MnO_x Nanospikes as Nanoadjuvants and In Enhanced Antitumor Immunity and Antimetastatic Effe

Angewandte Chemie - International Edition 59, 16381-16384 DOI: 10.1002/anie.202005111

Citation Report

#	Article	IF	CITATIONS
1	<i>In situ</i> fabrication of MS@MnO ₂ hybrid as nanozymes for enhancing ROS-mediated breast cancer therapy. Nanoscale, 2020, 12, 22317-22329.	2.8	61
2	<i>In situ</i> tuning proangiogenic factor-mediated immunotolerance synergizes the tumoricidal immunity via a hypoxia-triggerable liposomal bio-nanoreactor. Theranostics, 2020, 10, 11998-12010.	4.6	19
3	Artificial Metalloprotein Nanoanalogues: In Situ Catalytic Production of Oxygen to Enhance Photoimmunotherapeutic Inhibition of Primary and Abscopal Tumor Growth. Small, 2020, 16, e2004345.	5.2	17
4	Covalent Organic Framework-Based Nanocomposite for Synergetic Photo-, Chemodynamic-, and Immunotherapies. ACS Applied Materials & Interfaces, 2020, 12, 43456-43465.	4.0	49
5	Na ₂ S ₂ O ₈ Nanoparticles Trigger Antitumor Immunotherapy through Reactive Oxygen Species Storm and Surge of Tumor Osmolarity. Journal of the American Chemical Society, 2020, 142, 21751-21757.	6.6	133
6	Polyphenolâ€Based Nanomedicine Evokes Immune Activation for Combination Cancer Treatment. Angewandte Chemie - International Edition, 2021, 60, 1967-1975.	7.2	96
8	An ERâ€Targeting Iridium(III) Complex That Induces Immunogenic Cell Death in Nonâ€Smallâ€Cell Lung Cancer. Angewandte Chemie, 2021, 133, 4707-4715.	1.6	28
9	An ERâ€Targeting Iridium(III) Complex That Induces Immunogenic Cell Death in Nonâ€Smallâ€Cell Lung Cancer. Angewandte Chemie - International Edition, 2021, 60, 4657-4665.	7.2	144
10	A microfluidic cathodic photoelectrochemical biosensor chip for the targeted detection of cytokeratin 19 fragments 21-1. Lab on A Chip, 2021, 21, 378-384.	3.1	29
11	Polyphenolâ€Based Nanomedicine Evokes Immune Activation for Combination Cancer Treatment. Angewandte Chemie, 2021, 133, 1995-2003.	1.6	0
12	Ferroptosis in cancer therapeutics: a materials chemistry perspective. Journal of Materials Chemistry B, 2021, 9, 8906-8936.	2.9	23
13	Biomedicine Meets Fenton Chemistry. Chemical Reviews, 2021, 121, 1981-2019.	23.0	400
14	Diagnostic and therapeutic nanoenzymes for enhanced chemotherapy and photodynamic therapy. Journal of Materials Chemistry B, 2021, 9, 3925-3934.	2.9	19
15	Urchin-Shaped Metal Organic/Hydrogen-Bonded Framework Nanocomposite as a Multifunctional Nanoreactor for Catalysis-Enhanced Synergetic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 4825-4834.	4.0	46
16	Manganese oxide nanomaterials boost cancer immunotherapy. Journal of Materials Chemistry B, 2021, 9, 7117-7131.	2.9	27
17	Ultrasound-Augmented Mitochondrial Calcium Ion Overload by Calcium Nanomodulator to Induce Immunogenic Cell Death. Nano Letters, 2021, 21, 2088-2093.	4.5	220
18	Recent Development on Controlled Synthesis of Mnâ€Based Nanostructures for Bioimaging and Cancer Therapy. Advanced Therapeutics, 2021, 4, 2100018.	1.6	15
19	Stimuliâ€Responsive Manganese Singleâ€Atom Nanozyme for Tumor Therapy via Integrated Cascade Reactions. Angewandte Chemie - International Edition, 2021, 60, 9480-9488.	7.2	271

#	Article	IF	CITATIONS
20	Stimuliâ€Responsive Manganese Singleâ€Atom Nanozyme for Tumor Therapy via Integrated Cascade Reactions. Angewandte Chemie, 2021, 133, 9566-9574.	1.6	50
21	A Tumor Microenvironment Responsive Nanotheranostics Agent for Magnetic Resonance Imaging and Synergistic Photodynamic Therapy/Photothermal Therapy of Liver Cancer. Frontiers in Chemistry, 2021, 9, 650899.	1.8	6
22	Singlet Oxygen Generation in Darkâ€Hypoxia by Catalytic Microenvironmentâ€Tailored Nanoreactors for NIRâ€II Fluorescenceâ€Monitored Chemodynamic Therapy. Angewandte Chemie - International Edition, 2021, 60, 15006-15012.	7.2	64
23	Singlet Oxygen Generation in Darkâ€Hypoxia by Catalytic Microenvironmentâ€Tailored Nanoreactors for NIRâ€II Fluorescenceâ€Monitored Chemodynamic Therapy. Angewandte Chemie, 2021, 133, 15133-15139.	1.6	13
24	Nanobooster-encapsulated hybrid RNA as anti-tumor viral mimicry. Nano Today, 2021, 38, 101211.	6.2	14
25	Catalytically Active CoFe ₂ O ₄ Nanoflowers for Augmented Sonodynamic and Chemodynamic Combination Therapy with Elicitation of Robust Immune Response. ACS Nano, 2021, 15, 11953-11969.	7.3	114
26	A Tumorâ€Microenvironmentâ€Responsive Nanocomposite for Hydrogen Sulfide Gas and Trimodalâ€Enhanced Enzyme Dynamic Therapy. Advanced Materials, 2021, 33, e2101223.	11.1	79
27	Engineering a self-navigated MnARK nanovaccine for inducing potent protective immunity against novel coronavirus. Nano Today, 2021, 38, 101139.	6.2	60
28	Manganese homeostasis at the host-pathogen interface and in the host immune system. Seminars in Cell and Developmental Biology, 2021, 115, 45-53.	2.3	19
29	Smart Manganese Dioxide-Based Lanthanide Nanoprobes for Triple-Negative Breast Cancer Precise Gene Synergistic Chemodynamic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 35444-35455.	4.0	34
30	Immunogenic Cell Death Induction by Ionizing Radiation. Frontiers in Immunology, 2021, 12, 705361.	2.2	99
31	Nanotechnology for Boosting Cancer Immunotherapy and Remodeling Tumor Microenvironment: The Horizons in Cancer Treatment. ACS Nano, 2021, 15, 12567-12603.	7.3	112
32	Cyclic Amplification of the Afterglow Luminescent Nanoreporter Enables the Prediction of Antiâ€cancer Efficiency. Angewandte Chemie - International Edition, 2021, 60, 19779-19789.	7.2	42
33	Tumor Microenvironment-Activated Nanoparticles Loaded with an Iron-Carbonyl Complex for Chemodynamic Immunotherapy of Lung Metastasis of Melanoma <i>In Vivo</i> . ACS Applied Materials & Interfaces, 2021, 13, 39100-39111.	4.0	24
34	Cyclic Amplification of the Afterglow Luminescent Nanoreporter Enables the Prediction of Antiâ€cancer Efficiency. Angewandte Chemie, 2021, 133, 19932-19942.	1.6	6
35	Cancer immunotherapy: Classification, therapeutic mechanisms, and nanomaterial-based synergistic therapy. Applied Materials Today, 2021, 24, 101149.	2.3	7
36	pH-Sensitive Polymeric Vesicles for GOx/BSO Delivery and Synergetic Starvation-Ferroptosis Therapy of Tumor. Biomacromolecules, 2021, 22, 4383-4394.	2.6	24
37	Ferroptosis and Cancer: Complex Relationship and Potential Application of Exosomes. Frontiers in Cell and Developmental Biology, 2021, 9, 733751.	1.8	32

#	Article	IF	CITATIONS
38	Soft Xâ€Ray Stimulated Lanthanide@MOF Nanoprobe for Amplifying Deep Tissue Synergistic Photodynamic and Antitumor Immunotherapy. Advanced Healthcare Materials, 2021, 10, e2101174.	3.9	17
39	Biocompatible Ruthenium Single-Atom Catalyst for Cascade Enzyme-Mimicking Therapy. ACS Applied Materials & Interfaces, 2021, 13, 45269-45278.	4.0	41
40	Biodegradable Upconversion Nanoparticles Induce Pyroptosis for Cancer Immunotherapy. Nano Letters, 2021, 21, 8281-8289.	4.5	100
41	Multifunctional carbon monoxide nanogenerator as immunogenic cell death drugs with enhanced antitumor immunity and antimetastatic effect. Biomaterials, 2021, 277, 121120.	5.7	41
42	Enhancing therapeutic performance of personalized cancer vaccine via delivery vectors. Advanced Drug Delivery Reviews, 2021, 177, 113927.	6.6	34
43	Glutathione-mediated nanomedicines for cancer diagnosis and therapy. Chemical Engineering Journal, 2021, 426, 128880.	6.6	57
44	Synergistic enhancement of immunological responses triggered by hyperthermia sensitive Pt NPs via NIR laser to inhibit cancer relapse and metastasis. Bioactive Materials, 2022, 7, 389-400.	8.6	33
45	Correction: Combining PD-L1 inhibitors with immunogenic cell death triggered by chemo-photothermal therapy via a thermosensitive liposome system to stimulate tumor-specific immunological response. Nanoscale, 2021, 13, 13907-13907.	2.8	8
46	Tumor microenvironment-triggered <i>in situ</i> cancer vaccines inducing dual immunogenic cell death for elevated antitumor and antimetastatic therapy. Nanoscale, 2021, 13, 10906-10915.	2.8	15
47	Combining PD-L1 inhibitors with immunogenic cell death triggered by chemo-photothermal therapy <i>via</i> a thermosensitive liposome system to stimulate tumor-specific immunological response. Nanoscale, 2021, 13, 12966-12978.	2.8	32
48	Hollow polydopamine spheres with removable manganese oxide nanoparticle caps for tumor microenvironment-responsive drug delivery. Chemical Engineering Journal, 2022, 430, 133089.	6.6	16
49	Biodegradable mesoporous manganese carbonate nanocomposites for LED light-driven cancer therapy via enhancing photodynamic therapy and attenuating survivin expression. Journal of Nanobiotechnology, 2021, 19, 310.	4.2	5
50	Tumorâ€Microenvironmentâ€Activated Reactive Oxygen Species Amplifier for Enzymatic Cascade Cancer Starvation/Chemodynamic /Immunotherapy. Advanced Materials, 2022, 34, e2106010.	11.1	139
51	Fenton metal nanomedicines for imaging-guided combinatorial chemodynamic therapy against cancer. Asian Journal of Pharmaceutical Sciences, 2022, 17, 177-192.	4.3	21
52	A Tumor Microenvironment-Responsive Theranostic Agent for Synergetic Therapy of Disulfiram-Based Chemotherapy and Chemodynamic Therapy. Journal of Physical Chemistry Letters, 2021, 12, 10880-10885.	2.1	12
53	Calcium ion nanomodulators for mitochondria-targeted multimodal cancer therapy. Asian Journal of Pharmaceutical Sciences, 2022, 17, 1-3.	4.3	55
54	Chemodynamic Therapy via Fenton and Fenton‣ike Nanomaterials: Strategies and Recent Advances. Small, 2022, 18, e2103868.	5.2	248
55	The concept and examples of type-III photosensitizers for cancer photodynamic therapy. CheM, 2022, 8, 197-209.	5.8	78

#	Article	IF	CITATIONS
56	Oneâ€Pot Synthesis of Multifunctional Carbonâ€Based Nanoparticleâ€supported Dispersed Cu2+ Disrupts Redox Homeostasis to Enhance CDT. Angewandte Chemie, 2022, 134, e202114373.	1.6	2
57	Antiâ€PDâ€L1 DNAzyme Loaded Photothermal Mn ²⁺ /Fe ³⁺ Hybrid Metalâ€Phenolic Networks for Cyclically Amplified Tumor Ferroptosisâ€Immunotherapy. Advanced Healthcare Materials, 2022, 11, e2102315.	3.9	25
58	Acidic TMEâ€Responsive Nanoâ€Bi ₂ Se ₃ @MnCaP as a NIRâ€IIâ€Triggered Free Radical Generator for Hypoxiaâ€Irrelevant Phototherapy with High Specificity and Immunogenicity. Small, 2022, 18, e2104302.	5.2	19
59	Immunotherapy for Tumor Metastasis by Artificial Antigen-Presenting Cells via Targeted Microenvironment Regulation and T-Cell Activation. ACS Applied Materials & Interfaces, 2021, 13, 55890-55901.	4.0	16
60	Dye-loaded mesoporous polydopamine nanoparticles for multimodal tumor theranostics with enhanced immunogenic cell death. Journal of Nanobiotechnology, 2021, 19, 365.	4.2	27
61	Oneâ€Pot Synthesis of Multifunctional Carbonâ€Based Nanoparticleâ€Supported Dispersed Cu ²⁺ Disrupts Redox Homeostasis to Enhance CDT. Angewandte Chemie - International Edition, 2022, 61, e202114373.	7.2	37
62	Immunostimulatory multi-interfacial bimetallic phosphide nanoparticles as photo-enhanced cascade nanozyme for cancer therapy. Applied Materials Today, 2021, 25, 101255.	2.3	13
63	A self-amplifying nanodrug to manipulate the Janus-faced nature of ferroptosis for tumor therapy. Nanoscale Horizons, 2022, 7, 198-210.	4.1	100
64	Multidimensional transitional metal-actuated nanoplatforms for cancer chemodynamic modulation. Coordination Chemistry Reviews, 2022, 455, 214360.	9.5	29
65	Metal-based nano-vaccines for cancer immunotherapy. Coordination Chemistry Reviews, 2022, 455, 214345.	9.5	27
66	Metal-based anticancer agents as immunogenic cell death inducers: the past, present, and future. Chemical Society Reviews, 2022, 51, 1212-1233.	18.7	107
67	Manganese-based multifunctional nanoplatform for dual-modal imaging and synergistic therapy of breast cancer. Acta Biomaterialia, 2022, 141, 429-439.	4.1	24
68	Extracellular matrix-degrading STING nanoagonists for mild NIR-II photothermal-augmented chemodynamic-immunotherapy. Journal of Nanobiotechnology, 2022, 20, 23.	4.2	32
69	Constructing virus-like SiO _{<i>x</i>} /CeO ₂ /VO _{<i>x</i>} nanozymes for 1064 nm light-triggered mild-temperature photothermal therapy and nanozyme catalytic therapy. Nanoscale, 2022, 14, 361-372.	2.8	19
70	lon drugs for precise orthotopic tumor management by <i>in situ</i> the generation of toxic ion and drug pools. Theranostics, 2022, 12, 734-746.	4.6	6
71	Biomimetic smart nanoplatform for dual imaging-guided synergistic cancer therapy. Journal of Materials Chemistry B, 2022, 10, 966-976.	2.9	16
72	Understanding Structure–Function Relationships of Nanoadjuvants for Enhanced Cancer Vaccine Efficacy. Advanced Functional Materials, 2022, 32, 2111670.	7.8	24
73	Glutamine Antagonist Synergizes with Electrodynamic Therapy to Induce Tumor Regression and Systemic Antitumor Immunity. ACS Nano, 2022, 16, 951-962.	7.3	39

#	Article	IF	CITATIONS
74	Orchestrated Yolk–Shell Nanohybrids Regulate Macrophage Polarization and Dendritic Cell Maturation for Oncotherapy with Augmented Antitumor Immunity. Advanced Materials, 2022, 34, e2108263.	11.1	53
75	<i>^î³</i> â€Fe ₂ O ₃ Loading Mitoxantrone and Glucose Oxidase for pHâ€Responsive Chemo/Chemodynamic/Photothermal Synergistic Cancer Therapy. Advanced Healthcare Materials, 2022, 11, e2102632.	3.9	27
76	Manganese oxide nanomaterials for bacterial infection detection and therapy. Journal of Materials Chemistry B, 2022, 10, 1343-1358.	2.9	24
77	Pyroptosis Adjuvants: Gram-Scale Production, Cascade Catalysis, and In Situ Antitumor Immunity Activation. Chemistry of Materials, 2022, 34, 1800-1808.	3.2	8
78	Nearâ€Infrared II Nanoadjuvantâ€Mediated Chemodynamic, Photodynamic, and Photothermal Therapy Combines Immunogenic Cell Death with PD‣1 Blockade to Enhance Antitumor Immunity. Small, 2022, 18, e2107809.	5.2	31
79	Biodegradable reduce expenditure bioreactor for augmented sonodynamic therapy via regulating tumor hypoxia and inducing pro-death autophagy. Journal of Nanobiotechnology, 2021, 19, 418.	4.2	20
80	MnO ₂ nanoparticles as a minimalist multimode vaccine adjuvant/delivery system to regulate antigen presenting cells for tumor immunotherapy. Journal of Materials Chemistry B, 2022, 10, 3474-3490.	2.9	8
81	A Salicylic Acid-Based Hypoxia-Response Chemodynamic Nanomedicine Via Modulation of Immunosuppression Tumor Microenvironment for Enhanced Antitumor Immunotherapy. SSRN Electronic Journal, 0, , .	0.4	0
82	Cooperative coordination-mediated multi-component self-assembly of "all-in-one―nanospike theranostic nano-platform for MRI-guided synergistic therapy against breast cancer. Acta Pharmaceutica Sinica B, 2022, 12, 3710-3725.	5.7	14
83	Oxygen Selfâ€Supply Engineeringâ€Ferritin for the Relief of Hypoxia in Tumors and the Enhancement of Photodynamic Therapy Efficacy. Small, 2022, 18, e2200116.	5.2	63
84	Intelligent Nanotransducer for Deep-Tumor Hypoxia Modulation and Enhanced Dual-Photosensitizer Photodynamic Therapy. ACS Applied Materials & Interfaces, 2022, 14, 14944-14952.	4.0	19
85	Research Progress of Cell Membrane Biomimetic Nanoparticles for Tumor Therapy. Nanoscale Research Letters, 2022, 17, 36.	3.1	14
86	Multifunctional Nanomaterials for Ferroptotic Cancer Therapy. Frontiers in Chemistry, 2022, 10, 868630.	1.8	13
87	The Development of Chiral Nanoparticles to Target NK Cells and CD8 ⁺ T Cells for Cancer Immunotherapy. Advanced Materials, 2022, 34, e2109354.	11.1	41
88	A Hybrid Supramolecular Polymeric Nanomedicine for Cascadeâ€Amplified Synergetic Cancer Therapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	42
89	Light-triggered multifunctional nanoplatform for efficient cancer photo-immunotherapy. Journal of Nanobiotechnology, 2022, 20, 181.	4.2	30
90	Palladium hydride nanourchins with amplified photothermal therapeutic effects through controlled hydrogen release and antigen-assisted immune activation. Chemical Engineering Journal, 2022, 442, 136296.	6.6	16
91	Photothermal MnO2 nanoparticles boost chemo-photothermal therapy-induced immunogenic cell death in tumor immunotherapy. International Journal of Pharmaceutics, 2022, 617, 121578.	2.6	19

#	Article	IF	CITATIONS
92	A Hybrid Supramolecular Polymeric Nanomedicine for Cascadeâ€Amplified Synergetic Cancer Therapy. Angewandte Chemie, 2022, 134, .	1.6	6
93	Disruption of dual homeostasis by a metal-organic framework nanoreactor for ferroptosis-based immunotherapy of tumor. Biomaterials, 2022, 284, 121502.	5.7	29
94	Light-guided tumor diagnosis and therapeutics: From nanoclusters to polyoxometalates. Chinese Chemical Letters, 2022, 33, 2783-2798.	4.8	4
95	One-Step Integration of Tumor Microenvironment-Responsive Calcium and Copper Peroxides Nanocomposite for Enhanced Chemodynamic/Ion-Interference Therapy. ACS Nano, 2022, 16, 617-630.	7.3	108
96	Intracellular marriage of bicarbonate and Mn ions as "immune ion reactors―to regulate redox homeostasis and enhanced antitumor immune responses. Journal of Nanobiotechnology, 2022, 20, 193.	4.2	6
97	Ternary Alloy PtWMn as a Mn Nanoreservoir for Highâ€Field MRI Monitoring and Highly Selective Ferroptosis Therapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	53
98	Watson–Crick Base Pairing-Inspired Laser/GSH Activatable miRNA-Coordination Polymer Nanoplexes for Combined Cancer Chemo-Immuno-Photothermal Therapy. ACS Applied Materials & Interfaces, 2022, 14, 20762-20777.	4.0	10
99	Ternary Alloy PtWMn as a Mn Nanoreservoir for Highâ€Field MRI Monitoring and Highly Selective Ferroptosis Therapy. Angewandte Chemie, 2022, 134, .	1.6	10
100	Tumor-targeting biomimetic sonosensitizer-conjugated iron oxide nanocatalysts for combinational chemodynamic–sonodynamic therapy of colorectal cancer. Journal of Materials Chemistry B, 2022, 10, 4595-4604.	2.9	11
101	Combining immune checkpoint blockade with ATP-based immunogenic cell death amplifier for cancer chemo-immunotherapy. Acta Pharmaceutica Sinica B, 2022, 12, 3694-3709.	5.7	13
102	Dual-Mode Immunosensor for Electrochemiluminescence Resonance Energy Transfer and Electrochemical Detection of Rabies Virus Glycoprotein Based on Ru(bpy) ₃ ²⁺ -Loaded Dendritic Mesoporous Silica Nanoparticles. Analytical Chemistry, 2022, 94, 7655-7664.	3.2	32
103	Recent applications of immunomodulatory biomaterials for disease immunotherapy. Exploration, 2022, 2, .	5.4	81
104	Salicylic acid-based hypoxia-responsive chemodynamic nanomedicines boost antitumor immunotherapy by modulating immunosuppressive tumor microenvironment. Acta Biomaterialia, 2022, 148, 230-243.	4.1	18
105	In situ-transition nanozyme triggered by tumor microenvironment boosts synergistic cancer radio-/chemotherapy through disrupting redox homeostasis. Biomaterials, 2022, 287, 121620.	5.7	32
106	Modulation of the Tumor Immune Microenvironment by Bi ₂ Te ₃ â€Au/Pdâ€Based Theranostic Nanocatalysts Enables Efficient Cancer Therapy. Advanced Healthcare Materials, 2022, 11, .	3.9	12
107	Harnessing immune response using reactive oxygen Species-Generating/Eliminating inorganic biomaterials for disease treatment. Advanced Drug Delivery Reviews, 2022, 188, 114456.	6.6	19
108	Self-Activated Cascade Biocatalysis of Glucose Oxidase–Polycation–Iron Nanoconjugates Augments Cancer Immunotherapy. ACS Applied Materials & Interfaces, 2022, 14, 32823-32835.	4.0	7
109	State of the art advancements in sonodynamic therapy (SDT): Metal-Organic frameworks for SDT. Chemical Engineering Journal, 2022, 449, 137889.	6.6	40

#	Article	IF	Citations
110	Microorganism-enabled photosynthetic oxygeneration and ferroptosis induction reshape tumor microenvironment for augmented nanodynamic therapy. Biomaterials, 2022, 287, 121688.	5.7	21
111	Metal-fluorouracil networks with disruption of mitochondrion enhanced ferroptosis for synergistic immune activation. Theranostics, 2022, 12, 6207-6222.	4.6	23
112	Lignin-assisted construction of sub-10â€ [−] nm supramolecular self-assembly for photothermal immunotherapy and potentiating anti-PD-1 therapy against primary and distant breast tumors. Asian Journal of Pharmaceutical Sciences, 2022, 17, 713-727.	4.3	9
113	Hollow Aluminum Hydroxide Modified Silica Nanoadjuvants with Amplified Immunotherapy Effects through Immunogenic Cell Death Induction and Antigen Release. Small, 2022, 18, .	5.2	15
114	Physical and Chemical Cues at the Nano–Bio Interface for Immunomodulation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	4
115	Physical and Chemical Cues at Nanoâ \in bio Interface for Immunomodulation. Angewandte Chemie, 0, , .	1.6	0
116	Protein-Delivering Nanocomplexes with Fenton Reaction-Triggered Cargo Release to Boost Cancer Immunotherapy. ACS Nano, 2022, 16, 14982-14999.	7.3	38
117	Immunogenic Cell Death Augmented by Manganese Zinc Sulfide Nanoparticles for Metastatic Melanoma Immunotherapy. ACS Nano, 2022, 16, 15471-15483.	7.3	71
118	Advances in the biological mechanism and application of manganese-based nanoformulations for enhanced immunotherapy. Nano Today, 2022, 46, 101583.	6.2	8
119	Cinnamaldehyde-based poly(thioacetal): A ROS-awakened self-amplifying degradable polymer for enhanced cancer immunotherapy. Biomaterials, 2022, 289, 121795.	5.7	22
120	Manganese oxide nano-platforms in cancer therapy: Recent advances on the development of synergistic strategies targeting the tumor microenvironment. Applied Materials Today, 2022, 29, 101628.	2.3	14
121	New opportunities for immunomodulation of the tumour microenvironment using chemical tools. Chemical Society Reviews, 2022, 51, 7944-7970.	18.7	15
122	Ultrasound and laser-promoted dual-gas nano-generator for combined photothermal and immune tumor therapy. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
123	Oral Nanomotorâ€Enabled Mucus Traverse and Tumor Penetration for Targeted Chemoâ€Sonoâ€Immunotherapy against Colon Cancer. Small, 2022, 18, .	5.2	37
124	NIR-Triggered and ROS-Boosted Nanoplatform for Enhanced Chemo/PDT/PTT Synergistic Therapy of Sorafenib in Hepatocellular Carcinoma. Nanoscale Research Letters, 2022, 17, .	3.1	8
125	Biomineralized Manganese Oxide Nanoparticles Synergistically Relieve Tumor Hypoxia and Activate Immune Response with Radiotherapy in Non-Small Cell Lung Cancer. Nanomaterials, 2022, 12, 3138.	1.9	10
126	Formulation and clinical advancement of nanourchins: a novel multibranched nanoparticulate drug-delivery system. Nanomedicine, 2022, 17, 1477-1499.	1.7	2
127	Manganeseâ€Based Tumor Immunotherapy. Advanced Materials, 2023, 35, .	11.1	42

#	Article	IF	CITATIONS
128	2D Copper(II) Metalated Metal–Organic Framework Nanocomplexes for Dual-enhanced Photodynamic Therapy and Amplified Antitumor Immunity. ACS Applied Materials & Interfaces, 2022, 14, 44199-44210.	4.0	5
129	Overcoming Hypoxiaâ€Induced Ferroptosis Resistance via a ¹⁹ F/ ¹ Hâ€MRI Traceable Coreâ€Shell Nanostructure. Angewandte Chemie - International Edition, 2022, 61, .	7.2	42
130	H2O2/pH Dual-Responsive Biomimetic Nanoenzyme Drugs Delivery System for Enhanced Tumor Photodynamic Therapy. Nanoscale Research Letters, 2022, 17, .	3.1	8
131	Selfâ€Amplifying Iridium(III) Photosensitizer for Ferroptosisâ€Mediated Immunotherapy Against Transferrin Receptorâ€Overexpressing Cancer. Small, 2022, 18, .	5.2	18
132	Overcoming Hypoxiaâ€Induced Ferroptosis Resistance via a ¹⁹ F/ ¹ Hâ€MRI Traceable Coreâ€5hell Nanostructure. Angewandte Chemie, 0, , .	1.6	6
133	2D Catalytic, Chemodynamic, and Ferroptotic Vermiculite Nanomedicine. Advanced Functional Materials, 2022, 32, .	7.8	14
134	An Overview of Recent Advancements on Manganese-Based Nanostructures and Their Application for ROS-Mediated Tumor Therapy. , 2022, 4, 2415-2433.		2
135	Facile One-Pot Synthesis of Meteor Hammer-like Au-MnO _{<i>x</i>} Nanozymes with Spiky Surface for NIR-II Light-Enhanced Bacterial Elimination. Chemistry of Materials, 2022, 34, 9876-9891.	3.2	18
136	Platelet-Covered Nanocarriers for Targeted Delivery of Hirudin to Eliminate Thrombotic Complication in Tumor Therapy. ACS Nano, 2022, 16, 18483-18496.	7.3	15
137	Cancer cell membrane biomimetic mesoporous silica nanotheranostics for enhanced Ferroptosis-mediated immuogenic cell death on Gastric cancer. Chemical Engineering Journal, 2023, 455, 140868.	6.6	10
139	Tumor Microenvironment-Activable Manganese-Boosted Catalytic Immunotherapy Combined with PD-1 Checkpoint Blockade. ACS Nano, 2022, 16, 20400-20418.	7.3	27
140	Integration of Manganese Dioxideâ€Based Nanomaterials for Biomedical Applications. Advanced NanoBiomed Research, 2023, 3, .	1.7	4
141	Engineered anti-cancer nanomedicine for synergistic ferroptosis-immunotherapy. Chemical Engineering Journal, 2023, 455, 140688.	6.6	17
142	Synergistic combination of targeted nano-nuclear-reactors and anti-PD-L1 nanobodies evokes persistent T cell immune activation for cancer immunotherapy. Journal of Nanobiotechnology, 2022, 20, .	4.2	8
143	Piezocatalytic Medicine: An Emerging Frontier using Piezoelectric Materials for Biomedical Applications. Advanced Materials, 2023, 35, .	11.1	45
144	Composite Hydrogel for Spatiotemporal Lipid Intervention of Tumor Milieu. Advanced Materials, 2023, 35, .	11.1	10
145	Covalent Organic Framework Nanobowls as Activatable Nanosensitizers for Tumorâ€ S pecific and Ferroptosisâ€Augmented Sonodynamic Therapy. Advanced Science, 2023, 10, .	5.6	29
146	ZIFâ€8 Nanoparticles Evoke Pyroptosis for Highâ€Efficiency Cancer Immunotherapy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	57

#	Article	IF	CITATIONS
147	ZIFâ€8 Nanoparticles Evoke Pyroptosis for Highâ€Efficiency Cancer Immunotherapy. Angewandte Chemie, 2023, 135, .	1.6	4
148	Ovalbumin-loaded paramagnetic nano-triangles for enhanced dendritic cell stimulation, T1-MR imaging, and antitumor immunity. Journal of Materials Science and Technology, 2023, 148, 123-137.	5.6	7
149	Tumor microenvironment-responsive manganese-based nanomaterials for cancer treatment. Coordination Chemistry Reviews, 2023, 480, 215027.	9.5	23
150	GSHâ€Responsive Dnaseâ€lâ€Loaded MnO _{<i>x</i>} Nanoplatforms for Combined Proteinâ€Chemodynamic Therapy. Advanced NanoBiomed Research, 2023, 3, .	1.7	0
151	Nanomaterials-Based Novel Immune Strategies in Clinical Translation for Cancer Therapy. Molecules, 2023, 28, 1216.	1.7	4
152	Ferroptosis: challenges and opportunities for nanomaterials in cancer therapy. International Journal of Energy Production and Management, 2023, 10, .	1.9	12
153	Multifunctional Nanoâ€Biomaterials for Cancer Therapy via Inducing Enhanced Immunogenic Cell Death. Small Methods, 2023, 7, .	4.6	12
154	Interrelation between Programmed Cell Death and Immunogenic Cell Death: Take Antitumor Nanodrug as an Example. Small Methods, 2023, 7, .	4.6	19
155	Cascade biomimetic intelligent nanotheranostic agents for imaging-guided tumor synergistic therapy. Nanomedicine, 2023, 18, 35-52.	1.7	4
156	PEGylated Manganese–Zinc Ferrite Nanocrystals Combined with Intratumoral Implantation of Micromagnets Enabled Synergetic Prostate Cancer Therapy via Ferroptotic and Immunogenic Cell Death. Small, 2023, 19, .	5.2	5
157	Nanoplatform-based cellular reactive oxygen species regulation for enhanced oncotherapy and tumor resistance alleviation. Chinese Chemical Letters, 2023, 34, 108300.	4.8	2
158	Defect-Rich Glassy IrTe ₂ with Dual Enzyme-Mimic Activities for Sono-Photosynergistic-Enhanced Oncotherapy. Journal of the American Chemical Society, 2023, 145, 3952-3960.	6.6	17
159	Vaccine-like nanomedicine for cancer immunotherapy. Journal of Controlled Release, 2023, 355, 760-778.	4.8	33
160	Development of immunochromatographic strips for the rapid detection of diquat in apples and strawberries. New Journal of Chemistry, 2023, 47, 6323-6329.	1.4	3
161	Nanodrug constructed using dietary antioxidants for immunotherapy of metastatic tumors. Journal of Materials Chemistry B, 2023, 11, 2916-2926.	2.9	2
162	Biomineralized MnO ₂ Nanoplatforms Mediated Delivery of Immune Checkpoint Inhibitors with STING Pathway Activation to Potentiate Cancer Radio-Immunotherapy. ACS Nano, 2023, 17, 4495-4506.	7.3	29
163	In Situ Transformable Nanoplatforms with Supramolecular Crossâ€Linking Triggered Complementary Function for Enhanced Cancer Photodynamic Therapy. Advanced Materials, 2023, 35, .	11.1	13
164	Rough Nanovaccines Boost Antitumor Immunity Through the Enhancement of Vaccination Cascade and Immunogenic Cell Death Induction. Small Methods, 2023, 7, .	4.6	5

	CITATION	TATION REPORT		
#	Article	IF	CITATIONS	
165	Harnessing Nanomaterials for Cancer Sonodynamic Immunotherapy. Advanced Materials, 2023, 35, .	11.1	33	
166	Boosting immunogenic cell death via hollow MnO2-based multiple stimuli-responsive drug delivery systems for improved cancer immunotherapy. Cancer Nanotechnology, 2023, 14, .	1.9	2	
167	HIF-1 inhibitor-based one-stone-two-birds strategy for enhanced cancer chemodynamic-immunotherapy. Journal of Controlled Release, 2023, 356, 649-662.	4.8	7	
168	Heterostructural Nanoadjuvant CuSe/CoSe ₂ for Potentiating Ferroptosis and Photoimmunotherapy through Intratumoral Blocked Lactate Efflux. Journal of the American Chemical Society, 2023, 145, 7205-7217.	6.6	29	
169	Usnea Acidâ€Incorporated Ca ²⁺ /Mn ²⁺ Ions Reservoirs for Elevated Ionâ€Interference Therapy through Synergetic Biocatalysis and Osmolarity Imbalance. Small, 2023, 19, .	5.2	6	
170	Multifunctional nanomedicines-enabled chemodynamic-synergized multimodal tumor therapy via Fenton and Fenton-like reactions. Theranostics, 2023, 13, 1974-2014.	4.6	16	
171	Multi-enzyme Co-expressed Dual-Atom Nanozymes Induce Cascade Immunogenic Ferroptosis via Activating Interferon-γ and Targeting Arachidonic Acid Metabolism. Journal of the American Chemical Society, 2023, 145, 8965-8978.	6.6	28	
172	Single Component Organic Photosensitizer with NIRâ€l Emission Realizing Typeâ€l Photodynamic and GSHâ€Depletion Caused Ferroptosis Synergistic Theranostics. Advanced Healthcare Materials, 2023, 12, .	3.9	2	
174	The rational design of nanozymes for imaging-monitored cancer therapy. Journal of Materials Chemistry B, 2023, 11, 5933-5952.	2.9	3	
184	Reactive Oxygen-Primed and Autophagy Inhibition-Sensitized Ferroptosis Combined with Photothermal Ablation for Tumor Therapy. , 2023, 5, 2243-2255.		3	
195	Reprogramming the tumor immune microenvironment via nanomaterial-mediated dynamic therapy. Nano Research, 2023, 16, 13100-13112.	5.8	0	
197	Emerging Vaccine for the Treatment of Cancer via Nanotechnology. , 2023, , 227-244.		0	
222	Immunoadjuvants for cancer immunotherapy. , 2024, , 1-36.		0	

Immunoadjuvants for cancer immunotherapy., 2024, , 1-36. 222