superhydrophobic SiO ₂ /Epoxy Composite Coating with Favorable Corrosion and Scale Inhibition Performance. Advanced Engineering Materials, 2023, 25, .	1.6	1

#	Article	IF	CITATIONS
637	Freezing as a Path to Build Microâ€Nanostructured Icephobic Coatings. Advanced Functional Materials, 2023, 33, .	7.8	10
638	Engineered Switchableâ€Wettability Surfaces for Multiâ€Path Directional Transportation of Droplets and Subaqueous Bubbles. Advanced Materials, 2023, 35, .	11.1	8
639	Droplet Size-Assisted Polysiloxane Architecting. Langmuir, 2023, 39, 377-388.	1.6	0
640	Biomimetic Superhydrophobic Materials Construct from Binary Structure: A Review on Design, Properties, and Applications. Advanced Materials Interfaces, 2023, 10, .	1.9	5
641	Nature-inspired reentrant surfaces. Progress in Materials Science, 2023, 133, 101064.	16.0	17
642	Selective Swelling of Polystyrene (PS)/Poly(dimethylsiloxane) (PDMS) Block Copolymers in Alkanes. Macromolecules, 2023, 56, 215-225.	2.2	3
643	Ti ₃ C ₂ T _x MXeneâ€Based Superhydrophobic Broadband Terahertz Absorber with Large Poreâ€Size Foam Architecture. Advanced Materials Interfaces, 2023, 10, .	1.9	4
644	Self-Healing Superwetting Surfaces, Their Fabrications, and Properties. Chemical Reviews, 2023, 123, 663-700.	23.0	18
645	Sandstone protection by using nanocomposite coating of silica. Applied Surface Science, 2023, 615, 156193.	3.1	6
646	Electroplated wear and corrosion–resistant Co-Mo/CeO2 composite coatings for reducing mold fouling application. Journal of Solid State Electrochemistry, 2023, 27, 679-694.	1.2	1
647	Robust superhydrophobic and flame-retardant coatings based on hierarchical epoxy textured with gas barrier structure; efficient oil-water separation devices under extreme conditions. Polymer Testing, 2023, 118, 107904.	2.3	4
648	A critical review on robust self-cleaning properties of lotus leaf. Soft Matter, 2023, 19, 1058-1075.	1.2	7
649	Stable, amphiphobic, and electrically conductive coating on flexible polyimide substrate. Journal of Industrial and Engineering Chemistry, 2023, 120, 429-438.	2.9	2
650	Superâ€Slippery Poly(Dimethylsiloxane) Brush Surfaces: From Fabrication to Practical Application. ChemPlusChem, 2023, 88, .	1.3	7
651	Magnetically controlled super-wetting surface switching between ultra-low and ultra-high droplet adhesion. Chemical Engineering Journal, 2023, 456, 141093.	6.6	3
652	3D Microprinting of Superâ€Repellent Microstructures: Recent Developments, Challenges, and Opportunities. Advanced Functional Materials, 2023, 33, .	7.8	7
653	A review of droplet bouncing behaviors on superhydrophobic surfaces: Theory, methods, and applications. Physics of Fluids, 2023, 35, .	1.6	21
654	Interfacial Roughness Enhanced Gel/Elastomer Interfacial Bonding Enables Robust and Stretchable Triboelectric Nanogenerator for Reliable Energy Harvesting. Small, 2023, 19, .	5.2	5

#	Article	IF	CITATIONS
655	Horizontallyâ€Oriented Growth of Organic Crystalline Nanowires on Polymer Films for Inâ€6itu Flexible Photodetectors with Visâ€NIR Response and High Bending Stability. Advanced Functional Materials, 2023, 33, .	7.8	10
656	Rotating Surfaces Promote the Shedding of Droplets. Research, 2023, 6, .	2.8	6
657	Laser direct writing of rose petal biomimetic micro-bulge structure to realize superhydrophobicity and large slip length. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 664, 130972.	2.3	8
658	A robust membrane with dual superlyophobicity for solving water-caused lubricant deterioration and water contamination. Friction, 0, , .	3.4	0
659	A pine needle-like superhydrophobic Zn/ZnO coating with excellent mechanochemical robustness and corrosion resistance. Materials and Design, 2023, 225, 111583.	3.3	11
660	Omniphobic liquid-like surfaces. Nature Reviews Chemistry, 2023, 7, 123-137.	13.8	55
661	Wetting Behavior and Functionality Restoration of Cold-Sprayed Aluminum-Quasicrystalline Composite Coatings. Journal of Thermal Spray Technology, 0, , .	1.6	2
662	Micro-structured P–N junction surfaces: large-scale preparation, antifouling properties, and a synergistic antibacterial mechanism. Journal of Materials Chemistry B, 2023, 11, 1312-1319.	2.9	4
663	Design and fabrication of functional hydrogels with specific surface wettability. Colloids and Interface Science Communications, 2023, 52, 100697.	2.0	7
664	Large-scale fabrication of decoupling coatings with promising robustness and superhydrophobicity for antifouling, drag reduction, and organic photodegradation. Friction, 2023, 11, 716-736.	3.4	12
665	Tailorable and scalable production of eco-friendly lignin micro-nanospheres and their application in functional superhydrophobic coating. Chemical Engineering Journal, 2023, 457, 141309.	6.6	12
666	Laser shock peening enables 3D gradient metal structures: A case study on manufacturing self-armored hydrophobic surfaces. International Journal of Machine Tools and Manufacture, 2023, 185, 103993.	6.2	13
667	A universal replica molding strategy based on natural bio-templates for fabrication of robust superhydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 660, 130879.	2.3	7
668	Bi2Se3 nanosheets-based photothermal composites with hydrophobic surface for synergistic anti-/de-icing. Composites Science and Technology, 2023, 233, 109916.	3.8	6
669	Multistage laser shock improves surface structural properties of aluminum alloy. International Journal of Mechanical Sciences, 2023, 245, 108101.	3.6	6
670	Facile fabrication of F-POSS star polymer coated superhydrophobic cotton fabric by successive metal-free PET-RAFT and thiol–ene click chemistry for efficient oil/water separation. Journal of Polymer Research, 2023, 30, .	1.2	6
671	Superhydrophobic Mechano-Bactericidal Surface with Photodynamic Antibacterial Capability. ACS Applied Materials & Distribution (2013), 15, 723-735.	4.0	20
672	Stretchable superhydrophobic fluororubber fabricated by transferring mesh microstructures. Soft Matter, 2023, 19, 1560-1568.	1.2	7

#	Article	IF	CITATIONS
673	Passive Anti-Icing Performances of the Same Superhydrophobic Surfaces under Static Freezing, Dynamic Supercooled-Droplet Impinging, and Icing Wind Tunnel Tests. ACS Applied Materials & Samp; Interfaces, 2023, 15, 6013-6024.	4.0	24
674	Advances in Bioinspired Superhydrophobic Surfaces Made from Silicones: Fabrication and Application. Polymers, 2023, 15, 543.	2.0	14
675	Largeâ€Scale, Abrasionâ€Resistant, and Solventâ€Free Superhydrophobic Objects Fabricated by a Selective Laser Sintering 3D Printing Strategy. Advanced Science, 2023, 10, .	5.6	30
676	Water Spiderâ€Inspired Nanofiber Coating with Sustainable Scale Repellency via Airâ€Replenishing Strategy. Advanced Materials, 2023, 35, .	11.1	3
677	Polyhedral oligomeric silsesquioxaneâ€based functional coatings: A review. Canadian Journal of Chemical Engineering, 2023, 101, 4979-4991.	0.9	3
678	Preparation and Properties of Hydrophobic and Oleophobic Coating for Inkjet Printing. Coatings, 2023, 13, 286.	1.2	0
679	Developing Superior Hydrophobic 3D Hierarchical Electrocatalysts Embedding Abundant Catalytic Species for High Power Density Zn–Air Battery. Small, 2023, 19, .	5.2	5
680	Underwater adhesion and curing of superhydrophobic coatings for facile antifouling applications in seawater. Composites Communications, 2023, 38, 101511.	3.3	6
681	Crack-Initiated Durable Low-Adhesion Trilayer Icephobic Surfaces with Microcone-Array Anchored Porous Sponges and Polydimethylsiloxane Cover. ACS Applied Materials & Samp; Interfaces, 2023, 15, 6025-6034.	4.0	9
682	Daphnia-inspired dynamic slippery chemically bonded liquid surface for the active prevention of covalently attached foulant adhesion. Journal of Materials Chemistry B, O, , .	2.9	0
683	Recent development and emerging applications of robust biomimetic superhydrophobic wood. Journal of Materials Chemistry A, 2023, 11, 6772-6795.	5.2	18
684	Investigation of Electrochemical Assisted Deposition of Sol-Gel Silica Films for Long-Lasting Superhydrophobicity. Materials, 2023, 16, 1417.	1.3	3
685	Growing nearly vertically aligned ZnO nanorod arrays on porous \hat{l}_{\pm} -Al2O3 membranes to enhance the separation of MTBE from aqueous solution. Separation and Purification Technology, 2023, 311, 123239.	3.9	2
686	Preparation of Multiscale Slippery Liquidâ€Infused Porous Surface Based on Ti6Al4V Alloy with Selfâ€Cleaning, Stability, and Selfâ€Healing Properties. Advanced Engineering Materials, 2023, 25, .	1.6	1
687	Substrate-independent, robust and functional PVDF-g-IL coating based on tunable surface free energy. Applied Surface Science, 2023, 618, 156613.	3.1	5
688	Development of a versatile coating based on hydrolysis-assisted self-bonding and structure evolution of aluminum nitride nanopowder: Application toward repairing severe damages on superhydrophobic surfaces. Surface and Coatings Technology, 2023, 460, 129431.	2.2	3
689	Superhydrophobic coatings from macromolecular fluorinated silica nanoparticles through START polymerization and "grafting onto―strategy. European Polymer Journal, 2023, 190, 112021.	2.6	6
690	Scalable fabrication of superhydrophobic armor microstructure arrays with enhanced tribocorrosion performance via maskless electrochemical machining. Surface and Coatings Technology, 2023, 461, 129427.	2.2	8

#	Article	IF	CITATIONS
691	Long-term cooling effects and cooling energy conservation of a subambient daytime radiative cooling coating relative to a cool-white coating over distributed telecommunication base stations. Solar Energy, 2023, 256, 127-139.	2.9	3
692	Position sensing of jetting droplets enabled by triboelectric nanogenerators. Nano Energy, 2023, 109, 108289.	8.2	9
693	Fabrication of robust and room-temperature curable superhydrophobic composite coatings with breathable and anti-icing performance. Chemical Engineering Journal, 2023, 463, 142444.	6.6	21
694	Sustainable corrosion-resistant superhydrophobic composite coating with strengthened robustness. Journal of Industrial and Engineering Chemistry, 2023, 121, 215-227.	2.9	13
695	Achieving robust and enhanced pool boiling heat transfer using micro–nano multiscale structures. Applied Thermal Engineering, 2023, 227, 120441.	3.0	10
696	Biochar based self cleaning superhydrophobic surface with aqueous DESphobic properties. Journal of Molecular Liquids, 2023, 380, 121736.	2.3	2
697	Water strider inspired floating solar evaporator with high salt-resistant ability for desalination of contaminated seawater. Journal of Environmental Chemical Engineering, 2023, 11, 109800.	3.3	5
698	Multi-weather full-body triboelectric garments for personalized moisture management and water energy acquisition. Nano Energy, 2023, 110, 108359.	8.2	5
699	Amidation reaction to derive waterborne, tolerant, and optically transparent solid slippery and superhydrophobic coatings. Chemical Engineering Journal, 2023, 465, 142776.	6.6	2
700	A review of self-cleaning photocatalytic surface: Effect of surface characteristics on photocatalytic activity for NO. Environmental Pollution, 2023, 327, 121580.	3.7	6
701	Fabrication of a durable brass mesh capable of rapid transformation between two modes of liquid transportation. Applied Surface Science, 2023, 621, 156880.	3.1	3
702	Fabrication of polydopamine-boehmite modified superhydrophobic coating for self-cleaning, oil-water separation, oil sorption and flame retardancy. Surfaces and Interfaces, 2023, 38, 102775.	1.5	1
703	Multifunctional composite coatings with hydrophobic, UV-resistant, anti-oxidative, and photothermal performance for healthcare. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 667, 131367.	2.3	3
704	Stone rubbing–inspired biomimetic multi–scale surface with highly robust superhydrophobicity. Surfaces and Interfaces, 2023, 38, 102806.	1.5	0
705	Experimental investigation of surface wettability induced runback water flow and heat transfer behavior. International Journal of Heat and Mass Transfer, 2023, 209, 124164.	2.5	1
706	Robust metallic-based superhydrophobic composite with rigid micro-skeleton structure for anti-icing/frosting. Journal of Materials Processing Technology, 2023, 316, 117916.	3.1	8
707	Robust superhydrophobic materials with outstanding durability fabricated by epoxy adhesive-assisted facile spray method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 664, 131109.	2.3	9
708	Stable superhydrophobic coating on Zr-based bulk metallic glass exhibiting excellent antibacterial property and cytocompatibility. Colloids and Surfaces B: Biointerfaces, 2023, 225, 113256.	2.5	6

#	Article	IF	CITATIONS
709	Processing and properties of a graphene-reinforced superhydrophobic siloxane. Materials and Design, 2023, 229, 111856.	3.3	4
710	Transparent and superhydrophobic room temperature vulcanized (RTV) polysiloxane coatings loaded with different hydrophobic silica nanoparticles with self-cleaning characteristics. Surface and Coatings Technology, 2023, 462, 129479.	2.2	8
711	Environmentally adapted slippery-superhydrophobic switchable interfaces for anti-icing. Applied Surface Science, 2023, 626, 157201.	3.1	3
712	Bio-inspired mechanically robust superhydrophobic polypropylene surfaces embedded with silicon carbide whiskers for enhancing bactericidal performance. Journal of Materials Research and Technology, 2023, 23, 998-1012.	2.6	3
713	Di-particles-derived slippery lubricant-infused porous surface with broad anti-adhesion performance. Applied Surface Science, 2023, 616, 156462.	3.1	3
714	An eco-friendly and durable anti-fogging coating based on sulfobetaines and silicones. Progress in Organic Coatings, 2023, 177, 107413.	1.9	1
715	Robust and UV-resistant multifunctional surface for self-cleaning, navigated oil absorption and oil/water separation. Surfaces and Interfaces, 2023, 37, 102670.	1.5	0
716	Self-healing and wear resistance stable superhydrophobic composite coating with electrothermal and photothermal effects for anti-icing. Progress in Organic Coatings, 2023, 177, 107415.	1.9	10
717	The Perspectives of Hydrophobic Coatings for Mitigating Icing on Atmospheric Structures. Coatings, 2023, 13, 326.	1.2	0
718	Design of fluorine-free waterborne fabric coating with robust hydrophobicity, water-resistant and breathability. Separation and Purification Technology, 2023, 311, 123308.	3.9	11
719	In-situ deposition of oxidized porous metal nanoparticles on the surface of picosecond laser-induced micro/nano structures: A new kind of meta-surface equipped with both super-hydrophobicity and anti-reflectivity. Chemical Engineering Journal, 2023, 460, 141582.	6.6	8
720	Amphiphilic graphene oxide membranes for oil–water separation. Science Bulletin, 2023, 68, 373-375.	4.3	5
721	Self-Healing, Robust, Liquid-Repellent Coatings Exploiting the Donor–Acceptor Self-Assembly. ACS Applied Materials & Donor—Acceptor Self-Assembly. ACS Applied Materials & Donor–Acceptor Self-Assembly. ACS Applied Materials & Donor—Acceptor Donor†& Don	4.0	4
722	All-perfluoropolymer, nonlinear stability-assisted monolithic surface combines topology-specific superwettability with ultradurability. Innovation(China), 2023, 4, 100389.	5.2	2
723	Suppression of wetting transition on evaporative fakir droplets by using slippery superhydrophobic surfaces with low depinning force. Scientific Reports, 2023, 13, .	1.6	1
724	Designing Robust Superhydrophobic Materials for Inhibiting Nucleation of Clathrate Hydrates by Imitating Glass Sponges. ACS Central Science, 2023, 9, 318-327.	5. 3	4
725	Hierarchically Nanostructured Janus Membranes Toward Sustainable and Efficient Solarâ€toâ€Thermal Management. Advanced Functional Materials, 2023, 33, .	7.8	12
726	In-situ design of hierarchical durable silica-based coatings on polypropylene films with superhydrophilic, superhydrophobic and self-cleaning properties. Results in Surfaces and Interfaces, 2023, 10, 100101.	1.0	0

#	Article	IF	CITATIONS
727	Wetting Effect on Patterned Substrates. Advanced Materials, 2023, 35, .	11.1	20
728	Anti-Wetting Performance of an Electrospun PVDF/PVP Membrane Modified by Solvothermal Treatment in Membrane Distillation. Membranes, 2023, 13, 225.	1.4	0
729	Recent Advances on the Abrasion Resistance Enhancements and Applications of Superhydrophobic Materials. Chemical Record, 2023, 23, .	2.9	3
730	Molecular-Level Hybridized Hydrophobic Geopolymer Ceramics for Corrosion Protection. Chemistry of Materials, 2023, 35, 1735-1744.	3.2	2
731	Spontaneous, scalable, and self-similar superhydrophobic coatings for all-weather deicing. Nano Research, 2023, 16, 7171-7179.	5.8	10
732	Cellulose membranes via a top-down approach from loofah for oil/water separation. Biomass Conversion and Biorefinery, 0, , .	2.9	0
733	Universal assembly of ordered Ag nanowire micromesh conductors on arbitrary substrates by manipulating the contact angle. Journal of Materials Chemistry A, 2023, 11, 6440-6451.	5.2	2
734	Magnetic Fieldâ€Assisted Laser Shock Peening of Ti ₆ Al ₄ V Alloy. Advanced Engineering Materials, 0, , 2201843.	1.6	1
735	Self-Healing of Biocompatible Superhydrophobic Coatings: The Interplay of the Size and Loading of Particles. Langmuir, 2023, 39, 3194-3203.	1.6	9
736	A durable and environmental friendly superhydrophobic coatings with <scp>selfâ€cleaning</scp> , <scp>antiâ€fouling</scp> performance for liquidâ€food residue reduction. Polymer Engineering and Science, 2023, 63, 1274-1288.	1.5	2
737	Design and fabrication ofÂsuperhydrophobicÂcellulose nanocrystal films by combination of self-assembly and organocatalysis. Scientific Reports, 2023, 13, .	1.6	3
738	Through-drop imaging of moving contact lines and contact areas on opaque water-repellent surfaces. Soft Matter, 2023, 19, 2350-2359.	1.2	5
739	Pediatric pulmonary valve replacements: Clinical challenges and emerging technologies. Bioengineering and Translational Medicine, 2023, 8, .	3.9	4
740	Facile and Economical Fabrication of Superhydrophobic Flexible Resistive Strain Sensors for Human Motion Detection. Nanomanufacturing and Metrology, 2023, 6, .	1.5	1
741	Robust Solidâ€Liquid Triboelectric Nanogenerators: Mechanisms, Strategies and Applications. Advanced Functional Materials, 2023, 33, .	7.8	13
742	Liquid–Solid Impact Mechanism, Liquid Impingement Erosion, and Erosion-Resistant Surface Engineering: A Review. Coatings, 2023, 13, 577.	1.2	5
743	Recent advances in preparation of metallic superhydrophobic surface by chemical etching and its applications. Chinese Journal of Chemical Engineering, 2023, 61, 221-236.	1.7	3
744	Highly transparent, hydrophobic, and durable anisotropic cellulose films as electronic screen protectors. Carbohydrate Polymers, 2023, 311, 120735.	5.1	5

#	Article	IF	CITATIONS
745	Noncontact Charge Shielding Knife for Liquid Microfluidics. Journal of the American Chemical Society, 2023, 145, 6420-6427.	6.6	8
746	Bio-inspired and metal-derived superwetting surfaces: Function, stability and applications. Advances in Colloid and Interface Science, 2023, 314, 102879.	7.0	12
747	Interfacial friction at action: Interactions, regulation, and applications. Friction, 2023, 11, 2153-2180.	3.4	8
748	Achieving Extreme Pressure Resistance to Liquids on a Superâ€Omniphobic Surface with Armored Reentrants. Small Methods, 0, , .	4.6	4
749	Aerodynamic Super-Repellent Surfaces. Research, 2023, 6, .	2.8	2
750	The Criterion of the Cassie–Baxter and Wenzel Wetting Modes and the Effect of Elastic Substrates on It. Advanced Materials Interfaces, 2023, 10, .	1.9	7
751	Inorganic–Organic Silica/PDMS Nanocomposite Antiadhesive Coating with Ultrahigh Hardness and Thermal Stability. ACS Applied Materials & Samp; Interfaces, 2023, 15, 17245-17255.	4.0	3
752	Preparation of Wear-Resistant Superhydrophobic Coatings Based on a Discrete-Phase Adhesive. Coatings, 2023, 13, 682.	1.2	0
753	Dynamic Metal–Phenolic Coordination Complexes for Versatile Surface Nanopatterning. Journal of the American Chemical Society, 2023, 145, 7974-7982.	6.6	7
754	Fabrication of decoupling coatings with robustness and superhydrophobicity for anti-icing and anti-corrosion applications. Journal of Materials Science, 2023, 58, 6038-6054.	1.7	3
755	Simulation and experiment of WEDM double-scale array microstructure surface wetting performance. International Journal of Advanced Manufacturing Technology, 0, , .	1.5	0
756	A photothermal self-healing superhydrophobic coating with anti-frosting and anti-corrosion properties. Progress in Organic Coatings, 2023, 180, 107569.	1.9	5
757	Fishing Netâ€Inspired Mutiscale Ionic Organohydrogels with Outstanding Mechanical Robustness for Flexible Electronic Devices. Advanced Functional Materials, 2023, 33, .	7.8	13
758	Droplet interface in additive manufacturing: From process to application. , 2023, 2, .		4
759	Design of Fluoroâ€Free Surfaces Superâ€Repellent to Lowâ€Surfaceâ€Tension Liquids. Advanced Materials, 2023, 35, .	11.1	2
760	Construction of Robust Hierarchical Micro-nanostructure by Laser Irradiation and Hydrothermal Treatment on Titanium Alloy for Superhydrophobic and Slippery Surfaces. Journal of Materials Engineering and Performance, 2024, 33, 1885-1897.	1.2	1
761	Ficus religiosa-inspired microstructure-controlled low surface energy coatings with long-term antifouling effect. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 670, 131482.	2.3	2
762	Robust Janus Superwetting Textile with Large Pore Sizes for Oil-in-Water Emulsion Separation. Langmuir, 2023, 39, 6249-6257.	1.6	1

#	Article	IF	CITATIONS
763	Sustainable and Practical Superhydrophobic Surfaces via Mechanochemical Grafting. Advanced Materials Interfaces, 2023, 10 , .	1.9	5
764	Phase Separation Microparticles as a Three-Dimensional Cell Culture System To Promote Stem Cell Expansion. Biomacromolecules, 2023, 24, 2184-2195.	2.6	1
765	Reactive Superhydrophobic Surfaces for Interlayer Electrical Connectivity in Threeâ€dimensional Electronics. Angewandte Chemie - International Edition, 0, , .	7.2	0
766	Porous bulk superhydrophobic nanocomposites for extreme environments. Matter, 2023, 6, 1992-2004.	5.0	8
767	Reactive Superhydrophobic Surfaces for Interlayer Electrical Connectivity in Threeâ€dimensional Electronics. Angewandte Chemie, 0, , .	1.6	0
768	Inhibition of Defect-Induced Ice Nucleation, Propagation, and Adhesion by Bioinspired Self-Healing Anti-Icing Coatings. Research, 2023, 6, .	2.8	5
769	Dropwise Condensate Comb for Enhanced Heat Transfer. ACS Applied Materials & Dropwise Condensate Comb for Enhanced Heat Transfer. ACS Applied Materials & Dropwise Condensate Comb for Enhanced Heat Transfer. ACS Applied Materials & Dropwise Condensate Comb for Enhanced Heat Transfer. ACS Applied Materials & Dropwise Condensate Comb for Enhanced Heat Transfer. ACS Applied Materials & Dropwise Condensate Comb for Enhanced Heat Transfer. ACS Applied Materials & Dropwise Condensate Comb for Enhanced Heat Transfer. ACS Applied Materials & Dropwise Condensate Comb for Enhanced Heat Transfer. ACS Applied Materials & Dropwise Condensate Comb for Enhanced Heat Transfer. ACS Applied Materials & Dropwise Condensate Comb for Enhanced Heat Transfer. ACS Applied Materials & Dropwise Condensate Comb for Enhanced Heat Transfer. ACS Applied Materials & Dropwise Condensate Comb for Enhanced Heat Transfer. ACS Applied Materials & Dropwise Condensate Condensate Comb for Enhanced Heat Transfer. ACS Applied Materials & Dropwise Condensate Co	4.0	5
770	Durable superhydrophobic coatings based on CNTs-SiO2gel hybrids for anti-corrosion and thermal insulation. Progress in Organic Coatings, 2023, 181, 107602.	1.9	6
800	Recent advances in prevailing antifogging surfaces: structures, materials, durability, and beyond. Nanoscale, 0, , .	2.8	1
857	Liquid-like polymer lubricating surfaces: Mechanism and applications. Nano Research, 2024, 17, 476-491.	5.8	2
860	A review of self-cleaning coatings for solar photovoltaic systems: theory, materials, preparation, and applications. Environmental Science and Pollution Research, 2023, 30, 91591-91616.	2.7	1
899	Ultrathin hierarchical hydrogel–carbon nanocomposite for highly stretchable fast-response water-proof wearable humidity sensors. Materials Horizons, 2023, 10, 5263-5276.	6.4	2
900	Biomimetic surface engineering for sustainable water harvesting systems., 2023, 1, 587-601.		9
904	A review on 3D printing of bioinspired hydrophobic materials: oil-water separation, water harvesting, and diverse applications. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	4
918	Reactive oxygen nanobiocatalysts: activity-mechanism disclosures, catalytic center evolutions, and changing states. Chemical Society Reviews, 2023, 52, 6838-6881.	18.7	3
921	Anti-corrosion and Anti-fouling Superhydrophobic Coatings. , 2023, , 335-355.		0
926	Superhydrophobic Coatings on Textiles and Papers. , 2023, , 307-334.		0
946	Superhydrophobic Coatings on Metallic Substrates II: Aluminium and Titanium Based., 2023, , 212-237.		0

#	Article	IF	Citations
947	Superhydrophobic Coatings on Metallic Substrates I: Magnesium Based. , 2023, , 179-211.		0
1006	Transparent anti-fingerprint glass surfaces: comprehensive insights into theory, design, and prospects. Nanoscale, 2024, 16, 2695-2712.	2.8	0
1026	ENHANCING WATER COLLECTION WITH DROPWISE CONDENSATION IN AIR GAP MEMBRANE DISTILLATION. , 2023, , .		0
1041	Superhydrophobic Surface-Assisted Preparation of Microspheres and Supraparticles and Their Applications. Nano-Micro Letters, 2024, 16 , .	14.4	0
1056	Polystyrene microspheres with ultra-rough surfaces engineered using RIE technique and applied using SERS. Chemical Communications, 2024, 60, 2493-2496.	2.2	0
1077	Perspective Chapter: Challenges in the Durability of Superhydrophobic Coatings Pertinent to Unmanned Aerial Vehicle (UAV) Icing Mitigation., 0, , .		0
1101	Effect of Surface Structures on Droplet Impact Over Flat and Cylindrical Surfaces. Lecture Notes in Mechanical Engineering, 2024, , 173-185.	0.3	0