A novel super high back pressure cascade heating scher units

Energy 201, 117469 DOI: 10.1016/j.energy.2020.117469

Citation Report

#	Article	IF	CITATIONS
1	A novel cascade heating system for waste heat recovery in the combined heat and power plant integrating with the steam jet pump. Applied Energy, 2020, 278, 115690.	10.1	27
2	Energy and Exergy Evaluations of a Combined Heat and Power System with a High Back-Pressure Turbine under Full Operating Conditions. Energies, 2020, 13, 4484.	3.1	8
3	Theoretical Design and Analysis of the Waste Heat Recovery System of Turbine Exhaust Steam Using an Absorption Heat Pump for Heating Supply. Energies, 2020, 13, 6256.	3.1	10
4	Thermodynamic, operational, and techno-economic analysis of the cascade heating system with a double-unit. Energy Conversion and Management, 2020, 226, 113558.	9.2	11
5	Optimal equipment arrangement of a total site for cogeneration of thermal and electrical energy by using exergoeconomic approach. Energy Reports, 2021, 7, 5330-5343.	5.1	4
6	The Comprehensive Upgrading of Large Steam Turbine Considering Actual Thermal and Electrical Load Demand. , 2021, , .		0
7	Combined heat and power plants integrated with steam turbine renovations: Optimal dispatch for maximizing the consumption of renewable energy. Energy Conversion and Management, 2022, 258, 115561.	9.2	16
8	Modeling and Off-Design Performance Analysis of a Screw Expander-Based Steam Pressure Energy Recovery System in a Combined Heat and Power Unit. ACS Omega, 2021, 6, 35442-35456.	3.5	1
9	Optimal dispatch of the cascade heating CHP plants integrating with the high back-pressure technology. Case Studies in Thermal Engineering, 2022, 38, 102330.	5.7	7
10	Peak regulation performance study of the gas turbine combined cycle based combined heating and power system with gas turbine interstage extraction gas method. Energy Conversion and Management, 2022, 269, 116103.	9.2	12
11	Peak regulation performance study of GTCC based CHP system with compressor inlet air heating method. Energy, 2023, 262, 125366.	8.8	3
12	Performance assessment of the novel coal-fired combined heat and power plant integrating with flexibility renovations. Energy, 2023, 263, 125886.	8.8	11
13	Optimal Multi-Mode Flexibility Operation of CHP Units with Electrode Type Electric Boilers: A Case Study. Energies, 2022, 15, 9337.	3.1	0
14	Comparative designs and optimizations of the steam ejector for a CHP system. Applied Thermal Engineering, 2023, 226, 120345.	6.0	5
15	Carbon reduction and flexibility enhancement of the CHP-based cascade heating system with integrated electric heat pump. Energy Conversion and Management, 2023, 280, 116801.	9.2	8
16	Optimization of combined heat and power cogeneration via modification of low-pressure regenerative system with absorption heat exchanger. Applied Thermal Engineering, 2023, 229, 120585.	6.0	0
17	Comparative study of multiple-mode collaborative operation strategy and traditional heat and power decoupling technologies for cogeneration system based on GTCC. Case Studies in Thermal Engineering, 2023, 49, 103213.	5.7	1
18	Matching Characteristics of CTHP Circulation Systems. Journal of Physics: Conference Series, 2023, 2610, 012040.	0.4	0