TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection enterocytes

Science Immunology

5,

DOI: 10.1126/sciimmunol.abc3582

Citation Report

#	Article	IF	CITATIONS
1	IL-22–induced cell extrusion and IL-18–induced cell death prevent and cure rotavirus infection. Science Immunology, 2020, 5, .	5.6	27
2	Gut Microbiota Dysbiosis–Immune Hyperresponse–Inflammation Triad in Coronavirus Disease 2019 (COVID-19): Impact of Pharmacological and Nutraceutical Approaches. Microorganisms, 2020, 8, 1514.	1.6	52
3	COVID-19 in Children: A Review and Parallels to Other Hyperinflammatory Syndromes. Frontiers in Pediatrics, 2020, 8, 593455.	0.9	16
4	Covid-19 pandemic and food: Present knowledge, risks, consumers fears and safety. Trends in Food Science and Technology, 2020, 105, 145-160.	7.8	68
5	Tracking COVID-19 with wastewater. Nature Biotechnology, 2020, 38, 1151-1153.	9.4	229
6	A Single-Cell RNA Expression Map of Human Coronavirus Entry Factors. Cell Reports, 2020, 32, 108175.	2.9	215
7	Gastrointestinal symptoms, pathophysiology, and treatment in COVID-19. Genes and Diseases, 2021, 8, 385-400.	1.5	60
8	Cross-Sectional Evaluation of Humoral Responses against SARS-CoV-2 Spike. Cell Reports Medicine, 2020, 1, 100126.	3.3	200
9	COVID-19 and Gastrointestinal Disease: Implications for the Gastroenterologist. Digestive Diseases, 2021, 39, 119-139.	0.8	88
10	Molecular docking between human TMPRSS2 and SARS-CoV-2 spike protein: conformation and intermolecular interactions. AIMS Microbiology, 2020, 6, 350-360.	1.0	61
11	Strategies and Advances in Combating COVID-19 in China. Engineering, 2020, 6, 1076-1084.	3.2	16
12	Targeting Proteases for Treating COVID-19. Journal of Proteome Research, 2020, 19, 4316-4326.	1.8	68
13	Host-pathogen interaction in COVID-19: Pathogenesis, potential therapeutics and vaccination strategies. Immunobiology, 2020, 225, 152008.	0.8	65
14	SARS-CoV-2 Infects the Brain Choroid Plexus and Disrupts the Blood-CSF Barrier in Human Brain Organoids. Cell Stem Cell, 2020, 27, 951-961.e5.	5.2	388
15	Implications of Sex Differences in Immunity for SARS-CoV-2 Pathogenesis and Design of Therapeutic Interventions. Immunity, 2020, 53, 487-495.	6.6	127
16	Robust and persistent SARS-CoV-2 infection in the human intestinal brush border expressing cells. Emerging Microbes and Infections, 2020, 9, 2169-2179.	3.0	43
17	Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut, 2021, 70, gutjnl-2020-322294.	6.1	314
18	Children and Fecal SARS-CoV-2 shedding: Just the tip of the Iceberg of Italian COVID-19 outbreak?. Digestive and Liver Disease, 2020, 52, 1219-1221.	0.4	8

#	Article	IF	CITATIONS
19	COVID-19, Renin-Angiotensin System and Endothelial Dysfunction. Cells, 2020, 9, 1652.	1.8	210
20	ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities – Role of gut microbiota dysbiosis. Ageing Research Reviews, 2020, 62, 101123.	5.0	118
21	Diarrhoea and the COVID-19 pandemic. Arab Journal of Gastroenterology, 2020, 21, 146-150.	0.4	2
22	Put Some Guts into It: Intestinal Organoid Models to Study Viral Infection. Viruses, 2020, 12, 1288.	1.5	14
23	Expression of SARS-CoV-2 Entry Factors in the Pancreas of Normal Organ Donors and Individuals with COVID-19. Cell Metabolism, 2020, 32, 1041-1051.e6.	7.2	135
24	Gastrointestinal Symptoms Associated With Unfavorable Prognosis of COVID-19 Patients: A Retrospective Study. Frontiers in Medicine, 2020, 7, 608259.	1.2	34
25	Pilot Study: Long-Term Shedding of SARS-CoV-2 in Urine: A Threat for Dispersal in Wastewater. Frontiers in Public Health, 2020, 8, 569209.	1.3	5
26	Modeling Multi-organ Infection by SARS-CoV-2ÂUsing Stem Cell Technology. Cell Stem Cell, 2020, 27, 859-868.	5.2	27
27	SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Frontiers in Cellular and Infection Microbiology, 2020, 10, 587269.	1.8	552
28	Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32105-32113.	3.3	192
29	The gut microbiome: an under-recognised contributor to the COVID-19 pandemic?. Therapeutic Advances in Gastroenterology, 2020, 13, 175628482097491.	1.4	50
30	Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro. Cell Discovery, 2020, 6, 80.	3.1	172
31	Long-Term Modeling of SARS-CoV-2 Infection of <i>In Vitro</i> Cultured Polarized Human Airway Epithelium. MBio, 2020, 11, .	1.8	80
32	SARS-CoV-2 Cell Entry Factors ACE2 and TMPRSS2 Are Expressed in the Microvasculature and Ducts of Human Pancreas but Are Not Enriched in β Cells. Cell Metabolism, 2020, 32, 1028-1040.e4.	7.2	148
33	Cholesterol 25â€Hydroxylase inhibits <scp>SARS</scp> â€CoVâ€2 and other coronaviruses by depleting membrane cholesterol. EMBO Journal, 2020, 39, e106057.	3.5	203
34	Peptide and peptide-based inhibitors of SARS-CoV-2 entry. Advanced Drug Delivery Reviews, 2020, 167, 47-65.	6.6	132
35	Surfaces and equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the emergency department at a university hospital. International Journal of Hygiene and Environmental Health, 2020, 230, 113600.	2.1	27
36	COVID 19: challenges for virologists in the food industry. Microbial Biotechnology, 2020, 13, 1689-1701.	2.0	33

#	Article	IF	Citations
37	COVID-19: Mechanisms of Vaccination and Immunity. Vaccines, 2020, 8, 404.	2.1	81
38	COVID-19: Complement, Coagulation, and Collateral Damage. Journal of Immunology, 2020, 205, 1488-1495.	0.4	127
39	Minireview Exploring the Biological Cycle of Vitamin B3 and Its Influence on Oxidative Stress: Further Molecular and Clinical Aspects. Molecules, 2020, 25, 3323.	1.7	19
40	Prior infection with intestinal coronaviruses moderates symptom severity and mortality in patients with COVID-19: A hypothesis and preliminary evidence. Medical Hypotheses, 2020, 143, 110116.	0.8	1
41	Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19. Science of the Total Environment, 2020, 749, 141364.	3.9	293
42	Clinical and Laboratory Diagnosis of SARS-CoV-2, the Virus Causing COVID-19. ACS Infectious Diseases, 2020, 6, 2319-2336.	1.8	57
43	Physicians' Perspectives on COVID-19: An International Survey. Healthcare (Switzerland), 2020, 8, 250.	1.0	9
44	Smoking and <scp>COVID</scp> â€19: Similar bronchial <scp>ACE2</scp> and <scp>TMPRSS2</scp> expression and higher <scp>TMPRSS4</scp> expression in current versus never smokers. Drug Development Research, 2020, 81, 1073-1080.	1.4	31
45	The role of wastewater treatment plants as tools for SARS-CoV-2 early detection and removal. Journal of Water Process Engineering, 2020, 38, 101544.	2.6	65
46	Environmental Integrants Affecting the Spreadability of SARS-CoV-12. Food and Environmental Virology, 2020, 12, 278-279.	1.5	1
47	Evaluation of mechanisms of action of re-purposed drugs for treatment of COVID-19. Cellular Immunology, 2020, 358, 104240.	1.4	6
48	Structural analysis of experimental drugs binding to the SARS-CoV-2 target TMPRSS2. Journal of Molecular Graphics and Modelling, 2020, 100, 107710.	1.3	30
49	COVID-19-associated gastrointestinal and liver injury: clinical features and potential mechanisms. Signal Transduction and Targeted Therapy, 2020, 5, 256.	7.1	152
50	COVID-19 and iron dysregulation: distant sequence similarity between hepcidin and the novel coronavirus spike glycoprotein. Biology Direct, 2020, 15, 19.	1.9	64
51	Understanding the complexities of SARS-CoV2 infection and its immunology: A road to immune-based therapeutics. International Immunopharmacology, 2020, 88, 106980.	1.7	31
52	Targeting Crucial Host Factors of SARS-CoV-2. ACS Infectious Diseases, 2020, 6, 2844-2865.	1.8	28
53	Understanding Severe Acute Respiratory Syndrome Coronavirus 2 Replication to Design Efficient Drug Combination Therapies. Intervirology, 2020, 63, 2-9.	1.2	15
54	Consistent localization of SARS-CoV-2 spike glycoprotein and ACE2 over TMPRSS2 predominance in placental villi of 15 COVID-19 positive maternal-fetal dyads. Placenta, 2020, 100, 69-74.	0.7	103

#	Article	IF	CITATIONS
55	Fecal viral shedding in COVID-19 patients: Clinical significance, viral load dynamics and survival analysis. Virus Research, 2020, 289, 198147.	1.1	72
56	Alteration, Reduction and Taste Loss: Main Causes and Potential Implications on Dietary Habits. Nutrients, 2020, 12, 3284.	1.7	69
57	Gene of the month: <i>TMPRSS2</i> (transmembrane serine protease 2). Journal of Clinical Pathology, 2020, 73, 773-776.	1.0	71
58	Neurological Aspects of SARS-CoV-2 Infection: Mechanisms and Manifestations. Frontiers in Neurology, 2020, 11, 1039.	1.1	66
59	SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. Journal of Hematology and Oncology, 2020, 13, 120.	6.9	505
60	Cell and animal models of SARS-CoV-2 pathogenesis and immunity. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	46
61	Central Nervous System Targets and Routes for SARS-CoV-2: Current Views and New Hypotheses. ACS Chemical Neuroscience, 2020, 11, 2793-2803.	1.7	46
62	An Enzymatic TMPRSS2 Assay for Assessment of Clinical Candidates and Discovery of Inhibitors as Potential Treatment of COVID-19. ACS Pharmacology and Translational Science, 2020, 3, 997-1007.	2.5	95
63	Smoking and COVID-19: Adding Fuel to the Flame. International Journal of Molecular Sciences, 2020, 21, 6581.	1.8	76
64	Genomic Cues From Beta-Coronaviruses and Mammalian Hosts Sheds Light on Probable Origins and Infectivity of SARS-CoV-2 Causing COVID-19. Frontiers in Genetics, 2020, 11, 902.	1.1	5
65	Asymptomatic SARS Coronavirus 2 infection: Invisible yet invincible. International Journal of Infectious Diseases, 2020, 100, 112-116.	1.5	177
66	Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunology, 2020, 13, 877-891.	2.7	155
67	Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic. Nature Sustainability, 2020, 3, 981-990.	11.5	195
68	Enteric Viral Co-Infections: Pathogenesis and Perspective. Viruses, 2020, 12, 904.	1.5	26
69	Premises among SARS-CoV-2, dysbiosis and diarrhea: Walking through the ACE2/mTOR/autophagy route. Medical Hypotheses, 2020, 144, 110243.	0.8	30
70	SARS-CoV-2 receptor ACE2 is co-expressed with genes related to transmembrane serine proteases, viral entry, immunity and cellular stress. Scientific Reports, 2020, 10, 21415.	1.6	31
71	ACE2 and Furin Expressions in Oral Epithelial Cells Possibly Facilitate COVID-19 Infection via Respiratory and Fecal–Oral Routes. Frontiers in Medicine, 2020, 7, 580796.	1.2	59
72	Body Localization of ACE-2: On the Trail of the Keyhole of SARS-CoV-2. Frontiers in Medicine, 2020, 7, 594495.	1.2	182

#	Article	IF	CITATIONS
73	Inhibition of SARS-CoV-2 Entry into Host Cells Using Small Molecules. Pharmaceuticals, 2020, 13, 447.	1.7	24
74	Threading the Pieces Together: Integrative Perspective on SARS-CoV-2. Pathogens, 2020, 9, 912.	1.2	6
75	Intestinal Barrier Function in Health and Disease—Any Role of SARS-CoV-2?. Microorganisms, 2020, 8, 1744.	1.6	31
76	COVID-19: organoids go viral. Nature Reviews Molecular Cell Biology, 2020, 21, 355-356.	16.1	50
77	SARS-CoV-2 perturbs the renin-angiotensin system and energy metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E43-E47.	1.8	24
78	Features of enteric disease from human coronaviruses: Implications for COVIDâ€19. Journal of Medical Virology, 2020, 92, 1834-1844.	2.5	28
79	Systematic Review and Meta-Analysis of the Persistence and Disinfection of Human Coronaviruses and Their Viral Surrogates in Water and Wastewater. Environmental Science and Technology Letters, 2020, 7, 544-553.	3.9	121
80	A compendium answering 150 questions on COVIDâ€19 and SARSâ€CoVâ€2. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2503-2541.	2.7	95
81	Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. Journal of Autoimmunity, 2020, 114, 102506.	3.0	248
82	Relative Abundance of SARS-CoV-2 Entry Genes in the Enterocytes of the Lower Gastrointestinal Tract. Genes, 2020, 11, 645.	1.0	57
83	Safely restarting GI endoscopy in the era of COVID-19. Gut, 2020, 69, 2063-2070.	6.1	46
84	Dual function of sialic acid in gastrointestinal SARS-CoV-2 infection. Environmental Toxicology and Pharmacology, 2020, 79, 103436.	2.0	20
85	Gut-lung axis and dysbiosis in COVID-19. Turkish Journal of Biology, 2020, 44, 265-272.	2.1	101
86	Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell, 2020, 182, 812-827.e19.	13.5	3,551
87	Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. Cell Host and Microbe, 2020, 28, 475-485.e5.	5.1	380
88	COVID-19 and the Chemical Senses: Supporting Players Take Center Stage. Neuron, 2020, 107, 219-233.	3.8	256
89	Potential Causes and Consequences of Gastrointestinal Disorders during a SARS-CoV-2 Infection. Cell Reports, 2020, 32, 107915.	2.9	113
90	SARS-CoV-2 infection risk assessment in the endometrium: viral infection-related gene expression across the menstrual cycle. Fertility and Sterility, 2020, 114, 223-232.	0.5	84

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
91	Are Animals a Neglected Transmission Route of SARS-CoV-2?. Pathogens, 2020, 9, 480.	1.2	29
92	Immunology of COVIDâ€19: Mechanisms, clinical outcome, diagnostics, and perspectives—A report of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy: European Journal of Allergy and Clinical Immunology (EAACI).	2.7	132
93	Data, Reagents, Assays and Merits of Proteomics for SARS-CoV-2 Research and Testing. Molecular and Cellular Proteomics, 2020, 19, 1503-1522.	2.5	78
94	A Replication-Competent Vesicular Stomatitis Virus for Studies of SARS-CoV-2 Spike-Mediated Cell Entry and Its Inhibition. Cell Host and Microbe, 2020, 28, 486-496.e6.	5.1	178
95	Reorganisation of faecal microbiota transplant services during the COVID-19 pandemic. Gut, 2020, 69, 1555-1563.	6.1	110
96	Utility of Stool PCR for the Diagnosis of COVID-19: Comparison of Two Commercial Platforms. Journal of Clinical Microbiology, 2020, 58, .	1.8	23
97	Fecalâ€oral transmission of COVIDâ€19: Could hypochlorhydria play a role?. Journal of Medical Virology, 2021, 93, 166-167.	2.5	8
98	Gordian Knot: Gastrointestinal lesions caused by three highly pathogenic coronaviruses from SARS-CoV and MERS-CoV to SARS-CoV-2. European Journal of Pharmacology, 2021, 890, 173659.	1.7	3
99	Angiotensin-converting Enzyme 2–containing Small Extracellular Vesicles and Exomeres Bind the Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein. Gastroenterology, 2021, 160, 958-961.e3.	0.6	42
100	Altered Intestinal ACE2 Levels Are Associated With Inflammation, Severe Disease, and Response to Anti-Cytokine Therapy in Inflammatory Bowel Disease. Gastroenterology, 2021, 160, 809-822.e7.	0.6	45
101	Fighting the War Against COVID-19 via Cell-Based Regenerative Medicine: Lessons Learned from 1918 Spanish Flu and Other Previous Pandemics. Stem Cell Reviews and Reports, 2021, 17, 9-32.	1.7	11
102	Epicardial Echocardiography—A Plausible Alternative Cardiac Imaging Technique in COVID-19 Pandemic. Journal of Cardiothoracic and Vascular Anesthesia, 2021, 35, 684-686.	0.6	3
103	<i>ACE2, TMPRSS2</i> , and Furin variants and SARSâ€CoVâ€2 infection in Madrid, Spain. Journal of Medical Virology, 2021, 93, 863-869.	2.5	72
104	Mechanisms linking the human gut microbiome to prophylactic and treatment strategies for COVID-19. British Journal of Nutrition, 2021, 126, 219-227.	1.2	50
105	Role of eosinophils in the diagnosis and prognostic evaluation of COVIDâ€19. Journal of Medical Virology, 2021, 93, 1105-1110.	2.5	27
106	Leaving no stone unturned in light of the COVID-19 faecal-oral hypothesis? A water, sanitation and hygiene (WASH) perspective targeting low-income countries. Science of the Total Environment, 2021, 753, 141751.	3.9	93
107	Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection. Cell, 2021, 184, 76-91.e13.	13.5	418
108	Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nature Reviews Nephrology, 2021, 17, 46-64.	4.1	444

CITATION	DEDODT
CHAHON	REPORT

#	Article	IF	CITATIONS
109	Human small intestinal organotypic culture model for drug permeation, inflammation, and toxicity assays. In Vitro Cellular and Developmental Biology - Animal, 2021, 57, 160-173.	0.7	24
110	The Gastrointestinal Tract Is an Alternative Route for SARS-CoV-2 Infection in a Nonhuman Primate Model. Gastroenterology, 2021, 160, 1647-1661.	0.6	88
111	Humoral immune responses and neutralizing antibodies against SARS-CoV-2; implications in pathogenesis and protective immunity. Biochemical and Biophysical Research Communications, 2021, 538, 187-191.	1.0	86
112	Distinct expression of SARSâ€CoVâ€2 receptor ACE2 correlates with endotypes of chronic rhinosinusitis with nasal polyps. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 789-803.	2.7	29
113	Combating COVID-19 with tissue engineering: a review. Emergent Materials, 2021, 4, 329-349.	3.2	12
114	COVID-19 and Cancer Comorbidity: Therapeutic Opportunities and Challenges. Theranostics, 2021, 11, 731-753.	4.6	60
115	Potential inhibitors of SARS-CoV-2: recent advances. Journal of Drug Targeting, 2021, 29, 349-364.	2.1	27
116	SARS-CoV-2, ACE2 expression, and systemic organ invasion. Physiological Genomics, 2021, 53, 51-60.	1.0	100
117	Quantifying the risk of indoor drainage system in multi-unit apartment building as a transmission route of SARS-CoV-2. Science of the Total Environment, 2021, 762, 143056.	3.9	27
118	Can limonene be a possible candidate for evaluation as an agent or adjuvant against infection, immunity, and inflammation in COVID-19?. Heliyon, 2021, 7, e05703.	1.4	25
119	Identifying and repurposing antiviral drugs against severe acute respiratory syndrome coronavirus 2 with in silico and inÂvitro approaches. Biochemical and Biophysical Research Communications, 2021, 538, 137-144.	1.0	12
120	3D culture models to study SARS-CoV-2 infectivity and antiviral candidates: From spheroids to bioprinting. Biomedical Journal, 2021, 44, 31-42.	1.4	27
121	Drug Inhibition of SARS-CoV-2 Replication in Human Pluripotent Stem Cell–Derived Intestinal Organoids. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 935-948.	2.3	69
122	Natural Products with Potential to Treat RNA Virus Pathogens Including SARS-CoV-2. Journal of Natural Products, 2021, 84, 161-182.	1.5	38
123	Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhancedÂviral infectivity and systemic COVID-19 infection. Journal of Biological Chemistry, 2021, 296, 100135.	1.6	63
124	Possible transmission of viruses from contaminated human feces and sewage: Implications for SARS-CoV-2. Science of the Total Environment, 2021, 755, 142575.	3.9	72
125	The Role of Angiotensin Converting Enzyme 2 in Modulating Gut Microbiota, Intestinal Inflammation, and Coronavirus Infection. Gastroenterology, 2021, 160, 39-46.	0.6	95
126	Somatic cell-derived organoids as prototypes of human epithelial tissues and diseases. Nature Materials, 2021, 20, 156-169.	13.3	105

ARTICLE IF CITATIONS # Singleâ€cell RNA sequencing analysis of SARSâ€CoVâ€2 entry receptors in human organoids. Journal of 127 2.0 19 Cellular Physiology, 2021, 236, 2950-2958. Implications of SARSâ€CoVâ€2 on current and future operation and management of wastewater systems. 1.3 Water Environment Research, 2021, 93, 502-515. 129 Fears and Hopes., 2021, , 1-24. 0 Experimental Models to Study COVID-19 Effect in Stem Cells. Cells, 2021, 10, 91. 130 1.8 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): a Systemic Infection. Clinical 131 5.7 136 Microbiology Reviews, 2021, 34, . Microbiota-derived short-chain fatty acids do not interfere with SARS-CoV-2 infection of human 4.3 colonic samples. Gut Microbes, 2021, 13, 1-9. Characteristics of Angiotensin I-converting enzyme 2, type II transmembrane serine protease 2 and 4 in 133 tree shrew indicate it as a potential animal model for SARS-CoV-2 infection. Bioengineered, 2021, 12, 1.4 3 2836-2850. Rapid single cell evaluation of human disease and disorder targets using REVEAL: SingleCellâ,,¢. BMC 134 1.2 Genomics, 2021, 22, 5. HIF Prolyl Hydroxylase Inhibitors for COVID-19 Treatment: Pros and Cons. Frontiers in Pharmacology, 135 1.6 19 2020, 11, 621054. The lungâ \in gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary 2.7 160 disease outcomes. Mucosal Immunology, 2021, 14, 296-304. SARS-CoV-2 structural features may explain limited neutralizing-antibody responses. Npj Vaccines, 2021, 137 2.9 48 6, 2. SARS-CoV-2 infection and disease outcomes in non-human primate models: advances and implications. 138 3.0 Emerging Microbes and Infections, 2021, 10, 1881-1889. Standardized Two-Step Testing of Antibody Activity in COVID-19 Convalescent Plasma. SSRN Electronic 139 0.4 2 Journal, O, , . SARS-CoV-2 as Enteric Virus in Wastewater: Which Risk on the Environment and Human Behavior?. Microbiology Insights, 2021, 14, 117863612199967. 140 141 COVID-19 and its effects on neurological expressions., 2021, , 287-292. 0 Reproducibility and sensitivity of 36 methods to quantify the SARS-CoV-2 genetic signal in raw wastewater: findings from an interlaboratory methods evaluation in the U.S.. Environmental Science: 142 1.2 185 Water Research and Technology, 2021, 7, 504-520. Proteomics-Based Insights Into the SARS-CoV-2â€"Mediated COVID-19 Pandemic: A Review of the First Year 143 2.517 of Research. Molecular and Cellular Proteomics, 2021, 20, 100103. Prostate adenocarcinoma and COVIDâ€19: The possible impacts of <i>TMPRSS2</i> expressions in 144 1.6 susceptibility to SARSâ€CoVâ€2. Journal of Cellular and Molecular Medicine, 2021, 25, 4157-4165.

#	Article	IF	CITATIONS
145	Occurrence and Distribution of Disinfection Byproducts in Domestic Wastewater Effluent, Tap Water, and Surface Water during the SARS-CoV-2 Pandemic in China. Environmental Science & Technology, 2021, 55, 4103-4114.	4.6	75
146	Microfluidic Organoids-on-a-Chip: Quantum Leap in Cancer Research. Cancers, 2021, 13, 737.	1.7	49
147	Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide. Nature Communications, 2021, 12, 866.	5.8	73
148	Role of biomaterials in the diagnosis, prevention, treatment, and study of corona virus disease 2019 (COVID-19). Emergent Materials, 2021, 4, 35-55.	3.2	19
149	COVID-19: Molecular and Cellular Response. Frontiers in Cellular and Infection Microbiology, 2021, 11, 563085.	1.8	31
150	Differential Expression of Rab5 and Rab7 Small GTPase Proteins in Placental Tissues From Pregnancies Affected by Maternal Coronavirus Disease 2019. Clinical Therapeutics, 2021, 43, 308-318.	1.1	9
151	How Do We Move Type 1 Diabetes Immunotherapies Forward During the Current COVID-19 Pandemic?. Diabetes, 2021, 70, 1021-1028.	0.3	2
152	COVID-19—from mucosal immunology to IBD patients. Mucosal Immunology, 2021, 14, 566-573.	2.7	11
153	Less Severe Cases of COVID-19 in Sub-Saharan Africa: Could Co-infection or a Recent History of Plasmodium falciparum Infection Be Protective?. Frontiers in Immunology, 2021, 12, 565625.	2.2	18
154	SARS–CoV-2 Immuno-Pathogenesis and Potential for Diverse Vaccines and Therapies: Opportunities and Challenges. Infectious Disease Reports, 2021, 13, 102-125.	1.5	24
155	Propolis, Bee Honey, and Their Components Protect against Coronavirus Disease 2019 (COVID-19): A Review of In Silico, In Vitro, and Clinical Studies. Molecules, 2021, 26, 1232.	1.7	78
156	The gut microbiome: a missing link in understanding the gastrointestinal manifestations of COVID-19?. Journal of Physical Education and Sports Management, 2021, 7, a006031.	0.5	22
158	SARS-CoV-2 Infection and Disease Modelling Using Stem Cell Technology and Organoids. International Journal of Molecular Sciences, 2021, 22, 2356.	1.8	13
159	SARS-CoV-2 tropism, entry, replication, and propagation: Considerations for drug discovery and development. PLoS Pathogens, 2021, 17, e1009225.	2.1	160
161	COVID‑19 and SARS‑CoV‑2 host cell entry mediators: Expression profiling of TMRSS4 in health and disease. International Journal of Molecular Medicine, 2021, 47, .	1.8	23
163	Epithelial and Endothelial Expressions of ACE2: SARS-CoV-2 Entry Routes. Journal of Pharmacy and Pharmaceutical Sciences, 2021, 24, 84-93.	0.9	44
164	TMPRSS11D and TMPRSS13 Activate the SARS-CoV-2 Spike Protein. Viruses, 2021, 13, 384.	1.5	50
166	Potential intestinal infection and faecal–oral transmission of SARS-CoV-2. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 269-283.	8.2	223

#	Article	IF	CITATIONS
167	Infectious diseases affecting the small bowel – what not to miss. Current Opinion in Gastroenterology, 2021, 37, 255-266.	1.0	1
168	SARS-CoV-2 and the Gastrointestinal Tract in Children. Frontiers in Pediatrics, 2021, 9, 617980.	0.9	50
169	Potential Differences in Cleavage of the S Protein and Type 1 Interferon Together Control Human Coronavirus Infection, Propagation, and Neuropathology within the Central Nervous System. Journal of Virology, 2021, 95, .	1.5	14
170	A genome-wide CRISPR screen identifies host factors that regulate SARS-CoV-2 entry. Nature Communications, 2021, 12, 961.	5.8	204
171	New Insights Into the Physiopathology of COVID-19: SARS-CoV-2-Associated Gastrointestinal Illness. Frontiers in Medicine, 2021, 8, 640073.	1.2	45
172	COVID-19 Pandemic: Advances in Diagnosis, Treatment, Organoid Applications and Impacts on Cancer Patient Management. Frontiers in Medicine, 2021, 8, 606755.	1.2	4
173	Implications of SARS-COV-2 infection in the diagnosis and management of the pediatric gastrointestinal disease. Italian Journal of Pediatrics, 2021, 47, 71.	1.0	14
174	Review of studies of severe acute respiratory syndrome related coronavirus–2 pathogenesis in human organoid models. Reviews in Medical Virology, 2021, 31, e2227.	3.9	10
175	Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes. PLoS Biology, 2021, 19, e3001143.	2.6	180
176	The Organoid Platform: Promises and Challenges as Tools in the Fight against COVID-19. Stem Cell Reports, 2021, 16, 412-418.	2.3	20
177	The dark side of the gut: Virome–host interactions in intestinal homeostasis and disease. Journal of Experimental Medicine, 2021, 218, .	4.2	29
178	Microbicidal actives with virucidal efficacy against SARS-CoV-2 and other beta- and alpha-coronaviruses and implications for future emerging coronaviruses and other enveloped viruses. Scientific Reports, 2021, 11, 5626.	1.6	45
179	Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nature Medicine, 2021, 27, 717-726.	15.2	838
180	Environmental aspect and applications of nanotechnology to eliminate COVID-19 epidemiology risk. Nanotechnology for Environmental Engineering, 2021, 6, 1.	2.0	2
181	Occurrence of SARS-CoV-2 in excreta, sewage, and environment: epidemiological significance and potential risks. International Journal of Environmental Health Research, 2022, 32, 1686-1706.	1.3	12
182	Blockade of SARS-CoV-2 spike protein-mediated cell–cell fusion using COVID-19 convalescent plasma. Scientific Reports, 2021, 11, 5558.	1.6	19
183	Single-Cell Expression Landscape of SARS-CoV-2 Receptor ACE2 and Host Proteases in Normal and Malignant Lung Tissues from Pulmonary Adenocarcinoma Patients. Cancers, 2021, 13, 1250.	1.7	7
184	Establishment of a well-characterized SARS-CoV-2 lentiviral pseudovirus neutralization assay using 293T cells with stable expression of ACE2 and TMPRSS2. PLoS ONE, 2021, 16, e0248348.	1.1	102

#	Article	IF	CITATIONS
185	Time Evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Wastewater during the First Pandemic Wave of COVID-19 in the Metropolitan Area of Barcelona, Spain. Applied and Environmental Microbiology, 2021, 87, .	1.4	92
186	Exposure Profile of Severe Acute Respiratory Syndrome Coronavirus 2 in Canadian Food Sources. Journal of Food Protection, 2021, 84, 1295-1303.	0.8	9
187	Mini-Review Discussing the Reliability and Efficiency of COVID-19 Vaccines. Diagnostics, 2021, 11, 579.	1.3	114
188	SARS-CoV-2 infection of the oral cavity and saliva. Nature Medicine, 2021, 27, 892-903.	15.2	527
189	Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host and Microbe, 2021, 29, 477-488.e4.	5.1	700
190	The characteristics of gastrointestinal symptoms in patients with severe COVID-19: a systematic review and meta-analysis. Journal of Gastroenterology, 2021, 56, 409-420.	2.3	28
191	A meta-analysis of comorbidities in COVID-19: Which diseases increase the susceptibility of SARS-CoV-2 infection?. Computers in Biology and Medicine, 2021, 130, 104219.	3.9	48
192	SARS-CoV-2 and the role of orofecal transmission: a systematic review. F1000Research, 2021, 10, 231.	0.8	27
193	Innate and Adaptive Immunity Alterations in Metabolic Associated Fatty Liver Disease and Its Implication in COVID-19 Severity. Frontiers in Immunology, 2021, 12, 651728.	2.2	6
194	Network Analysis and Transcriptome Profiling Identify Autophagic and Mitochondrial Dysfunctions in SARS-CoV-2 Infection. Frontiers in Genetics, 2021, 12, 599261.	1.1	64
195	ROLE OF AMBROXOL AS A PROPHYLACTIC AGENT AGAINST COVID-19. Universal Journal of Pharmaceutical Research, 0, , .	0.1	0
196	<scp>COVID</scp> â€19: immunopathology, pathophysiological mechanisms, and treatment options. Journal of Pathology, 2021, 254, 307-331.	2.1	86
197	In the eye of the storm: <scp>SARS oVâ€2</scp> infection and replication at the ocular surface?. Stem Cells Translational Medicine, 2021, 10, 976-986.	1.6	28
199	Repositioned Drugs for COVID-19—the Impact on Multiple Organs. SN Comprehensive Clinical Medicine, 2021, 3, 1484-1501.	0.3	3
200	Human Pluripotent Stem Cell-Derived Intestinal Organoids Model SARS-CoV-2 Infection Revealing a Common Epithelial Inflammatory Response. Stem Cell Reports, 2021, 16, 940-953.	2.3	20
201	SARS-CoV-2 induced intestinal responses with a biomimetic human gut-on-chip. Science Bulletin, 2021, 66, 783-793.	4.3	91
202	SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. ELife, 2021, 10, .	2.8	160
203	SARS-CoV-2 Viral Entry Proteins in Hyperandrogenemic Female Mice: Implications for Women with	1.8	10

		LEPORT	
#	Article	IF	CITATIONS
204	Stability of SARS-CoV-2 RNA in Nonsupplemented Saliva. Emerging Infectious Diseases, 2021, 27, 1146-1150.	2.0	61
205	Neurological Symptoms of COVID-19: The Zonulin Hypothesis. Frontiers in Immunology, 2021, 12, 665300.	2.2	29
207	Safe and effective two-in-one replicon-and-VLP minispike vaccine for COVID-19: Protection of mice after a single immunization. PLoS Pathogens, 2021, 17, e1009064.	2.1	21
208	Development of a Vaccine against SARS-CoV-2 Based on the Receptor-Binding Domain Displayed on Virus-Like Particles. Vaccines, 2021, 9, 395.	2.1	32
209	Singleâ€cell analyses reveal SARSâ€CoVâ€2 interference with intrinsic immune response in the human gut. Molecular Systems Biology, 2021, 17, e10232.	3.2	78
210	From bedside to bench: regulation of host factors in SARS-CoV-2 infection. Experimental and Molecular Medicine, 2021, 53, 483-494.	3.2	6
211	Every breath you take: Impacts of environmental dust exposure on intestinal barrier function–from the gut-lung axis to COVID-19. American Journal of Physiology - Renal Physiology, 2021, 320, G586-G600.	1.6	14
212	Expression map of entry receptors and infectivity factors for pan-coronaviruses in preimplantation and implantation stage human embryos. Journal of Assisted Reproduction and Genetics, 2021, 38, 1709-1720.	1.2	14
213	Cell-free DNA maps COVID-19 tissue injury and risk of death and can cause tissue injury. JCI Insight, 2021, 6, .	2.3	86
214	Epigenetic regulation of ACE2, the receptor of the SARS-CoV-2 virus ¹ . Genome, 2021, 64, 386-399.	0.9	58
215	Coronavirus entry: how we arrived at SARS-CoV-2. Current Opinion in Virology, 2021, 47, 113-120.	2.6	51
216	Global prevalence of prolonged gastrointestinal symptoms in COVID-19 survivors and potentialÂpathogenesis:ÂA systematic review and meta-analysis. F1000Research, 2021, 10, 301.	0.8	54
217	SARS-CoV-2 and SARS-CoV Spike-Mediated Cell-Cell Fusion Differ in Their Requirements for Receptor Expression and Proteolytic Activation. Journal of Virology, 2021, 95, .	1.5	79
218	Protective Role of a TMPRSS2 Variant on Severe COVID-19 Outcome in Young Males and Elderly Women. Genes, 2021, 12, 596.	1.0	39
219	SARS-CoV-2: Pathogenesis, Molecular Targets and Experimental Models. Frontiers in Pharmacology, 2021, 12, 638334.	1.6	14
220	Computational Identification of a Putative Allosteric Binding Pocket in TMPRSS2. Frontiers in Molecular Biosciences, 2021, 8, 666626.	1.6	3
221	COVID-19 and the gastrointestinal tract: source of infection or merely a target of the inflammatory process following SARS-CoV-2 infection?. World Journal of Gastroenterology, 2021, 27, 1406-1418.	1.4	32
222	Gastrointestinal Microenvironment and the Gut-Lung Axis in the Immune Responses of Severe COVID-19. Frontiers in Molecular Biosciences, 2021, 8, 647508.	1.6	9

#	Article	IF	CITATIONS
223	Dual nature of human ACE2 glycosylation in binding to SARS-CoV-2 spike. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	131
224	SARS-CoV-2 spike variants exhibit differential infectivity and neutralization resistance to convalescent or post-vaccination sera. Cell Host and Microbe, 2021, 29, 522-528.e2.	5.1	173
226	Experimental Methods to Study the Pathogenesis of Human Enteric RNA Viruses. Viruses, 2021, 13, 975.	1.5	5
227	Role of Serine Proteases and Host Cell Receptors Involved in Proteolytic Activation, Entry of SARS-CoV-2 and Its Current Therapeutic Options. Infection and Drug Resistance, 2021, Volume 14, 1883-1892.	1.1	10
228	SARS-CoV-2 infects human adult donor eyes and hESC-derived ocular epithelium. Cell Stem Cell, 2021, 28, 1205-1220.e7.	5.2	44
229	SARS-CoV-2-Induced Gut Microbiome Dysbiosis: Implications for Colorectal Cancer. Cancers, 2021, 13, 2676.	1.7	21
230	Management of patients with digestive diseases during the COVID-19 pandemic. Clinical Practice Guidelines by the Russian scientiine medical society of internal medicine (RSMSIM) and the Gastroenterological Scientiine Society of Russia (2nd edition). Eksperimental'naya I Klinicheskaya Gastroenterologiva, 2021, , 5-82.	0.1	6
231	Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infectious Diseases, 2021, 53, 737-754.	1.4	699
233	Current Strategies of Antiviral Drug Discovery for COVID-19. Frontiers in Molecular Biosciences, 2021, 8, 671263.	1.6	75
234	Comprehensive Comparison of RNA-Seq Data of SARS-CoV-2, SARS-CoV and MERS-CoV Infections: Alternative Entry Routes and Innate Immune Responses. Frontiers in Immunology, 2021, 12, 656433.	2.2	11
235	Increased ACE2 Levels and Mortality Risk of Patients With COVID-19 on Proton Pump Inhibitor Therapy. American Journal of Gastroenterology, 2021, 116, 1638-1645.	0.2	12
236	A review of the presence of SARS-CoV-2 RNA in wastewater and airborne particulates and its use for virus spreading surveillance. Environmental Research, 2021, 196, 110929.	3.7	56
237	Organoids to Dissect Gastrointestinal Virus–Host Interactions: What Have We Learned?. Viruses, 2021, 13, 999.	1.5	11
238	Tropism of Severe Acute Respiratory Syndrome Coronavirus 2 for Barrett's Esophagus May Increase Susceptibility to Developing Coronavirus Disease 2019. Gastroenterology, 2021, 160, 2165-2168.e4.	0.6	6
239	Targeting the intestinal TMPRSS2 protease to prevent SARS-CoV-2 entry into enterocytes-prospects and challenges. Molecular Biology Reports, 2021, 48, 4667-4675.	1.0	12
240	The mini lungs and other organoids helping to beat COVID. Nature, 2021, 593, 492-494.	13.7	8
241	Human pluripotent stem cell-based organoids and cell platforms for modelling SARS-CoV-2 infection and drug discovery. Stem Cell Research, 2021, 53, 102207.	0.3	13
242	METTL3 regulates viral m6A RNA modification and host cell innate immune responses during SARS-CoV-2 infection. Cell Reports, 2021, 35, 109091.	2.9	124

#	Article	IF	CITATIONS
243	Case report: histopathology and molecular pathology analysis on enteric tissue of a COVID-19 patient. Diagnostic Pathology, 2021, 16, 40.	0.9	3
244	Human Immunodeficiency Viruses Pseudotyped with SARS-CoV-2 Spike Proteins Infect a Broad Spectrum of Human Cell Lines through Multiple Entry Mechanisms. Viruses, 2021, 13, 953.	1.5	17
245	Dysregulation of COVID-19 related gene expression in the COPD lung. Respiratory Research, 2021, 22, 164.	1.4	22
246	Broad antiviral and antiâ€inflammatory efficacy of nafamostat against SARSâ€CoVâ€2 and seasonal coronaviruses in primary human bronchiolar epithelia. Nano Select, 2022, 3, 437-449.	1.9	8
247	The Many Faces of Innate Immunity in SARS-CoV-2 Infection. Vaccines, 2021, 9, 596.	2.1	10
248	Gender-based differences in coronavirus disease 2019: Hormonal influencers of severe acute respiratory syndrome coronavirus receptors and immune responses. , 0, 2, 17.		0
249	Increased colonic expression of ACE2 associates with poor prognosis in Crohn's disease. Scientific Reports, 2021, 11, 13533.	1.6	14
250	Human Defensins Inhibit SARS-CoV-2 Infection by Blocking Viral Entry. Viruses, 2021, 13, 1246.	1.5	35
251	Development of potent and selective inhibitors targeting the papain-like protease of SARS-CoV-2. Cell Chemical Biology, 2021, 28, 855-865.e9.	2.5	67
252	Letter to the Editor regarding Mathavarajah et al. (2020) Pandemic danger to the deep: The risk of marine mammals contracting SARS-CoV-2 from wastewater. Science of the Total Environment, 2021, 773, 144855.	3.9	9
253	Landscape of SARS-CoV-2 spike protein-interacting cells in human tissues. International Immunopharmacology, 2021, 95, 107567.	1.7	14
254	Intestinal Host Response to SARS-CoV-2 Infection and COVID-19 Outcomes in Patients With Gastrointestinal Symptoms. Gastroenterology, 2021, 160, 2435-2450.e34.	0.6	118
255	Gut Dysbiosis and IL-21 Response in Patients with Severe COVID-19. Microorganisms, 2021, 9, 1292.	1.6	34
257	COVID-19 Gastrointestinal Symptoms and Attenuation of the Immune Response to SARS-CoV-2. Gastroenterology, 2021, 160, 2251-2254.	0.6	4
258	COVIDâ€19 and celiac disease: A pathogenetic hypothesis for a celiac outbreak. International Journal of Clinical Practice, 2021, 75, e14452.	0.8	18
259	Limited intestinal inflammation despite diarrhea, fecal viral RNA and SARS-CoV-2-specific IgA in patients with acute COVID-19. Scientific Reports, 2021, 11, 13308.	1.6	50
260	Nanomedicine: A Diagnostic and Therapeutic Approach to COVID-19. Frontiers in Medicine, 2021, 8, 648005.	1.2	25
261	Is the Intestine a Portal of Entry for the Serious COVID-19 Complications of Endotoxemia and Thrombosis?. Clinical and Translational Gastroenterology, 2021, 12, e00367.	1.3	2

#	Article	IF	CITATIONS
264	Defense of COVID-19 by Human Organoids. Phenomics, 2021, 1, 113-128.	0.9	8
265	Case report of gastrointestinal localization of SARS-CoV-2 and open abdomen technique in an Italian emergency surgery department for gastrointestinal bleeding. Annals of Medicine and Surgery, 2021, 66, 102405.	0.5	1
266	SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature, 2021, 596, 109-113.	13.7	586
267	COVID-19-associated diarrhea. World Journal of Gastroenterology, 2021, 27, 3208-3222.	1.4	32
268	In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature, 2021, 596, 103-108.	13.7	222
269	SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2. Immunity, 2021, 54, 1304-1319.e9.	6.6	115
270	BACTERIAL TRANSLOCATION: MICROBIOTA-INTESTINE-LUNG AXIS AND PRO-INFLAMMATORY STATUS IN THE SEVERITY OF COVID-19. Journal of Experimental Biology and Agricultural Sciences, 2021, 9, 239-253.	0.1	0
271	DHX15 is required to control RNA virus-induced intestinal inflammation. Cell Reports, 2021, 35, 109205.	2.9	28
272	Different Neutralization Sensitivity of SARS-CoV-2 Cell-to-Cell and Cell-Free Modes of Infection to Convalescent Sera. Viruses, 2021, 13, 1133.	1.5	19
273	Application of a High-Content Screening Assay Utilizing Primary Human Lung Fibroblasts to Identify Antifibrotic Drugs for Rapid Repurposing in COVID-19 Patients. SLAS Discovery, 2021, 26, 1091-1106.	1.4	3
274	The endogenous cellular protease inhibitor SPINT2 controls SARS-CoV-2 viral infection and is associated to disease severity. PLoS Pathogens, 2021, 17, e1009687.	2.1	4
277	Impact of Expressing Cells on Glycosylation and Glycan of the SARS-CoV-2 Spike Glycoprotein. ACS Omega, 2021, 6, 15988-15999.	1.6	32
278	Organoid Technology and the COVID Pandemic. , 0, , .		4
279	Assessing and managing SARS-CoV-2 occupational health risk to workers handling residuals and biosolids. Science of the Total Environment, 2021, 774, 145732.	3.9	17
280	Gastrointestinal tissue as a "new―target of pollution exposure. IUBMB Life, 2022, 74, 62-73.	1.5	16
281	Role of gastrointestinal system on transmission and pathogenesis of SARS-CoV-2. World Journal of Clinical Cases, 2021, 9, 5427-5434.	0.3	6
282	Cigarette Smoke Specifically Affects Small Airway Epithelial Cell Populations and Triggers the Expansion of Inflammatory and Squamous Differentiation Associated Basal Cells. International Journal of Molecular Sciences, 2021, 22, 7646.	1.8	16
283	SARSâ€CoVâ€2 sensing by RIGâ€I and MDA5 links epithelial infection to macrophage inflammation. EMBO Journal, 2021, 40, e107826.	3.5	144

#	Article	IF	CITATIONS
284	The unfolding palette of COVID-19 multisystemic syndrome and its neurological manifestations. Brain, Behavior, & Immunity - Health, 2021, 14, 100251.	1.3	22
285	Prophylactic and therapeutic potential of selected immunomodulatory agents from Ayurveda against coronaviruses amidst the current formidable scenario: an <i>in silico</i> analysis. Journal of Biomolecular Structure and Dynamics, 2022, 40, 9648-9700.	2.0	8
286	A Review on Expression, Pathological Roles, and Inhibition of TMPRSS2, the Serine Protease Responsible for SARS-CoV-2 Spike Protein Activation. Scientifica, 2021, 2021, 1-9.	0.6	8
287	An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell Reports, 2021, 36, 109452.	2.9	90
288	SARS-CoV-2 Cellular Entry Is Independent of the ACE2 Cytoplasmic Domain Signaling. Cells, 2021, 10, 1814.	1.8	31
289	Fatal attraction: intestinal amebiasis and COVID-19 as risk factors for colonic perforation. Journal of Surgical Case Reports, 2021, 2021, rjab301.	0.2	4
290	COVID-19 infection in severe Alpha 1-antitrypsin deficiency: Looking for a rationale. Respiratory Medicine, 2021, 183, 106440.	1.3	23
291	Sewage Systems Surveillance for SARS-CoV-2: Identification of Knowledge Gaps, Emerging Threats, and Future Research Needs. Pathogens, 2021, 10, 946.	1.2	17
292	Single-cell RNA sequencing of SARS–CoV-2 cell entry factors in the preconceptional human endometrium. Human Reproduction, 2021, 36, 2709-2719.	0.4	21
293	Basic mechanisms of SARS-CoV-2 infection. What endocrine systems could be implicated?. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 137-150.	2.6	15
294	Perspectives for the optimization and utility of the rotavirus reverse genetics system. Virus Research, 2021, 303, 198500.	1.1	2
295	The Use of Stem Cell-Derived Organoids in Disease Modeling: An Update. International Journal of Molecular Sciences, 2021, 22, 7667.	1.8	34
297	The antiandrogen enzalutamide downregulates TMPRSS2 and reduces cellular entry of SARS-CoV-2 in human lung cells. Nature Communications, 2021, 12, 4068.	5.8	57
298	Probable Causes and Risk Factors for Positive SARS-CoV-2 Testing in Recovered Patients: Evidence From Guangzhou, China. Frontiers in Medicine, 2021, 8, 684101.	1.2	3
303	Structural and functional basis for pan-CoV fusion inhibitors against SARS-CoV-2 and its variants with preclinical evaluation. Signal Transduction and Targeted Therapy, 2021, 6, 288.	7.1	38
304	Recent advance of ACE2 and microbiota dysfunction in COVID-19 pathogenesis. Heliyon, 2021, 7, e07548.	1.4	15
305	Gastrointestinal manifestations of coronavirus disease 2019. Current Opinion in Infectious Diseases, 2021, 34, 471-476.	1.3	4
307	Differential impact of COVIDâ€19 in pregnant women from highâ€income countries and low―to middleâ€income countries: A systematic review and metaâ€analysis. International Journal of Gynecology and Obstetrics. 2021, 155, 48-56.	1.0	44

#	Article	IF	CITATIONS
308	Identification of a special cell type as a determinant of the kidney tropism of SARSâ€CoVâ€2. FEBS Journal, 2021, 288, 5163-5178.	2.2	5
309	Gut Microbiota Dysbiosis Is a Crucial Player for the Poor Outcomes for COVID-19 in Elderly, Diabetic and Hypertensive Patients. Frontiers in Medicine, 2021, 8, 644751.	1.2	17
310	Convergent antibody responses to the SARS-CoV-2 spike protein in convalescent and vaccinated individuals. Cell Reports, 2021, 36, 109604.	2.9	67
311	Organotypic human exÂvivo models for coronavirus disease 2019 research and drug development. Current Opinion in Pharmacology, 2021, 59, 11-18.	1.7	5
312	Host Serine Proteases: A Potential Targeted Therapy for COVID-19 and Influenza. Frontiers in Molecular Biosciences, 2021, 8, 725528.	1.6	41
313	Organoids in modelling infectious diseases. Drug Discovery Today, 2022, 27, 223-233.	3.2	14
314	Gastrointestinal mucosal immunity and COVID-19. World Journal of Gastroenterology, 2021, 27, 5047-5059.	1.4	20
315	Human models for COVIDâ€19 research. Journal of Physiology, 2021, 599, 4255-4267.	1.3	7
317	SARSâ€CoVâ€2 pseudovirus infectivity and expression of viral entryâ€related factors ACE2, TMPRSS2, Kimâ€1, and NRPâ€1 in human cells from the respiratory, urinary, digestive, reproductive, and immune systems. Journal of Medical Virology, 2021, 93, 6671-6685.	2.5	26
318	HIV infection drives interferon signaling within intestinal SARS-CoV-2 target cells. JCI Insight, 2021, 6, .	2.3	7
319	Synergistic Block of SARS-CoV-2 Infection by Combined Drug Inhibition of the Host Entry Factors PIKfyve Kinase and TMPRSS2 Protease. Journal of Virology, 2021, 95, e0097521.	1.5	34
320	Therapeutic implications of SARS-CoV-2 dysregulation of the gut-brain-lung axis. World Journal of Gastroenterology, 2021, 27, 4763-4783.	1.4	9
321	Human small intestinal infection by SARS-CoV-2 is characterized by a mucosal infiltration with activated CD8+ T cells. Mucosal Immunology, 2021, 14, 1381-1392.	2.7	50
322	Critical appraisal of the mechanisms of gastrointestinal and hepatobiliary infection by COVID-19. American Journal of Physiology - Renal Physiology, 2021, 321, G99-G112.	1.6	12
323	The Promising Enzymes for Inhibitors Development against COVID-19. Mini-Reviews in Medicinal Chemistry, 2021, 21, .	1.1	0
324	Pan-Cancer Analysis of Genomic and Prognostic Characteristics Associated With Coronavirus Disease 2019 Regulators. Frontiers in Medicine, 2021, 8, 662460.	1.2	6
325	Microbiota as a potentially-modifiable factor influencing COVID-19. Current Opinion in Virology, 2021, 49, 21-26.	2.6	14
326	Natural Bioactive Molecules as Potential Agents Against SARS-CoV-2. Frontiers in Pharmacology, 2021, 12, 702472.	1.6	8

#	Article	IF	CITATIONS
327	Human Basigin (CD147) Does Not Directly Interact with SARS-CoV-2 Spike Glycoprotein. MSphere, 2021, 6, e0064721.	1.3	40
328	Elimination of SARS-CoV-2 along wastewater and sludge treatment processes. Water Research, 2021, 202, 117435.	5.3	50
329	Clinical and inÂVitro Evidence against Placenta Infection at Term by Severe Acute Respiratory Syndrome Coronavirus 2. American Journal of Pathology, 2021, 191, 1610-1623.	1.9	30
330	A vaccine-induced public antibody protects against SARS-CoV-2 and emerging variants. Immunity, 2021, 54, 2159-2166.e6.	6.6	52
331	Molecular Insights into SARS-CoV2-Induced Alterations of the Gut/Brain Axis. International Journal of Molecular Sciences, 2021, 22, 10440.	1.8	19
332	Mathematical modeling based on RT-qPCR analysis of SARS-CoV-2 in wastewater as a tool for epidemiology. Scientific Reports, 2021, 11, 19456.	1.6	24
333	Cardiac and Renal SARS-CoV-2 Viral Entry Protein Regulation by Androgens and Diet: Implications for Polycystic Ovary Syndrome and COVID-19. International Journal of Molecular Sciences, 2021, 22, 9746.	1.8	3
334	Comprehensive Risk Pathway of the Qualitative Likelihood of Human Exposure to Severe Acute Respiratory Syndrome Coronavirus 2 from the Food Chain. Journal of Food Protection, 2022, 85, 85-97.	0.8	2
335	Single-dose intranasal vaccination elicits systemic and mucosal immunity against SARS-CoV-2. IScience, 2021, 24, 103037.	1.9	66
336	Cellular host factors for SARS-CoV-2 infection. Nature Microbiology, 2021, 6, 1219-1232.	5.9	127
337	A CRISPR/Cas9 genetically engineered organoid biobank reveals essential host factors for coronaviruses. Nature Communications, 2021, 12, 5498.	5.8	57
338	Proteolytic activation of SARS oVâ€2 spike protein. Microbiology and Immunology, 2022, 66, 15-23.	0.7	106
339	Microbiota and Its Impact on the Immune System in COVID-19—A Narrative Review. Journal of Clinical Medicine, 2021, 10, 4537.	1.0	11
340	Epigenetic Mechanisms Underlying COVID-19 Pathogenesis. Biomedicines, 2021, 9, 1142.	14	10
010		1.1	
341	Host Cell and SARS-CoV-2-Associated Molecular Structures and Factors as Potential Therapeutic Targets. Cells, 2021, 10, 2427.	1.8	5
341 342	Host Cell and SARS-CoV-2-Associated Molecular Structures and Factors as Potential Therapeutic Targets. Cells, 2021, 10, 2427. A virus-free cellular model recapitulates several features of severe COVID-19. Scientific Reports, 2021, 11, 17473.	1.8	5
341 342 343	Host Cell and SARS-CoV-2-Associated Molecular Structures and Factors as Potential Therapeutic Targets. Cells, 2021, 10, 2427. A virus-free cellular model recapitulates several features of severe COVID-19. Scientific Reports, 2021, 11, 17473. Determinants of SARS-CoV-2 entry and replication in airway mucosal tissue and susceptibility in smokers. Cell Reports Medicine, 2021, 2, 100421.	1.8 1.6 3.3	5 4 11

#	Article	IF	CITATIONS
347	Application of Human Induced Pluripotent Stem Cell-Derived Cellular and Organoid Models for COVID-19 Research. Frontiers in Cell and Developmental Biology, 2021, 9, 720099.	1.8	14
348	Society for Maternal-Fetal Medicine Special Statement: COVID-19 research in pregnancy: progress and potential. American Journal of Obstetrics and Gynecology, 2021, 225, B19-B31.	0.7	14
349	Vitamin K in COVID-19—Potential Anti-COVID-19 Properties of Fermented Milk Fortified with Bee Honey as a Natural Source of Vitamin K and Probiotics. Fermentation, 2021, 7, 202.	1.4	11
350	Gut microbiota and renin-angiotensin system: a complex interplay at local and systemic levels. American Journal of Physiology - Renal Physiology, 2021, 321, G355-G366.	1.6	42
351	Impact of temperature on the affinity of SARS-CoV-2 Spike glycoprotein for host ACE2. Journal of Biological Chemistry, 2021, 297, 101151.	1.6	42
352	Know your enemy and know yourself – the case of SARS-CoV-2 host factors. Current Opinion in Virology, 2021, 50, 159-170.	2.6	9
353	From the environment to the cells: An overview on pivotal factors which affect spreading and infection in COVID-19 pandemic. Environmental Research, 2021, 201, 111555.	3.7	8
354	The existence, spread, and strategies for environmental monitoring and control of SARS-CoV-2 in environmental media. Science of the Total Environment, 2021, 795, 148949.	3.9	4
355	Nrf2 activator PB125® as a carnosic acid-based therapeutic agent against respiratory viral diseases, including COVID-19. Free Radical Biology and Medicine, 2021, 175, 56-64.	1.3	16
356	Co-expression of the SARS-CoV-2 entry molecules ACE2 and TMPRSS2 in human ovaries: Identification of cell types and trends with age. Genomics, 2021, 113, 3449-3460.	1.3	17
357	A wastewater-based epidemiology tool for COVID-19 surveillance in Portugal. Science of the Total Environment, 2022, 804, 150264.	3.9	41
358	SARS-CoV-2 Cellular Infection and Therapeutic Opportunities: Lessons Learned from Ebola Virus. Membranes, 2021, 11, 64.	1.4	0
359	Dependence of SARS-CoV-2 infection on cholesterol-rich lipid raft and endosomal acidification. Computational and Structural Biotechnology Journal, 2021, 19, 1933-1943.	1.9	69
360	No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor. Scientific Reports, 2021, 11, 413.	1.6	156
361	Differentiating between the possibility and probability of SARS-CoV-2 transmission associated with wastewater: empirical evidence is needed to substantiate risk. FEMS Microbes, 2021, 2, .	0.8	24
362	Gut Microbiota Dysbiosis and COVID-19: Possible Links. , 2022, , 535-544.		5
363	Looking back, moving forward. , 2021, , 167-216.		0
364	BOAT1 Amino Acid Transporter Complexed With SARS-CoV-2 Receptor ACE2 Forms a Heterodimer Functional Unit: <i>In Situ</i> Conformation Using Radiation Inactivation Analysis. Function, 2021, 2, zoab027	1.1	13

#	Article	IF	CITATIONS
365	Biomaterials-Based Opportunities to Engineer the Pulmonary Host Immune Response in COVID-19. ACS Biomaterials Science and Engineering, 2021, 7, 1742-1764.	2.6	16
366	How SARS-CoV-2 (COVID-19) spreads within infected hosts — what we know so far. Emerging Topics in Life Sciences, 2020, 4, 383-390.	1.1	28
367	The Impact of SARS-CoV-2 on the Human Immune System and Microbiome. Infectious Microbes & Diseases, 2021, 3, 14-21.	0.5	11
368	Stem-cell-derived models: tools for studying role of microbiota in intestinal homeostasis and disease. Current Opinion in Gastroenterology, 2021, 37, 15-22.	1.0	4
394	Autoimmunity as the comet tail of COVID-19 pandemic. World Journal of Clinical Cases, 2020, 8, 3621-3644.	0.3	50
395	Might proton pump or sodiumâ€hydrogen exchanger inhibitors be of value to ameliorate SARsâ€CoVâ€2 pathophysiology?. Physiological Reports, 2021, 8, e14649.	0.7	9
396	Neuropathology of COVID-19 (neuro-COVID): clinicopathological update. Free Neuropathology, 2021, 2,	2.4	62
397	Engineering a Model to Study Viral Infections: Bioprinting, Microfluidics, and Organoids to Defeat Coronavirus Disease 2019 (COVID-19). International Journal of Bioprinting, 2020, 6, 302.	1.7	38
398	COVID-19 and children. Pulmonologiya, 2020, 30, 609-628.	0.2	15
400	Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. SSRN Electronic Journal, 2020, , 3606354.	0.4	16
401	Toward Preparing a Knowledge Base to Explore Potential Drugs and Biomedical Entities Related to COVID-19: Automated Computational Approach. JMIR Medical Informatics, 2020, 8, e21648.	1.3	9
402	The Relationship Between Demographic, Socioeconomic, and Health-Related Parameters and the Impact of COVID-19 on 24 Regions in India: Exploratory Cross-Sectional Study. JMIR Public Health and Surveillance, 2020, 6, e23083.	1.2	4
403	Management of patients with digestive diseases during the COVID-19 pandemic: Clinical Practice Guidelines by the Gastroenterological Scientific Society of Russia. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2020, , 4-51.	0.1	20
404	An overview of the gut side of the SARS-CoV-2 infection. Intestinal Research, 2021, 19, 379-385.	1.0	16
405	Restarting gastrointestinal endoscopy in the deceleration and early recovery phases of COVID-19 pandemic: Guidance from the British Society of Gastroenterology. Clinical Medicine, 2020, 20, 352-358.	0.8	54
406	SARS–CoV–2 and Food—How Confident Are We about Them?. Hygiene, 2021, 1, 80-98.	0.5	1
407	Organoid Models for Infectious Disease. Annual Review of Medicine, 2022, 73, 167-182.	5.0	20
408	Receptor-Loaded Virion Endangers GPCR Signaling: Mechanistic Exploration of SARS-CoV-2 Infections and Pharmacological Implications. International Journal of Molecular Sciences, 202 <u>1</u> , 22, 10963.	1.8	4

#	Article	IF	CITATIONS
409	The gut microbiome as a biomarker of differential susceptibility to SARS-CoV-2. Trends in Molecular Medicine, 2021, 27, 1115-1134.	3.5	37
410	Organoids as host models for infection biology – a review of methods. Experimental and Molecular Medicine, 2021, 53, 1471-1482.	3.2	39
411	Differential roles of interferons in innate responses to mucosal viral infections. Trends in Immunology, 2021, 42, 1009-1023.	2.9	39
412	Dual inhibition of TMPRSS2 and Cathepsin B prevents SARS-CoV-2 infection in iPS cells. Molecular Therapy - Nucleic Acids, 2021, 26, 1107-1114.	2.3	35
413	Enteric Coronavirus Infection and Treatment Modeled With an Immunocompetent Human Intestine-On-A-Chip. Frontiers in Pharmacology, 2021, 12, 718484.	1.6	52
414	SARSâ€CoVâ€2 and wastewater: What does it mean for nonâ€human primates?. American Journal of Primatology, 2022, 84, e23340.	0.8	5
415	Controlling the polarity of human gastrointestinal organoids to investigate epithelial biology and infectious diseases. Nature Protocols, 2021, 16, 5171-5192.	5.5	83
416	How dendritic cells sense and respond to viral infections. Clinical Science, 2021, 135, 2217-2242.	1.8	16
417	Sterols, Oxysterols, and Accessible Cholesterol: Signalling for Homeostasis, in Immunity and During Development. Frontiers in Physiology, 2021, 12, 723224.	1.3	11
418	Impact of COVID-19 on Patients with Inflammatory Bowel Disease. Journal of Exploratory Research in Pharmacology, 2022, 7, 37-44.	0.2	4
419	Cathepsin L, transmembrane peptidase/serine subfamily member 2/4, and other host proteases in COVID-19 pathogenesis – with impact on gastrointestinal tract. World Journal of Gastroenterology, 2021, 27, 6590-6600.	1.4	11
420	A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	54
421	SARS-CoV-2 Causes Lung Infection without Severe Disease in Human ACE2 Knock-In Mice. Journal of Virology, 2022, 96, JVI0151121.	1.5	58
422	COVID-19 cynomolgus macaque model reflecting human COVID-19 pathological conditions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
423	Epitope Analysis of Anti-SARS-CoV-2 Neutralizing Antibodies. Current Medical Science, 2021, 41, 1065.	0.7	3
424	Protective effects elicited by cow milk fermented with L. Paracasei CBAL74 against SARS-CoV-2 infection in human enterocytes. Journal of Functional Foods, 2021, 87, 104787.	1.6	9
427	Coronaviral Infection (COVID-19) in Children (Situation on June 2020). PediatriÄeskaâ Farmakologiâ, 2020, 17, 162-178.	0.1	6
429	Original SARS-CoV-2 vaccine model. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2020, , 128-132.	0.1	0

#	Article	IF	CITATIONS
430	Organoids: a new research model for SARS-CoV-2infection and treatment. Scientia Sinica Vitae, 2023, 53, 238-249.	0.1	1
431	Protective Efficacy of Gastrointestinal SARS-CoV-2 Delivery against Intranasal and Intratracheal SARS-CoV-2 Challenge in Rhesus Macaques. Journal of Virology, 2022, 96, JVI0159921.	1.5	5
432	Systematic Review and Meta-Analysis of the Persistence of Enveloped Viruses in Environmental Waters and Wastewater in the Absence of Disinfectants. Environmental Science & Technology, 2021, 55, 14480-14493.	4.6	40
433	Identification of sampling points for the detection of SARS-CoV-2 in the sewage system. Sustainable Cities and Society, 2022, 76, 103422.	5.1	7
434	SARSâ€CoVâ€2–host proteome interactions for antiviral drug discovery. Molecular Systems Biology, 2021, 17, e10396.	3.2	53
435	Untapping host-targeting cross-protective efficacy of anticoagulants against SARS-CoV-2. , 2022, 233, 108027.		2
436	<i>LactobacillusÂplantarum</i> induces innate cytokine responses that potentially provide a protective benefit against COVIDâ€19: A singleâ€arm, doubleâ€blind, prospective trial combined with an <i>inÂvitro</i> cytokine response assay. Experimental and Therapeutic Medicine, 2021, 23, 20.	0.8	21
438	COVID-19 PANDEMİSİNİN ćEVRE ÜZERİNDEKİ ERKEN DÖNEM ETKİLERİ. Uludağ University Jourr of Engineering, 0, , 1611-1636.	hal of the 1	Faculty
439	Polyethyleneimine-complexed charge-reversed yeast cell walls for enhanced oral delivery of pseudovirus-based antigens. Chemical Communications, 2021, 57, 12768-12771.	2.2	5
440	Preliminary Data on Gastrointestinal Deficiencies Incidence and the Prevalence of Anxiety During the COVID-19 Pandemic Among the Medical Workers. Journal of Nervous and Mental Disease, 2021, Publish Ahead of Print, .	0.5	1
441	SARS-CoV-2 and the role of orofecal transmission: a systematic review. F1000Research, 0, 10, 231.	0.8	24
444	Basic virological aspects of SARS-CoV-2. , 2022, , 1-30.		0
445	Mesalamine Reduces Intestinal ACE2 Expression Without Modifying SARS-CoV-2 Infection or Disease Severity in Mice. Inflammatory Bowel Diseases, 2022, 28, 318-321.	0.9	5
446	Expression of SARSâ€CoVâ€2 entry factors, electrolyte, and mineral transporters in different mouse intestinal epithelial cell types. Physiological Reports, 2021, 9, e15061.	0.7	3
447	Autophagy: The Potential Link between SARS-CoV-2 and Cancer. Cancers, 2021, 13, 5721.	1.7	17
448	m6A Regulator-Mediated Methylation Modification Patterns and Characteristics of Immunity in Blood Leukocytes of COVID-19 Patients. Frontiers in Immunology, 2021, 12, 774776.	2.2	17
449	Immunological Mechanisms of Vaccine-Induced Protection against SARS-CoV-2 in Humans. Immuno, 2021, 1, 442-456.	0.6	7
451	Reduced antibody activity against SARS-CoV-2 B.1.617.2 delta virus in serum of mRNA-vaccinated individuals receiving tumor necrosis factor-α inhibitors. Med, 2021, 2, 1327-1341.e4.	2.2	31

#	Article	IF	CITATIONS
452	COVID-19 as a trigger of irritable bowel syndrome: A review of potential mechanisms. World Journal of Gastroenterology, 2021, 27, 7433-7445.	1.4	37
453	Host parameters and mode of infection influence outcome in SARS-CoV-2 infected hamsters. IScience, 2021, 24, 103530.	1.9	12
454	The impact of COVID-19 on human reproduction and directions for fertility treatment during the pandemic. Clinical and Experimental Reproductive Medicine, 2021, 48, 273-282.	0.5	5
455	Roles of antiviral sensing and type I interferon signaling in the restriction of SARS-CoV-2 replication. IScience, 2021, , 103553.	1.9	5
456	SARS CoV-2 Delta variant exhibits enhanced infectivity and a minor decrease in neutralization sensitivity to convalescent or post-vaccination sera. IScience, 2021, 24, 103467.	1.9	26
457	Antiviral properties of whey proteins and their activity against SARS-CoV-2 infection. Journal of Functional Foods, 2022, 89, 104932.	1.6	19
458	ACE2 and TMPRSS2 immunolocalization and oral manifestations of COVIDâ€19. Oral Diseases, 2022, 28, 2456-2464.	1.5	14
459	When stem cells meet COVID-19: recent advances, challenges and future perspectives. Stem Cell Research and Therapy, 2022, 13, 9.	2.4	9
460	COVID-19: Invasion, pathogenesis and possible cure – A review. Journal of Virological Methods, 2022, 300, 114434.	1.0	18
461	Cathepsin B is a potential therapeutic target for coronavirus disease 2019 patients with lung adenocarcinoma. Chemico-Biological Interactions, 2022, 353, 109796.	1.7	11
462	Molecular Mechanisms of SARS-CoV-2/COVID-19 Pathogenicity on the Central Nervous System: Bridging Experimental Probes to Clinical Evidence and Therapeutic Interventions. Advances in Experimental Medicine and Biology, 2021, , 1.	0.8	1
463	Клінічні ÐįроÑĐ²Ð, ÑÐ,Đ½ÐĩN€Đ¾Đ¼Ñƒ ÐįоÑÑ,-COVID-19. Endokrynologia, 2021, 26,	2048-262.	0
464	Oral cavity infection by the SARS-CoV-2: emphasizing the essence of masking and peptide therapeutics. Egyptian Journal of Medical Human Genetics, 2022, 23, .	0.5	10
465	Chromosome-Scale Genome of Masked Palm Civet (Paguma larvata) Shows Genomic Signatures of Its Biological Characteristics and Evolution. Frontiers in Genetics, 2021, 12, 819493.	1.1	3
466	Human Organoids as a Promising Platform for Fighting COVID-19. International Journal of Biological Sciences, 2022, 18, 901-910.	2.6	3
467	SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature, 2022, 603, 687-692.	13.7	475
468	Modeling viral infection with tissue engineering: COVID-19 and the next outbreaks. , 2022, , 647-667.		1
469	Characterization of SARS-CoV-2 Entry Factors' Expression in Corneal and Limbal Tissues of Adult Human Donors Aged from 58 to 85. Journal of Ocular Pharmacology and Therapeutics, 2022, 38, 56-65.	0.6	4

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
470	Attenuation of SARS-CoV-2 infection by losartan in human kidney organoids. IScience, 2022, 25, 103818.	1.9	15
471	From Bench to the Clinic: The Path to Translation of Nanotechnology-Enabled mRNA SARS-CoV-2 Vaccines. Nano-Micro Letters, 2022, 14, 41.	14.4	26
472	SARS-CoV-2 infections in children: Understanding diverse outcomes. Immunity, 2022, 55, 201-209.	6.6	79
474	Adaptive differentiation promotes intestinal villus recovery. Developmental Cell, 2022, 57, 166-179.e6.	3.1	25
475	Obatoclax inhibits SARS-CoV-2 entry by altered endosomal acidification and impaired cathepsin and furin activity in vitro. Emerging Microbes and Infections, 2022, 11, 483-497.	3.0	16
476	SARS-COV-2 Variants: Differences and Potential of Immune Evasion. Frontiers in Cellular and Infection Microbiology, 2021, 11, 781429.	1.8	154
477	JIB-04 Has Broad-Spectrum Antiviral Activity and Inhibits SARS-CoV-2 Replication and Coronavirus Pathogenesis. MBio, 2022, 13, e0337721.	1.8	14
478	COVID-19: Gastrointestinal manifestations, liver injury and recommendations. World Journal of Clinical Cases, 2022, 10, 1140-1163.	0.3	27
479	The Prevalence and Clinical Implications of Rectal SARS-CoV-2 Shedding in Danish COVID-19 Patients and the General Population. Frontiers in Medicine, 2021, 8, 804804.	1.2	7
480	The enzymes in COVID-19: A review. Biochimie, 2022, 197, 38-48.	1.3	6
481	Angiopoietins as Prognostic Markers for Future Kidney Disease and Heart Failure Events after Acute Kidney Injury. Journal of the American Society of Nephrology: JASN, 2022, 33, 613-627.	3.0	16
482	SARS-CoV-2 Remains Infectious on Refrigerated Deli Food, Meats, and Fresh Produce for up to 21 Days. Foods, 2022, 11, 286.	1.9	27
483	The Effects of SARS-CoV-2 Infection on Female Fertility: A Review of the Literature. International Journal of Environmental Research and Public Health, 2022, 19, 984.	1.2	44
485	Standardized two-step testing of antibody activity in COVID-19 convalescent plasma. IScience, 2022, 25, 103602.	1.9	6
486	An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nature Medicine, 2022, 28, 490-495.	15.2	577
487	Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Science Translational Medicine, 2022, 14, .	5.8	55
488	Human Organoids and Organsâ€onâ€Chips for Addressing COVIDâ€19 Challenges. Advanced Science, 2022, 9, e2105187.	5.6	19
489	Engineering in vitro immune-competent tissue models for testing and evaluation of therapeutics. Advanced Drug Delivery Reviews, 2022, 182, 114111.	6.6	15

#	Article	IF	CITATIONS
490	Immunoediting in SARS-CoV-2: Mutual relationship between the virus and the host. International Immunopharmacology, 2022, 105, 108531.	1.7	1
491	Gastrointestinal Microbiota Dysbiosis Associated with SARS-CoV-2 Infection in Colorectal Cancer: The Implication of Probiotics. Gastroenterology Insights, 2022, 13, 35-59.	0.7	10
492	Evolutionary history of type II transmembrane serine proteases involved in viral priming. Human Genetics, 2022, 141, 1705-1722.	1.8	6
493	SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell, 2022, 29, 217-231.e8.	5.2	146
496	Development of an in vitro model for animal species susceptibility to SARS-CoV-2 replication based on expression of ACE2 and TMPRSS2 in avian cells. Virology, 2022, 569, 1-12.	1.1	6
497	SARS-CoV-2 infection causes intestinal cell damage: Role of interferon's imbalance. Cytokine, 2022, 152, 155826.	1.4	11
498	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, 0, , .	13.7	101
499	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, 2022, 602, 664-670.	13.7	917
504	Cholesterol-Rich Lipid Rafts as Platforms for SARS-CoV-2 Entry. Frontiers in Immunology, 2021, 12, 796855.	2.2	63
505	Host cell entry mediators implicated in the cellular tropism of SARS‑CoV‑2, the pathophysiology of COVID‑19 and the identification of microRNAs that can modulate the expression of these mediators (Review). International Journal of Molecular Medicine, 2021, 49, .	1.8	14
506	Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Science Translational Medicine, 2021, , eabm3302.	5.8	13
507	COVID-19 AND CANCER COMORBIDITY: THERAPEUTIC OPPORTUNITIES AND CHALLENGES (RUSSIAN) TJ ETQq1	1 0,78431 0.1	4 rgBT /Ov <mark>e</mark> r
508	The Organoids: Derivations and Applications. Pancreatic Islet Biology, 2022, , 1-19.	0.1	0
509	Effect of SARS-CoV-2 Entry Factors on Myeloid Cancers. Journal of Nippon Medical School, 2022, 89, 95-101.	0.3	1
510	Immunoregulatory Intestinal Microbiota and COVID-19 in Patients with Type Two Diabetes: A Double-Edged Sword. Viruses, 2022, 14, 477.	1.5	18
511	Duodenal tropism of SARS-CoV-2 and clinical findings in critically ill COVID-19 patients. Infection, 2022, 50, 1111-1120.	2.3	9
512	Molecular and Physiological Aspects of SARS-CoV-2 Infection in Women and Pregnancy. Frontiers in Global Women S Health, 2022, 3, 756362.	1.1	1
513	Simian Immunodeficiency Virus Infection Mediated Changes in Jejunum and Peripheral SARS-CoV-2 Receptor ACE2 and Associated Proteins or Genes in Rhesus Macaques. Frontiers in Immunology, 2022, 13, 835686.	2.2	2

		CITATION REPORT	
#	Article	IF	CITATIONS
515	Organoid Studies in COVID-19 Research. International Journal of Stem Cells, 2022, 15, 3-13.	0.8	13
516	Protein expression of transmembrane protease serine 4 in the gastrointestinal tract and in healt cancer, and SARS‑CoV‑2 infected lungs. Molecular Medicine Reports, 2022, 25, .	thy, 1.1	3
517	Polymorphisms and mutations of ACE2ÂandÂTMPRSS2ÂgenesÂare associated with COVID-19:ÂaÂsystematicÂreview. European Journal of Medical Research, 2022, 27, 26.	0.9	17
518	Genome-wide analyses reveal the detrimental impacts of SARS-CoV-2 viral gene Orf9c on human pluripotent stem cell-derived cardiomyocytes. Stem Cell Reports, 2022, 17, 522-537.	n 2.3	2
519	Deciphering the Neurosensory Olfactory Pathway and Associated Neo-Immunometabolic Vulnerabilities Implicated in COVID-Associated Mucormycosis (CAM) and COVID-19 in a Diabeto Backdrop—A Novel Perspective. International Journal of Diabetology, 2022, 3, 193-235.	es 0.9	6
520	Boosting with variant-matched or historical mRNA vaccines protects against Omicron infection mice. Cell, 2022, 185, 1572-1587.e11.	in 13.5	71
522	Increased Sensitivity of SARS-CoV-2 to Type III Interferon in Human Intestinal Epithelial Cells. Jou of Virology, 2022, 96, e0170521.	urnal 1.5	17
523	Human liver organoid derived intra-hepatic bile duct cells support SARS-CoV-2 infection and replication. Scientific Reports, 2022, 12, 5375.	1.6	18
525	Variable susceptibility of intestinal organoid–derived monolayers to SARS-CoV-2 infection. PL Biology, 2022, 20, e3001592.	oS 2.6	23
526	Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry. ELife, 2022, 11, .	2.8	34
527	Investigating underlying human immunity genes, implicated diseasesÂand their relationship toÂ Personalized Medicine, 2022, , .	COVID-19. 0.8	2
529	Intestinal Damage in COVID-19: SARS-CoV-2 Infection and Intestinal Thrombosis. Frontiers in Microbiology, 2022, 13, 860931.	1.5	15
530	Human Organotypic Airway and Lung Organoid Cells of Bronchiolar and Alveolar Differentiation Permissive to Infection by Influenza and SARS-CoV-2 Respiratory Virus. Frontiers in Cellular and Infection Microbiology, 2022, 12, 841447.	Are 1.8	17
531	Nitric Oxide in the Management of Respiratory Consequences in COVID-19: A Scoping Review c Different Treatment Approach. Cureus, 2022, 14, e23852.	fa 0.2	8
532	Prevalence and patterns of symptoms of dysautonomia in patients with longâ€ <scp>COVID<td>cp> 1.7 '8-785.</td><td>23</td></scp>	cp> 1.7 '8-785.	23
533	Gut Microbiota might act as a potential therapeutic pathway in COVID-19. Current Pharmaceut Biotechnology, 2022, 23, .	ical 0.9	1
534	Human organoid models to study SARS-CoV-2 infection. Nature Methods, 2022, 19, 418-428.	9.0	73
535	Pathological Mechanisms of Oral Manifestations in Patients with COVID-19. Journal of Clinical Otolaryngology, 2021, 32, 163-169.	0.1	0

#	Article	IF	CITATIONS
536	Periodontal Disease: The Good, The Bad, and The Unknown. Frontiers in Cellular and Infection Microbiology, 2021, 11, 766944.	1.8	104
537	Absence of virological and epidemiological evidence that SARS-CoV-2 poses COVID-19 risks from environmental fecal waste, wastewater and water exposures. Journal of Water and Health, 2022, 20, 126-138.	1.1	25
538	Atovaquone and Berberine Chloride Reduce SARS-CoV-2 Replication In Vitro. Viruses, 2021, 13, 2437.	1.5	10
539	Drug repurposing and other strategies for rapid coronavirus antiviral development: lessons from the early stage of the COVID-19 pandemic. , 2021, , 39-68.		0
540	Antiviral Immunity in SARS-CoV-2 Infection: From Protective to Deleterious Responses. Microorganisms, 2021, 9, 2578.	1.6	1
541	Immunofluorescence studies on the expression of the SARS-CoV-2 receptors in human term placenta. Cells Tissues Organs, 2021, , .	1.3	0
543	Post-infectious irritable bowel syndrome: renaissance time?. Medical Alphabet, 2021, , 23-28.	0.0	1
544	COVID-19: management in the ICU. , 2021, , 124-143.		2
545	Molecular mechanisms for understanding the association between TMPRSS2 and beta coronaviruses SARS-CoV-2, SARS-CoV and MERS-CoV infection: scoping review. Archives of Microbiology, 2022, 204, 77.	1.0	4
546	In Silico Screening of Natural Products as Potential Inhibitors of SARS-CoV-2 Using Molecular Docking Simulation. Chinese Journal of Integrative Medicine, 2022, 28, 249-256.	0.7	22
547	SARS-CoV-2 Infection and Pancreatic \hat{I}^2 Cell Failure. Biology, 2022, 11, 22.	1.3	15
548	Potential Associations Between Microbiome and COVID-19. Frontiers in Medicine, 2021, 8, 785496.	1.2	23
549	Neurological aspects of COVID-19. Kazan Medical Journal, 2021, 102, 877-886.	0.1	0
550	SARS-CoV-2 productively infects primary human immune system cells <i>in vitro</i> and in COVID-19 patients. Journal of Molecular Cell Biology, 2022, 14, .	1.5	26
551	The Predictive Value of Serum ACE2 and TMPRSS2 Concentrations in Patients with COVID-19—A Prospective Pilot Study. Journal of Personalized Medicine, 2022, 12, 622.	1.1	4
552	Identification of Transcription Factors Regulating SARS-CoV-2 Tropism Factor Expression by Inferring Cell-Type-Specific Transcriptional Regulatory Networks in Human Lungs. Viruses, 2022, 14, 837.	1.5	3
553	mRNA-1273 and Ad26.COV2.S vaccines protect against the B.1.621 variant of SARS-CoV-2. Med, 2022, 3, 309-324.e6.	2.2	6
555	Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med, 2022, 3, 371-387.e9.	2.2	165

#	Article	IF	CITATIONS
556	Functional Analysis of Spike from SARS-CoV-2 Variants Reveals the Role of Distinct Mutations in Neutralization Potential and Viral Infectivity. Viruses, 2022, 14, 803.	1.5	10
559	Chronic Exposure to Waterpipe Smoke Elicits Immunomodulatory and Carcinogenic Effects in the Lung. Cancer Prevention Research, 2022, 15, 423-434.	0.7	1
560	Stem cell-driven tissue regeneration as treatment for COVID-19. , 2022, , 125-138.		0
561	Comparison of Six Serological Immunoassays for the Detection of SARS-CoV-2 Neutralizing Antibody Levels in the Vaccinated Population. Viruses, 2022, 14, 946.	1.5	14
562	Alterations in microbiota of patients with COVID-19: potential mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 2022, 7, 143.	7.1	83
563	Control of CDH1/E-Cadherin Gene Expression and Release of a Soluble Form of E-Cadherin in SARS-CoV-2 Infected Caco-2 Intestinal Cells: Physiopathological Consequences for the Intestinal Forms of COVID-19. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	14
564	Mapping the epithelial–immune cell interactome upon infection in the gut and the upper airways. Npj Systems Biology and Applications, 2022, 8, 15.	1.4	3
565	Immunouniverse of SARS-CoV-2. Immunological Medicine, 2022, 45, 186-224.	1.4	8
566	Taxonomical and functional changes in <scp>COVID</scp> â€19 faecal microbiome could be related to <scp>SARS oV</scp> â€2 faecal load. Environmental Microbiology, 2022, 24, 4299-4316.	1.8	20
567	ADAM10 and ADAM17 promote SARSâ€CoVâ€2 cell entry and spike proteinâ€mediated lung cell fusion. EMBO Reports, 2022, 23, e54305.	2.0	57
568	Comparison of young and elderly COVID-19 cynomolgus macaque models reflecting human COVID-19 pathological conditions. Translational and Regulatory Sciences, 2021, 4, 20-24.	0.2	0
569	In vitro characterization of the furin inhibitor MI-1851: Albumin binding, interaction with cytochrome P450 enzymes and cytotoxicity. Biomedicine and Pharmacotherapy, 2022, 151, 113124.	2.5	6
570	ACE2â€enriched extracellular vesicles enhance infectivity of live SARSâ€CoVâ€2 virus. Journal of Extracellular Vesicles, 2022, 11, e12231.	5.5	14
571	Potential intestinal infection and faecalâ€oral transmission of human coronaviruses. Reviews in Medical Virology, 2022, 32, e2363.	3.9	3
572	Accelerating a safe and effective control measures for Covid-19 pandemic: Water, sanitation and wash. AIP Conference Proceedings, 2022, , .	0.3	0
573	Mechanisms involved in controlling RNA virus-induced intestinal inflammation. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	8
574	SARS CoV-2-Induced Viral Sepsis: The Role of Gut Barrier Dysfunction. Microorganisms, 2022, 10, 1050.	1.6	16
575	Saliva as an alternative specimen to nasopharyngeal swabs for COVID-19 diagnosis: Review. Access Microbiology, 2022, 4, .	0.2	7

#	Article	IF	CITATIONS
576	Human interaction targets of SARS-CoV-2 spike protein: A systematic review. European Journal of Inflammation, 2022, 20, 1721727X2210953.	0.2	3
577	Human Cell Organelles in SARS-CoV-2 Infection: An Up-to-Date Overview. Viruses, 2022, 14, 1092.	1.5	3
578	COVID-19 and Liquid Homeostasis in the Lung—A Perspective through the Epithelial Sodium Channel (ENaC) Lens. Cells, 2022, 11, 1801.	1.8	4
579	SARS-CoV-2 Infection Is Not Associated With Pediatric Appendicitis. Pediatric Infectious Disease Journal, 2022, 41, e321-e323.	1.1	3
580	Highly restricted SARS-CoV-2 receptor expression and resistance to infection by primary human monocytes and monocyte-derived macrophages. Journal of Leukocyte Biology, 2022, 112, 569-576.	1.5	9
581	Organoids in gastrointestinal diseases: from experimental models to clinical translation. Gut, 2022, 71, 1892-1908.	6.1	40
582	Suite of TMPRSS2 Assays for Screening Drug Repurposing Candidates as Potential Treatments of COVID-19. ACS Infectious Diseases, 2022, 8, 1191-1203.	1.8	4
583	Novel cleavage sites identified in SARS-CoV-2 spike protein reveal mechanism for cathepsin L-facilitated viral infection and treatment strategies. Cell Discovery, 2022, 8, .	3.1	40
584	COVID-19 and its impact on cancer, HIV, and mentally ill patients. , 2022, , 95-137.		1
585	Conjunctival epithelial cells resist productive SARS-CoV-2 infection. Stem Cell Reports, 2022, 17, 1699-1713.	2.3	5
586	Structure and activity of human TMPRSS2 protease implicated in SARS-CoV-2 activation. Nature Chemical Biology, 2022, 18, 963-971.	3.9	83
588	COVID-19 liver and gastroenterology findings: An <i>in silico</i> analysis of SARS-CoV-2 interactions with liver molecules. World Journal of Hepatology, 2022, 14, 1131-1141.	0.8	0
589	Severe Acute Respiratory Syndrome Coronavirus 2 Is Detected in the Gastrointestinal Tract of Asymptomatic Endoscopy Patients but Is Unlikely to Pose a Significant Risk to Healthcare Personnel. , 2022, 1, 844-852.		4
590	Clinical and Genetic Characteristics of Coronaviruses with Particular Emphasis on SARS-CoV-2 Virus. Polish Journal of Microbiology, 2022, 71, 141-159.	0.6	0
591	mRNA vaccine boosting enhances antibody responses against SARS-CoV-2 Omicron variant in in in individuals with antibody deficiency syndromes. Cell Reports Medicine, 2022, 3, 100653.	3.3	10
592	ABO blood group and link to COVID-19: A comprehensive review of the reported associations and their possible underlying mechanisms. Microbial Pathogenesis, 2022, 169, 105658.	1.3	19
593	Respiratory and Intestinal Microbiota in Pediatric Lung Diseases—Current Evidence of the Gut–Lung Axis. International Journal of Molecular Sciences, 2022, 23, 6791.	1.8	11
594	Will the Use of Pharmacogenetics Improve Treatment Efficiency in COVID-19?. Pharmaceuticals, 2022, 15, 739.	1.7	6

# 595	ARTICLE COVID-19 Therapies: Protease Inhibitions and Novel Degrader Strategies. Frontiers in Drug Discovery, 0, 2, .	IF 1.1	CITATIONS 2
596	Gastrointestinal perforation and vascular thrombosis in patients with corona virus disease-19: A life-threatening problem. Indian Journal of Gastroenterology, 2022, 41, 218-223.	0.7	1
597	Comparing the Cytokine Storms of COVID-19 and Pandemic Influenza. Journal of Interferon and Cytokine Research, 2022, 42, 369-392.	0.5	9
598	IMM-BCP-01, a patient-derived anti–SARS-CoV-2 antibody cocktail, is active across variants of concern including Omicron BA.1 and BA.2. Science Immunology, 2022, 7, .	5.6	8
599	Safety evaluation of MA-T after ingestion in mice. Toxicology, 2022, , 153254.	2.0	2
600	Gastrointestinal Manifestations of Coronavirus Disease 2019 Across the United States: A Multicenter Cohort Study. , 2022, 1, 909-915.		5
601	Is SARS-CoV-2 a Concern for Food Safety? A Very Low Prevalence from a Food Survey during the COVID-19 Pandemic in Northern Italy. Foods, 2022, 11, 2096.	1.9	1
602	COVID-19: gastrointestinal and hepatobiliary manifestations. Human Pathology, 2023, 132, 39-55.	1.1	8
603	Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains. Nature Communications, 2022, 13, .	5.8	93
604	Transcriptional landscape of human neuroblastoma cells in response to SARS-CoV-2. BMC Neuroscience, 2022, 23, .	0.8	3
605	Imaging Techniques: Essential Tools for the Study of SARS-CoV-2 Infection. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	4
606	Understanding the cellular pathogenesis of COVID-19 symptoms using organoid technology. Organoid, 0, 2, e16.	0.0	0
607	Host Cell Proteases Mediating SARS-CoV-2 Entry: An Overview Current Topics in Medicinal Chemistry, 2022, 22, .	1.0	7
608	Advances in understanding interferon-mediated immune responses to enteric viruses in intestinal organoids. Frontiers in Immunology, 0, 13, .	2.2	3
609	<i>ACE2</i> and <i>TMPRSS2</i> SARS-CoV-2 infectivity genes: deep mutational scanning and characterization of missense variants. Human Molecular Genetics, 2022, 31, 4183-4192.	1.4	3
610	Factors Modulating COVID-19: A Mechanistic Understanding Based on the Adverse Outcome Pathway Framework. Journal of Clinical Medicine, 2022, 11, 4464.	1.0	13
611	Role of Nuclear Factor Erythroid 2 (Nrf2) in the Recovery of Long COVID-19 Using Natural Antioxidants: A Systematic Review. Antioxidants, 2022, 11, 1551.	2.2	12
612	Allelic Variations in the Human Genes TMPRSS2 and CCR5, and the Resistance to Viral Infection by SARS-CoV-2. International Journal of Molecular Sciences, 2022, 23, 9171.	1.8	5

#	Article	IF	CITATIONS
613	Mesenchymal stem cells and their derived small extracellular vesicles for COVID-19 treatment. Stem Cell Research and Therapy, 2022, 13, .	2.4	4
615	l've looked at gut from both sides now: Gastrointestinal tract involvement in the pathogenesis of SARS-CoV-2 and HIV/SIV infections. Frontiers in Immunology, 0, 13, .	2.2	3
616	Blockade of TMPRSS2-mediated priming of SARS-CoV-2 by lactoferricin. Frontiers in Immunology, 0, 13, .	2.2	7
617	Quinolizidines as Novel SARS-CoV-2 Entry Inhibitors. International Journal of Molecular Sciences, 2022, 23, 9659.	1.8	3
618	Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infectious Diseases, 2022, 8, 1758-1814.	1.8	47
619	Comparison of SARS-CoV-2 spike RNA sequences in feces and nasopharynx indicates intestinal replication. Gut Pathogens, 2022, 14, .	1.6	4
620	Reduction in SARS-CoV-2 Virus Infectivity in Human and Hamster Feces. Viruses, 2022, 14, 1777.	1.5	6
621	Increased TRIM31 gene expression is positively correlated with SARS-CoV-2 associated genes TMPRSS2 and TMPRSS4 in gastrointestinal cancers. Scientific Reports, 2022, 12, .	1.6	11
622	ELF5 is a potential respiratory epithelial cell-specific risk gene for severe COVID-19. Nature Communications, 2022, 13, .	5.8	12
623	Effects of coronavirus disease 19 on the gastrointestinal tract and the potential impact on gastrointestinal toxicities during cancer treatment. Current Opinion in Supportive and Palliative Care, 2022, 16, 168-173.	0.5	0
624	Epigenetic perspectives of COVID-19: Virus infection to disease progression and therapeutic control. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166527.	1.8	4
626	SARS-CoV-2-associated gut microbiome alteration; A new contributor to colorectal cancer pathogenesis. Pathology Research and Practice, 2022, 239, 154131.	1.0	7
627	Deciphering COVID-19 host transcriptomic complexity and variations for therapeutic discovery against new variants. IScience, 2022, 25, 105068.	1.9	4
628	COVID-19 Impact on Host atÂPathophysiological and Cellular Level. , 2022, , 67-111.		1
629	Extracellular: Plasma Membrane Proteases â \in " Serine Proteases. , 2022, , .		0
630	Great escape: how infectious SARS-CoV-2 avoids inactivation by gastric acidity and intestinal bile. Gut, 2023, 72, 808-810.	6.1	4
631	Rotavirus C Replication in Porcine Intestinal Enteroids Reveals Roles for Cellular Cholesterol and Sialic Acids. Viruses, 2022, 14, 1825.	1.5	5
632	Viral cultures for assessing fomite transmission of SARS-CoV-2: a systematic review and meta-analysis. Journal of Hospital Infection, 2022, 130, 63-94.	1.4	9

#	Article	IF	CITATIONS
635	SARS-CoV-2 requires acidic pH to infect cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	54
636	Spike mutations contributing to the altered entry preference of SARS-CoV-2 omicron BA.1 and BA.2. Emerging Microbes and Infections, 2022, 11, 2275-2287.	3.0	48
637	Long-term effects of COVID-19 on cancer patients: the experience from Guy's Cancer Centre. Future Oncology, 2022, 18, 3585-3594.	1.1	4
638	Human Cardiac Pericytes Are Susceptible to SARS-CoV-2 Infection. JACC Basic To Translational Science, 2023, 8, 109-120.	1.9	13
639	Gut as an Alternative Entry Route for SARS-CoV-2: Current Evidence and Uncertainties of Productive Enteric Infection in COVID-19. Journal of Clinical Medicine, 2022, 11, 5691.	1.0	10
640	Robust therapeutic effects on COVID-19 of novel small molecules: Alleviation of SARS-CoV-2 S protein induction of ACE2/TMPRSS2, NOX2/ROS, and MCP-1. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	3
641	Druggable targets and therapeutic development for COVID-19. Frontiers in Chemistry, 0, 10, .	1.8	4
642	Clinical and pathogenic features of COVID-19- associated diarrhea syndrome. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2022, , 276-283.	0.1	1
643	Survival of human coronavirus 229E at different temperatures on various food-contact surfaces and food and under simulated digestive conditions. Food Research International, 2022, 162, 112014.	2.9	4
644	Molecular-Level Targets for the Development of Therapies Against Coronavirus Diseases. Methods in Pharmacology and Toxicology, 2021, , 69-84.	0.1	0
645	Long-term Gastrointestinal Complications Following COVID-19. , 2022, , 67-76.		0
646	Spike protein mediated membrane fusion during SARS oVâ€2 infection. Journal of Medical Virology, 2023, 95, .	2.5	15
647	Gut microbiota in COVID-19: key microbial changes, potential mechanisms and clinical applications. Nature Reviews Gastroenterology and Hepatology, 2023, 20, 323-337.	8.2	61
648	Transmembrane serine protease TMPRSS2 implicated in SARS-CoV-2 infection is autoactivated intracellularly and requires N-glycosylation for regulation. Journal of Biological Chemistry, 2022, 298, 102643.	1.6	2
649	Characterization of the SARS-CoV-2 co-receptor NRP1 expression profiles in healthy people and cancer patients: Implication for susceptibility to COVID-19 disease and potential therapeutic strategy. Frontiers in Genetics, 0, 13, .	1.1	4
650	Endometriosis and COVID-19: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 2022, 23, 12951.	1.8	11
651	CD169-mediated restrictive SARS-CoV-2 infection of macrophages induces pro-inflammatory responses. PLoS Pathogens, 2022, 18, e1010479.	2.1	15
652	LRRC15 inhibits SARS-CoV-2 cellular entry in trans. PLoS Biology, 2022, 20, e3001805.	2.6	10

#	Article	IF	CITATIONS
653	A systems biology approach for investigating significantly expressed genes among COVID-19, hepatocellular carcinoma, and chronic hepatitis B. Egyptian Journal of Medical Human Genetics, 2022, 23, .	0.5	1
654	Choosing a cellular model to study SARS-CoV-2. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	22
655	Bivalent SARS-CoV-2 mRNA vaccines increase breadth of neutralization and protect against the BA.5 Omicron variant in mice. Nature Medicine, 2023, 29, 247-257.	15.2	98
656	Organoid Technologies for SARS-CoV-2 Research. Current Stem Cell Reports, 0, , .	0.7	0
657	Glycosylation in SARS-CoV-2 variants: A path to infection and recovery. Biochemical Pharmacology, 2022, 206, 115335.	2.0	7
658	Impact of TMPRSS2 Expression, Mutation Prognostics, and Small Molecule (CD, AD, TQ, and TQFL12) Inhibition on Pan-Cancer Tumors and Susceptibility to SARS-CoV-2. Molecules, 2022, 27, 7413.	1.7	5
659	Gut microbiota: A new insight into lung diseases. Biomedicine and Pharmacotherapy, 2022, 155, 113810.	2.5	24
660	Identification and differential usage of a host metalloproteinase entry pathway by SARS-CoV-2 Delta and Omicron. IScience, 2022, 25, 105316.	1.9	16
661	Combined use of lactoferrin and vitamin D as a preventive and therapeutic supplement for SARS-CoV-2 infection: Current evidence. World Journal of Clinical Cases, 0, 10, 11665-11670.	0.3	1
662	Short Chain Fatty Acids: Fundamental mediators of the gut-lung axis and their involvement in pulmonary diseases. Chemico-Biological Interactions, 2022, 368, 110231.	1.7	20
663	COVID-19 and diarrhea: putative mechanisms and management. International Journal of Infectious Diseases, 2023, 126, 125-131.	1.5	2
664	SARS-CoV-2, fertility and assisted reproduction. Human Reproduction Update, 2023, 29, 177-196.	5.2	32
665	Gastrointestinal, Liver, Pancreas, Oral and Psychological Long-term Symptoms of COVID-19 After Recovery: A Review. Mini-Reviews in Medicinal Chemistry, 2023, 23, 852-868.	1.1	2
666	ACE2-Independent Alternative Receptors for SARS-CoV-2. Viruses, 2022, 14, 2535.	1.5	36
669	The expression profile of 79 genes from 107 viruses revealed new insights into disease susceptibility in rats, mice and muskrats. Physiological Genomics, 0, , .	1.0	0
671	Gastrointestinal organoids in the study of viral infections. American Journal of Physiology - Renal Physiology, 2023, 324, G51-G59.	1.6	3
672	Organoids of the male reproductive system: Challenges, opportunities, and their potential use in fertility research. WIREs Mechanisms of Disease, 2023, 15, .	1.5	4
673	A potent and broad neutralization of SARS-CoV-2 variants of concern by DARPins. Nature Chemical Biology, 2023, 19, 284-291.	3.9	7

		CITATION	Report	
#	ARTICLE		IF	CITATIONS
674	Organoids. Nature Reviews Methods Primers, 2022, 2, .		11.8	130
675	The Pathogenesis of Gastrointestinal, Hepatic, and Pancreatic Injury in Acute and Long Disease 2019 Infection. Gastroenterology Clinics of North America, 2023, 52, 1-11.	Coronavirus	1.0	1
676	Sleep and circadian rhythm disruption alters the lung transcriptome to predispose to vir IScience, 2023, 26, 105877.	ral infection.	1.9	5
678	Alterations of the gut microbiota in coronavirus disease 2019 and its therapeutic poten Journal of Gastroenterology, 0, 28, 6689-6701.	ıtial. World	1.4	6
679	Involvement of epigenetics in affecting host immunity during SARS-CoV-2 infection. Bic Biophysica Acta - Molecular Basis of Disease, 2023, 1869, 166634.	ochimica Et	1.8	2
681	A risk assessment study of SARS-CoV-2 propagation in the manufacturing of cellular pro Regenerative Medicine, 0, , .	oducts.	0.8	0
682	An Outlook on Dental Practices to Avoid the Oral Transmission of COVID-19. Microorga 146.	anisms, 2023, 11,	1.6	1
683	Gut Microbiota in Coronavirus Disease 2019. , 2023, , 289-302.			0
684	Pathogenesis and Mechanisms of SARS-CoV-2 Infection in the Intestine, Liver, and Panc 12, 262.	reas. Cells, 2023,	1.8	13
685	Altered host protease determinants for SARS-CoV-2 Omicron. Science Advances, 2023,	9,.	4.7	12
686	Measurements of Indoor Air Quality. , 2023, , 1-35.			0
687	Comparison of the mucosal and systemic antibody responses in Covid-19 recovered part dose of mRNA vaccine and unexposed subjects with three doses of mRNA vaccines. Fro Immunology, 0, 14, .	tients with one ntiers in	2.2	3
688	Global research trends in the COVID-19 and digestive disease: A review of visualization bibliometric study. Medicine (United States), 2023, 102, e32705.	and	0.4	0
689	Point of Care Testing for SARS-COV-2 AntibodiesÂbeforeÂdoing Endoscopy. Pakistan Jo Sciences, 2023, 39, .	urnal of Medical	0.3	0
690	Identification of Embryonic Chicken Proteases Activating Newcastle Disease Virus and T the Pathogenicity of Virus Used as <i>In Ovo</i> Vaccine. Journal of Virology, 0, , .	Their Roles in	1.5	0
691	Baculovirus-expressed self-assembling SARS-CoV-2 nanoparticle vaccines targeting the induce protective immunity in mice. Process Biochemistry, 2023, 129, 200-208.	S protein	1.8	1
692	Susceptibility of domestic and companion animals to SARS-CoV-2: a comprehensive rev Animal Health and Production, 2023, 55, .	iew. Tropical	0.5	3
693	SARS-CoV-2 infection of intestinal epithelia cells sensed by RIG-I and DHX-15 evokes inr response and immune cross-talk. Frontiers in Cellular and Infection Microbiology, 0, 12,	hate immune	1.8	2

#	Article	IF	CITATIONS
694	Potential molecular mechanisms of chronic fatigue in long haul COVID and other viral diseases. Infectious Agents and Cancer, 2023, 18, .	1.2	13
695	Protease-Responsive Potential-Tunable AlEgens for Cell Selective Imaging of TMPRSS2 and Accurate Inhibitor Screening. Analytical Chemistry, 2023, 95, 3789-3798.	3.2	1
696	Induced Pluripotent Stem Cell-Derived Organoids: Their Implication in COVID-19 Modeling. International Journal of Molecular Sciences, 2023, 24, 3459.	1.8	1
697	How the Competition for Cysteine May Promote Infection of SARS-CoV-2 by Triggering Oxidative Stress. Antioxidants, 2023, 12, 483.	2.2	0
698	Optimization of sewage sampling for wastewater-based epidemiology through stochastic modeling. Journal of Engineering and Applied Science, 2023, 70, .	0.8	0
699	Investigating the competition between ACE2 natural molecular interactors and SARS-CoV-2 candidate inhibitors. Chemico-Biological Interactions, 2023, 374, 110380.	1.7	1
700	Gut microbiota composition during hospitalization is associated with 60-day mortality after severe COVID-19. Critical Care, 2023, 27, .	2.5	14
701	A Comprehensive Review on Potentially Therapeutic Agents against COVID-19 from Natural Sources. Current Traditional Medicine, 2024, 10, .	0.1	1
702	Insights into organoid-based modeling of COVID-19 pathology. Virology Journal, 2023, 20, .	1.4	1
703	Intestinal organoids: A versatile platform for modeling gastrointestinal diseases and monitoring epigenetic alterations. Life Sciences, 2023, 319, 121506.	2.0	6
704	SARS-CoV-2 Spike-Mediated Entry and Its Regulation by Host Innate Immunity. Viruses, 2023, 15, 639.	1.5	1
705	Application Potential of Luteolin in the Treatment of Viral Pneumonia. Journal of Food Biochemistry, 2023, 2023, 1-20.	1.2	0
706	COVID-19 Patients with Early Gastrointestinal Symptoms Show Persistent Deficits in Specific Attention Subdomains. Journal of Clinical Medicine, 2023, 12, 1931.	1.0	3
707	The Effect of COVID-19 on Food Consumers' Channel Purchasing Behaviors: An Empirical Study from Poland. Sustainability, 2023, 15, 4661.	1.6	4
709	Pharmacological disruption of mSWI/SNF complex activity restricts SARS-CoV-2 infection. Nature Genetics, 2023, 55, 471-483.	9.4	14
710	Integrative profiling of CEACAM1 in different malignancies with implications on the SARS-CoV-2 infection genes ACE2 and TMPRSS2. Hacettepe Journal of Biology and Chemistry, 0, , .	0.3	1
711	Bidirectional Relationship between Glycemic Control and COVID-19 and Perspectives of Islet Organoid Models of SARS-CoV-2 Infection. Biomedicines, 2023, 11, 856.	1.4	0
712	Impacts of transmembrane serine protease 4 expression on susceptibility to severe acute respiratory syndrome coronavirus 2. Chinese Medical Journal, 0, Publish Ahead of Print, .	0.9	2

#	Article	IF	CITATIONS
713	Alterations in gut immunological barrier in SARS-CoV-2 infection and their prognostic potential. Frontiers in Immunology, 0, 14, .	2.2	7
714	Modulation of gut microbiota as a potential therapy to manipulate drug-induced hepatic damage in COVID-19 patients. World Journal of Gastroenterology, 0, 29, 1708-1720.	1.4	3
715	CMPK2 is a host restriction factor that inhibits infection of multiple coronaviruses in a cell-intrinsic manner. PLoS Biology, 2023, 21, e3002039.	2.6	3
716	Organoids to Remodel SARS-CoV-2 Research: Updates, Limitations and Perspectives. , 2023, .		0
717	COVID-19 as a Trigger for Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2023, 108, 2176-2183.	1.8	8
718	TMPRSS4, a type II transmembrane serine protease, as a potential therapeutic target in cancer. Experimental and Molecular Medicine, 2023, 55, 716-724.	3.2	1
719	Fc-Î ³ R-dependent antibody effector functions are required for vaccine-mediated protection against antigen-shifted variants of SARS-CoV-2. Nature Microbiology, 2023, 8, 569-580.	5.9	33
720	SARS-CoV-2 Omicron boosting induces de novo B cell response in humans. Nature, 2023, 617, 592-598.	13.7	49
722	SARS-CoV-2 in the environment: Contamination routes, detection methods, persistence and removal in wastewater treatment plants. Science of the Total Environment, 2023, 881, 163453.	3.9	4
723	Gut distress and intervention via communications of SARS-CoV-2 with mucosal exposome. Frontiers in Public Health, 0, 11, .	1.3	0
724	Gut microbiota in COVID-19: new insights from inside. Gut Microbes, 2023, 15, .	4.3	8
725	SARS-CoV-2 Enters Human Leydig Cells and Affects Testosterone Production In Vitro. Cells, 2023, 12, 1198.	1.8	2
727	Paracellular permeability and tight junction regulation in gut health and disease. Nature Reviews Gastroenterology and Hepatology, 2023, 20, 417-432.	8.2	54
749	Advanced fluorescence microscopy in respiratory virus cell biology. Advances in Virus Research, 2023, , .	0.9	0
763	Measurements of Indoor Air Quality. , 2023, , 1621-1655.		0
765	Cooperative and structural relationships of the trimeric Spike with infectivity and antibody escape of the strains Delta (B.1.617.2) and Omicron (BA.2, BA.5, and BQ.1). Journal of Computer-Aided Molecular Design, 0, , .	1.3	0
799	Severe pediatric COVID-19: a review from the clinical and immunopathophysiological perspectives. World Journal of Pediatrics, 0, , .	0.8	0