Impact of Acorn Flour on Gluten-Free Dough Rheology

Foods 9, 560 DOI: 10.3390/foods9050560

Citation Report

#	Article	IF	CITATIONS
1	Microalgae biomass as an additional ingredient of gluten-free bread: Dough rheology, texture quality and nutritional properties. Algal Research, 2020, 50, 101998.	4.6	65
3	Acorn Flour as a Source of Bioactive Compounds in Gluten-Free Bread. Molecules, 2020, 25, 3568.	3.8	26
4	Improving the Technological and Nutritive Properties of Gluten-Free Bread by Fresh Curd Cheese Enrichment. Applied Sciences (Switzerland), 2020, 10, 6868.	2.5	3
5	Acorn flour properties depending on the production method and laboratory baking test results: A review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 980-1008.	11.7	18
6	Reinvigorating Modern Breadmaking Based on Ancient Practices and Plant Ingredients, with Implementation of a Physicochemical Approach. Foods, 2021, 10, 789.	4.3	7
7	Acorn and water interactions on the microstructure of glutenâ€free yeasted dough. Journal of Food Processing and Preservation, 2022, 46, e15876.	2.0	4
8	Technological characteristics of inulin enriched glutenâ€free bread: Effect of acorn flour replacement and fermentation type. Food Science and Nutrition, 2021, 9, 6139-6151.	3.4	10
9	The Rheological Performance and Structure of Wheat/Acorn Composite Dough and the Quality and In Vitro Digestibility of Its Noodles. Foods, 2021, 10, 2727.	4.3	6
10	Acorn flour and sourdough: an innovative combination to improve gluten free bread characteristics. European Food Research and Technology, 2022, 248, 1691-1702.	3.3	8
11	Linear and Non-Linear Rheological Properties of Gluten-Free Dough Systems Probed by Fundamental Methods. Food Engineering Reviews, 2023, 15, 56-85.	5.9	6
12	Apple Flour in a Sweet Gluten-Free Bread Formulation: Impact on Nutritional Value, Glycemic Index, Structure and Sensory Profile. Foods, 2022, 11, 3172.	4.3	1
13	Acorn flour from holm oak (Quercus rotundifolia): Assessment of nutritional, phenolic, and technological profile. Current Research in Food Science, 2022, 5, 2211-2218.	5.8	4
14	Yogurt and curd cheese as alternative ingredients to improve the gluten-free breadmaking. Frontiers in Nutrition, 0, 9, .	3.7	2
15	Durian (<i>Durio zibethinus</i>) Peel Flour as Novel Ingredient in Gluten-Free Biscuit: Physico-Chemical, Technological and Nutritional Perspective. Journal of Culinary Science and Technology, 0, , 1-13.	1.4	0
16	Spirulina and its residual biomass as alternative sustainable ingredients: impact on the rheological and nutritional features of wheat bread manufacture. Frontiers in Food Science and Technology, 0, 3,	1.6	0

.