Threats Posed by the Fungal Kingdom to Humans, Wild

MBio

11,

DOI: 10.1128/mbio.00449-20

Citation Report

#	ARTICLE	IF	Citations
1	Epoxide Syntheses and Ring-Opening Reactions in Drug Development. Catalysts, 2020, 10, 1117.	1.6	59
2	Fungal pathogens. Current Biology, 2020, 30, R1163-R1169.	1.8	26
3	Streptomyces buecherae sp. nov., an actinomycete isolated from multiple bat species. Antonie Van Leeuwenhoek, 2020, 113, 2213-2221.	0.7	6
4	A novel <i>Sporothrix brasiliensis</i> genomic variant in Midwestern Brazil: evidence for an older and wider sporotrichosis epidemic. Emerging Microbes and Infections, 2020, 9, 2515-2525.	3.0	21
5	Human Fungal Infections in Kuwait—Burden and Diagnostic Gaps. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /0	Overlock 1	O Tf 50 582 T
6	New Opportunities for Modern Fungal Biology. Frontiers in Fungal Biology, 2020, 1, .	0.9	1
7	Preparing for invasion: Assessing risk of infection by chytrid fungi in southeastern plethodontid salamanders. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2020, 333, 829-840.	0.9	11
8	Structure-guided approaches to targeting stress responses in human fungal pathogens. Journal of Biological Chemistry, 2020, 295, 14458-14472.	1.6	16
9	Early Virulence Predictors during the Candida Species–Galleria mellonella Interaction. Journal of Fungi (Basel, Switzerland), 2020, 6, 152.	1.5	16
10	Cross-continental emergence of Nannizziopsis barbatae disease may threaten wild Australian lizards. Scientific Reports, 2020, 10, 20976.	1.6	13
11	Drug-Resistant Fungi: An Emerging Challenge Threatening Our Limited Antifungal Armamentarium. Antibiotics, 2020, 9, 877.	1.5	125
12	Influences of the Culturing Media in the Virulence and Cell Wall of Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. Journal of Fungi (Basel, Switzerland), 2020, 6, 323.	1.5	21
13	Plant-associated fungal biofilms—knowns and unknowns. FEMS Microbiology Ecology, 2020, 96, .	1.3	15
14	The Rise of Fungi: A Report on the CIFAR Program <i>Fungal Kingdom: Threats & Copportunities </i> Inaugural Meeting. G3: Genes, Genomes, Genetics, 2020, 10, 1837-1842.	0.8	4
15	International Society for Human and Animal Mycology (ISHAM)—New Initiatives. Journal of Fungi (Basel, Switzerland), 2020, 6, 97.	1.5	4
16	Laboratory evaluation of the Sigma Transwab® transport system for the recovery of Candida species using the Clinical and Laboratory Standards Institute (CLSI) document M40-A2. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 735-738.	1.3	3
17	Zinc nanostructures: Detection and elimination of toxigenic fungi and mycotoxins., 2021,, 403-430.		0
18	The impact of pRAP vectors on plant genetic transformation and pathogenesis studies including an analysis of <i>BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1)</i> Interactions, 2021, 16, 270-283.	1.0	5

#	Article	IF	CITATIONS
19	Uncharted territories in the discovery of antifungal and antivirulence natural products from bacteria. Computational and Structural Biotechnology Journal, 2021, 19, 1244-1252.	1.9	8
20	Comprehensive genetic analysis of adhesin proteins and their role in virulence of <i>Candida albicans </i>	1.2	20
21	Paracoccidioides brasiliensis Isolated from Nine-Banded Armadillos (Dasypus novemcinctus) Reveal Population Structure and Admixture in the Amazon Basin. Journal of Fungi (Basel, Switzerland), 2021, 7, 54.	1.5	3
22	Recent Advances and Applications of Bacterial Cellulose in Biomedicine. Polymers, 2021, 13, 412.	2.0	109
23	Fungal Extracellular Vesicles in Pathophysiology. Sub-Cellular Biochemistry, 2021, 97, 151-177.	1.0	5
24	Recent Advances in Molecular Diagnostics of Fungal Plant Pathogens: A Mini Review. Frontiers in Cellular and Infection Microbiology, 2020, 10, 600234.	1.8	77
25	The Cell Wall of Medically Relevant Yeasts and Molds. , 2021, , 12-22.		0
26	Co-infecting pathogen lineages have additive effects on host bacterial communities. FEMS Microbiology Ecology, 2021, 97, .	1.3	5
27	Sporothrix brasiliensis: A Review of an Emerging South American Fungal Pathogen, Its Related Disease, Presentation and Spread in Argentina. Journal of Fungi (Basel, Switzerland), 2021, 7, 170.	1.5	58
28	Showcasing Fungal Genetics & Genomics with the Genetics Society of America. Genetics, 2021, 217, .	1.2	0
29	Showcasing Fungal Genetics & Enomics with the Genetics Society of America. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	0
30	Potentiated inhibition of Trichoderma virens and other environmental fungi by new biocide combinations. Applied Microbiology and Biotechnology, 2021, 105, 2867-2875.	1.7	2
31	Design, Synthesis, and Fungicidal Activities of Novel Piperidyl Thiazole Derivatives Containing Oxime Ether or Oxime Ester Moieties. Journal of Agricultural and Food Chemistry, 2021, 69, 3848-3858.	2.4	24
32	The Most Important Fungal Diseases of Cerealsâ€"Problems and Possible Solutions. Agronomy, 2021, 11, 714.	1.3	44
33	Membrane-Interacting Antifungal Peptides. Frontiers in Cell and Developmental Biology, 2021, 9, 649875.	1.8	50
34	Unraveling Caspofungin Resistance in Cryptococcus neoformans. MBio, 2021, 12, .	1.8	3
35	Analysis of putative quadruplex-forming sequences in fungal genomes: novel antifungal targets?. Microbial Genomics, 2021, 7, .	1.0	6
37	Epidemiology of fungal diseases in Africa: A review of diagnostic drivers. Current Medical Mycology, 2021, 7, 63-70.	0.8	8

#	Article	IF	CITATIONS
38	STRIPAK, a Key Regulator of Fungal Development, Operates as a Multifunctional Signaling Hub. Journal of Fungi (Basel, Switzerland), 2021, 7, 443.	1.5	8
39	Biotechnological applications of versatile plant lipid transfer proteins (LTPs). Peptides, 2021, 140, 170531.	1.2	12
40	New Perspectives in the Antimicrobial Activity of the Amphibian Temporin B: Peptide Analogs Are Effective Inhibitors of Candida albicans Growth. Journal of Fungi (Basel, Switzerland), 2021, 7, 457.	1.5	11
41	Respiring to infect: Emerging links between mitochondria, the electron transport chain, and fungal pathogenesis. PLoS Pathogens, 2021, 17, e1009661.	2.1	15
43	<scp>l</scp> â€Carnosine Protects Against Deoxynivalenolâ€Induced Oxidative Stress in Intestinal Stem Cells by Regulating the Keap1/Nrf2 Signaling Pathway. Molecular Nutrition and Food Research, 2021, 65, e2100406.	1.5	19
44	Taking togetherness apart: From digital footprints to geno-digital spores. Human Geography(United) Tj ETQq1 1	0.784314	1 rgBT /Overlo
45	The histone chaperone HIR maintains chromatin states to control nitrogen assimilation and fungal virulence. Cell Reports, 2021, 36, 109406.	2.9	10
46	Would that it were so simple: Interactions between multiple traits undermine classical singleâ€traitâ€based predictions of microbial community function and evolution. Ecology Letters, 2021, 24, 2775-2795.	3.0	6
47	Genetic Susceptibility to Fungal Infections and Links to Human Ancestry. Frontiers in Genetics, 2021, 12, 709315.	1.1	22
48	Batrachochytrium salamandrivorans Threat to the Iberian Urodele Hotspot. Journal of Fungi (Basel,) Tj ETQq1 1 ().784314 ı 1.5	rgBT /Overloo
49	Will yield gains be lost to disease?. Nature Climate Change, 2021, 11, 648-649.	8.1	7
50	The phosphate language of fungi. Trends in Microbiology, 2022, 30, 338-349.	3.5	20
51	Accounting for the Biological Complexity of Pathogenic Fungi in Phylogenetic Dating. Journal of Fungi (Basel, Switzerland), 2021, 7, 661.	1.5	3
53	Comparison of a Lateral Flow Assay and a Latex Agglutination Test for the Diagnosis of Cryptococcus Neoformans Infection. Current Microbiology, 2021, 78, 3989-3995.	1.0	5
54	A Radical Reimagining of Fungal Two-Component Regulatory Systems. Trends in Microbiology, 2021, 29, 883-893.	3.5	9
55	The human fungal pathogen Malassezia and its role in cancer. Fungal Biology Reviews, 2021, 38, 9-24.	1.9	3
56	Eukaryotic Microorganisms are Part of Holobionts. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 195-229.	0.2	0
57	Solution Structure, Dynamics, and New Antifungal Aspects of the Cysteine-Rich Miniprotein PAFC. International Journal of Molecular Sciences, 2021, 22, 1183.	1.8	7

#	Article	IF	CITATIONS
58	Roles for Structural Biology in the Discovery of Drugs and Agrochemicals Targeting Sterol 14α-Demethylases. Journal of Fungi (Basel, Switzerland), 2021, 7, 67.	1.5	11
60	Predicted Functional and Structural Diversity of Receiver Domains in Fungal Two-Component Regulatory Systems. MSphere, 2021, 6, e0072221.	1.3	1
61	A small molecule produced by Lactobacillus species blocks Candida albicans filamentation by inhibiting a DYRK1-family kinase. Nature Communications, 2021, 12, 6151.	5.8	50
62	Therapeutic Effect of an Antibody-Derived Peptide in a Galleria mellonella Model of Systemic Candidiasis. International Journal of Molecular Sciences, 2021, 22, 10904.	1.8	6
63	Deoxynivalenol induces apoptosis and autophagy in human prostate epithelial cells via PI3K/Akt signaling pathway. Archives of Toxicology, 2022, 96, 231-241.	1.9	9
64	RNA-based therapeutics to treat human fungal infections. Trends in Microbiology, 2022, 30, 411-420.	3.5	14
65	Editorial overview: Niche-specific and species-specific host-fungal interactions — how do they impact human health?. Current Opinion in Microbiology, 2021, 64, 162-165.	2.3	0
68	Intron distribution and emerging role of alternative splicing in fungi. FEMS Microbiology Letters, 2021, 368, .	0.7	14
69	Defining gut mycobiota for wild animals: a need for caution in assigning authentic resident fungal taxa. Animal Microbiome, 2021, 3, 75.	1.5	15
72	A comprehensive transcription factor and DNA-binding motif resource for the construction of gene regulatory networks in Botrytis cinerea and Trichoderma atroviride. Computational and Structural Biotechnology Journal, 2021, 19, 6212-6228.	1.9	6
73	Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets. Nature Communications, 2021, 12, 6497.	5.8	33
75	Fungal infections diagnosis – Past, present and future. Research in Microbiology, 2022, 173, 103915.	1.0	31
76	Azoleâ€resistant <i>Aspergillus fumigatus</i> as an emerging worldwide pathogen. Microbiology and Immunology, 2022, 66, 135-144.	0.7	14
77	Genomic patterns and the evolutionary origin of an invasive fungal pathogen (Hymenoscyphus) Tj ETQq1 1 0.78-	4314 rgBT 1.2	 Qverlock 1
78	Immunity to Invasive Fungal Diseases. Annual Review of Immunology, 2022, 40, 121-141.	9.5	36
79	Transcriptional Control of Hypoxic Hyphal Growth in the Fungal Pathogen Candida albicans. Frontiers in Cellular and Infection Microbiology, 2021, 11, 770478.	1.8	9
80	Accelerating the discovery of antifungal peptides using deep temporal convolutional networks. Briefings in Bioinformatics, 2022, , .	3.2	10
81	Fungal cell death: The beginning of the end. Fungal Genetics and Biology, 2022, 159, 103671.	0.9	10

#	Article	IF	CITATIONS
82	Gold Nanoparticles and Plant Pathogens: An Overview and Prospective for Biosensing in Forestry. Sensors, 2022, 22, 1259.	2.1	20
83	Antifungal drug resistance: Deciphering the mechanisms governing multidrug resistance in the fungal pathogen Candida glabrata. Current Biology, 2021, 31, R1520-R1523.	1.8	11
84	Use of Defensins to Develop Eco-Friendly Alternatives to Synthetic Fungicides to Control Phytopathogenic Fungi and Their Mycotoxins. Journal of Fungi (Basel, Switzerland), 2022, 8, 229.	1.5	7
85	The Potential Use of Actinomycetes as Microbial Inoculants and Biopesticides in Agriculture. Frontiers in Soil Science, 2022, 2, .	0.8	20
86	Bacterialâ€fungal interactions and their impact on microbial pathogenesis. Molecular Ecology, 2023, 32, 2565-2581.	2.0	13
87	The role of Candida albicans stress response pathways in antifungal tolerance and resistance. IScience, 2022, 25, 103953.	1.9	29
88	Design, Synthesis, and Fungicidal Activities of Novel Ethylenediamine Bridged Thiazole Derivatives Containing Oxime Ether or Oxime Ester Moieties. Journal of Heterocyclic Chemistry, 0, , .	1.4	1
89	Antifungal Activity of Plant Secondary Metabolites on Candida albicans: An Updated Review. Current Molecular Pharmacology, 2023, 16, 15-42.	0.7	3
90	Tackling the emerging threat of antifungal resistance to human health. Nature Reviews Microbiology, 2022, 20, 557-571.	13.6	311
91	Recent applications of vinyl sulfone motif in drug design and discovery. European Journal of Medicinal Chemistry, 2022, 234, 114255.	2.6	35
92	Biomechanical responses of encysted zoospores of the oomycete Achlya bisexualis to hyperosmotic stress are consistent with an ability to turgor regulate. Fungal Genetics and Biology, 2022, 159, 103676.	0.9	2
93	A data library of <i>Candida albicans</i> functional genomic screens. FEMS Yeast Research, 2021, 21, .	1.1	5
95	Using structural variants to understand the ecological and evolutionary dynamics of fungal plant pathogens. New Phytologist, 2022, 234, 43-49.	3.5	13
98	Inhibitory Bacterial Diversity and Mucosome Function Differentiate Susceptibility of Appalachian Salamanders to Chytrid Fungal Infection. Applied and Environmental Microbiology, 2022, 88, e0181821.	1.4	19
99	Inferring Species Compositions of Complex Fungal Communities from Long- and Short-Read Sequence Data. MBio, 2022, 13, e0244421.	1.8	2
100	Great diversity of KS $\langle i \rangle \hat{l} \pm \langle i \rangle$ sequences from bat-associated microbiota suggest novel sources of uncharacterized natural products. FEMS Microbes, 2022, 3, xtac012.	0.8	1
101	Candida albicans Potassium Transporters. International Journal of Molecular Sciences, 2022, 23, 4884.	1.8	1
102	Clinical and Eco-Epidemiological Aspects of a Novel Hyperendemic Area of Paracoccidioidomycosis in the Tocantins-Araguaia Basin (Northern Brazil), Caused by Paracoccidioides sp Journal of Fungi (Basel, Switzerland), 2022, 8, 502.	1.5	8

#	Article	IF	CITATIONS
103	Evolution of the human pathogenic lifestyle in fungi. Nature Microbiology, 2022, 7, 607-619.	5.9	79
104	Serologic biomarkers in <i>Candida</i> and <i>Aspergillus</i> infections of the central nervous system: A comparison of galactomannan, mannan and βâ€1, <scp>3â€0</scp> â€gucan testing from serum and cerebrospinal fluid. Mycoses, 2022, 65, 709-714.	1.8	7
105	Latest Research Trends in Agrochemical Fungicides: Any Learnings for Pharmaceutical Antifungals?. ACS Medicinal Chemistry Letters, 2022, 13, 895-903.	1.3	6
106	The Search for Cryptic L-Rhamnosyltransferases on the Sporothrix schenckii Genome. Journal of Fungi (Basel, Switzerland), 2022, 8, 529.	1.5	3
107	Intragenomic variation in nuclear ribosomal markers and its implication in species delimitation, identification and barcoding in fungi. Fungal Biology Reviews, 2022, 42, 1-33.	1.9	14
108	How fungal multidrug transporters mediate hyper resistance through <scp>DNA</scp> amplification and mutation. Molecular Microbiology, 2022, 118, 3-15.	1.2	6
110	Genomic Approaches to Antifungal Drug Target Identification and Validation. Annual Review of Microbiology, 2022, 76, .	2.9	1
111	Biocontrol of fungal phytopathogens in saline soils by halophilic chitinase-producing microbes. , 2022, , 405-419.		O
113	Multilocus sequence typing (MLST) analysis reveals many novel genotypes and a high level of genetic diversity in <i>Candida tropicalis</i> isolates from Italy and Africa. Mycoses, 2022, 65, 989-1000.	1.8	8
114	Remedial Aspect of Zinc Oxide Nanoparticles Against Serratia Marcescens and Enterococcus Faecalis. Frontiers in Pharmacology, 0, 13, .	1.6	10
115	Emerging Animal-Associated Fungal Diseases. Journal of Fungi (Basel, Switzerland), 2022, 8, 611.	1.5	11
116	Continuing Shifts in Epidemiology and Antifungal Susceptibility Highlight the Need for Improved Disease Management of Invasive Candidiasis. Microorganisms, 2022, 10, 1208.	1.6	6
118	Natural products from Photorhabdus and Xenorhabdus: mechanisms and impacts. Applied Microbiology and Biotechnology, 2022, 106, 4387-4399.	1.7	18
119	Application of synthetic products against pathogenic fungal biofilm development with special reference to combinational approaches., 2022,, 131-157.		0
120	Globalization, invasive forest pathogen species, and forest tree health., 2022,, 61-76.		3
122	Mucin modulates microbial morphogenesis. Nature Chemical Biology, 2022, 18, 684-686.	3.9	O
123	Transcontinental Dispersal of Nonendemic Fungal Pathogens through Wooden Handicraft Imports. MBio, 0, , .	1.8	0
124	Organic acids and glucose prime late-stage fungal biotrophy in maize. Science, 2022, 376, 1187-1191.	6.0	5

#	Article	IF	CITATIONS
125	Whole-genome single nucleotide polymorphism analysis for typing the pandemic pathogen Fusarium graminearum sensu stricto. Frontiers in Microbiology, $0,13,1$	1.5	4
126	A genomic journey in the secondary metabolite diversity of fungal plant and insect pathogens: from functional to population genomics. Current Opinion in Microbiology, 2022, 69, 102178.	2.3	6
128	Proteasome-dependent truncation of the negative heterochromatin regulator Epe1 mediates antifungal resistance. Nature Structural and Molecular Biology, 2022, 29, 745-758.	3.6	8
131	Host induced gene silencing of the Sclerotinia sclerotiorum ABHYDROLASE-3 gene reduces disease severity in Brassica napus. PLoS ONE, 2022, 17, e0261102.	1.1	8
132	Recovered frog populations coexist with endemic <i>Batrachochytrium dendrobatidis</i> despite loadâ€dependent mortality. Ecological Applications, 2023, 33, .	1.8	10
133	Antifungal discovery. Current Opinion in Microbiology, 2022, 69, 102198.	2.3	5
134	Antifungal and mycotoxin inhibitory activity of micro/nanoemulsions., 2022,, 123-135.		0
135	Antifungal Medicines in the Terrestrial Environment: Levels in Biosolids from England and Wales. SSRN Electronic Journal, 0, , .	0.4	0
137	Single nucleotide polymorphisms and chromosomal copy number variation may impact the Sporothrix brasiliensis antifungal susceptibility and sporotrichosis clinical outcomes. Fungal Genetics and Biology, 2022, 163, 103743.	0.9	6
139	Ten decadal advances in fungal biology leading towards human well-being. Fungal Diversity, 2022, 116, 547-614.	4.7	29
140	The future of fungi: threats and opportunities. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	6
141	Asymmetrical dose responses shape the evolutionary trade-off between antifungal resistance and nutrient use. Nature Ecology and Evolution, 2022, 6, 1501-1515.	3.4	11
142	Superior Conjugative Plasmids Delivered by Bacteria to Diverse Fungi. Biodesign Research, 2022, 2022, .	0.8	6
143	Heme sensing and trafficking in fungi. Fungal Biology Reviews, 2022, , .	1.9	1
144	Indications that the Antimycotic Drug Amphotericin B Enhances the Impact of Platelets on Aspergillus. Antimicrobial Agents and Chemotherapy, 0, , .	1.4	1
145	Antifungal Chitinase Production by Bacillus paramycoides B26 using Squid Pen Powder as a Carbon Source. Journal of Pure and Applied Microbiology, 0, , .	0.3	0
146	The GARP complex is required for filamentation in <i>Candida albicans</i> . Genetics, 2022, 222, .	1.2	3
147	TNP Analogues Inhibit the Virulence Promoting IP3-4 Kinase Arg1 in the Fungal Pathogen Cryptococcus neoformans. Biomolecules, 2022, 12, 1526.	1.8	0

#	Article	IF	CITATIONS
148	Structural and functional analysis of EntV reveals a 12 amino acid fragment protective against fungal infections. Nature Communications, 2022 , 13 , .	5.8	13
149	Antifungal and antibiofilm activities of bee venom loaded on chitosan nanoparticles: a novel approach for combating fungal human pathogens. World Journal of Microbiology and Biotechnology, 2022, 38, .	1.7	4
150	The nature of the fungal cargo induces significantly different temporal programmes of macrophage phagocytosis. Cell Surface, 2022, 8, 100082.	1.5	2
151	Establishment and application of loop-mediated isothermal amplification coupled with nanoparticle-based lateral flow biosensor (LAMP-LFB) for visual and rapid diagnosis of Candida albicans in clinical samples. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
152	Regulation of Cdc42 protein turnover modulates the filamentous growth MAPK pathway. Journal of Cell Biology, 2022, 221, .	2.3	4
153	Biotechnological advancements in Phytophthora disease diagnosis, interaction and management in citrus. Scientia Horticulturae, 2023, 310, 111739.	1.7	5
154	Silencing of ROT2, the Encoding Gene of the Endoplasmic Reticulum Glucosidase II, Affects the Cell Wall and the Sporothrix schenckii–Host Interaction. Journal of Fungi (Basel, Switzerland), 2022, 8, 1220.	1.5	2
155	Development and applications of a CRISPR activation system for facile genetic overexpression in <i>Candida albicans</i> . G3: Genes, Genomes, Genetics, 2023, 13, .	0.8	5
156	A Procedural Framework to Identify Critical Indicators for the Protection of Environment and Ecosystem during Sustainable Urban Development in South-Western Saudi Arabia. Sustainability, 2023, 15, 195.	1.6	3
157	Magnaporthe oryzae and Its Pathotypes: A Potential Plant Pandemic Threat to Global Food Security. , 2023, , 425-462.		2
158	Directed Evolution Detects Supernumerary Centric Chromosomes Conferring Resistance to Azoles in Candida auris. MBio, 2022, 13, .	1.8	5
159	N,N-dimethyl chitosan oligosaccharide (DMCOS) promotes antifungal activity by causing mitochondrial damage. Carbohydrate Polymers, 2023, 303, 120459.	5.1	5
160	Antifungal metabolites, their novel sources, and targets to combat drug resistance. Frontiers in Microbiology, 0, 13 , .	1.5	6
161	Population Genomics Provide Insights into the Global Genetic Structure of <i>Colletotrichum graminicola</i> , the Causal Agent of Maize Anthracnose. MBio, 2023, 14, .	1.8	3
162	Fungal infections and the fungal microbiome in hepatobiliary disorders. Journal of Hepatology, 2023, 78, 836-851.	1.8	8
163	RNA Dialogues in Fungal–Plant Relationships. , 2023, , 31-51.		3
164	The Botrytis cinerea Gene Expression Browser. Journal of Fungi (Basel, Switzerland), 2023, 9, 84.	1.5	0
165	Deciphering the Biological Activities of Antifungal Agents with Chemical Probes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	0

#	Article	IF	Citations
166	Evaluation of the Synthetic Multifunctional Peptide Hp-MAP3 Derivative of Temporin-PTa. Toxins, 2023, 15, 42.	1.5	0
167	Deciphering the Biological Activities of Antifungal Agents with Chemical Probes. Angewandte Chemie, 2023, 135, .	1.6	0
168	Antifungal Activity of Spent Coffee Ground Extracts. Microorganisms, 2023, 11, 242.	1.6	5
170	Isolation of a fungal calcineurin A mutant suggests that amoebae can counter-select virulence attributes of microbes. Medical Mycology, 0 , , .	0.3	3
171	Antifungal Susceptibility Testing and the Ticking Clock. Journal of Bacteriology & Mycology Open Access, 2023, 11, 17-18.	0.2	0
172	Dysregulating PHO Signaling via the CDK Machinery Differentially Impacts Energy Metabolism, Calcineurin Signaling, and Virulence in Cryptococcus neoformans. MBio, 2023, 14, .	1.8	1
173	Strategies and opportunities for engineering antifungal peptides for therapeutic applications. Current Opinion in Biotechnology, 2023, 81, 102926.	3.3	4
174	Design, synthesis, and fungicidal activities of novel piperazine thiazole derivatives containing oxime ether or oxime ester moieties. Pest Management Science, 2023, 79, 1977-1986.	1.7	4
175	Antifungal medicines in the terrestrial environment: Levels in biosolids from England and Wales. Science of the Total Environment, 2023, 870, 161999.	3.9	0
176	Novel Arginine- and Proline-Rich Candidacidal Peptides Obtained through a Bioinformatic Approach. Antibiotics, 2023, 12, 472.	1.5	2
177	Fusarium Photoreceptors. Journal of Fungi (Basel, Switzerland), 2023, 9, 319.	1.5	4
178	Semi-VOCs of Wood Vinegar Display Strong Antifungal Activities against Oomycete Species Globisporangium ultimum and Pythium aphanidermatum. Microbiology Research, 2023, 14, 371-389.	0.8	2
179	Decoding Metabolic Reprogramming in Plants under Pathogen Attacks, a Comprehensive Review of Emerging Metabolomics Technologies to Maximize Their Applications. Metabolites, 2023, 13, 424.	1.3	6
180	Candida haemulonii Complex and Candida auris: Biology, Virulence Factors, Immune Response, and Multidrug Resistance. Infection and Drug Resistance, 0, Volume 16, 1455-1470.	1.1	8
181	Development of a Multiplex qPCR Assay for Fast Detection and Differentiation of Paracoccidioidomycosis Agents. Journal of Fungi (Basel, Switzerland), 2023, 9, 358.	1.5	0
182	Divergent Evolution of Early Terrestrial Fungi Reveals the Evolution of Mucormycosis Pathogenicity Factors. Genome Biology and Evolution, 2023, 15, .	1.1	7
183	Comparison of in vitro Antifungal Activity Methods Using Extract of Chitinase-producing Aeromonas sp. BHC02. Protein Journal, 2023, 42, 125-134.	0.7	1
184	Wholeâ€mitochondrial genomes of <i>Nannizziopsis</i> provide insights in evolution and detection. Ecology and Evolution, 2023, 13, .	0.8	1

#	ARTICLE	IF	CITATIONS
185	Transcriptomic Profile of Penicillium digitatum Reveals Novel Aspects of the Mode of Action of the Antifungal Protein AfpB. Microbiology Spectrum, 0 , , .	1.2	2
186	The Biological Implications of Fungi as Agents of Mycotoxigenicity and Potential Therapeutics in Medicine., 2023,, 433-458.		1
187	Genomic surveillance uncovers a pandemic clonal lineage of the wheat blast fungus. PLoS Biology, 2023, 21, e3002052.	2.6	27
188	Extracellular Vesicles of the Plant Pathogen Botrytis cinerea. Journal of Fungi (Basel, Switzerland), 2023, 9, 495.	1.5	5
192	Climate change impacts on plant pathogens, food security and paths forward. Nature Reviews Microbiology, 2023, 21, 640-656.	13.6	95
212	Microbes-Induced Biofabrication of Gold Nanoparticles and Its Exploitation in Biosensing of Phytopathogens., 2023,, 409-435.		1
215	Host Switching and Geographic Expansions in (Hemi)biotrophic Plant Pathogens., 2023,, 123-148.		0
224	Extracellular RNAs released by plant-associated fungi: from fundamental mechanisms to biotechnological applications. Applied Microbiology and Biotechnology, 2023, 107, 5935-5945.	1.7	4
232	Occurrence and characterization of Alternaria alternata causing leaf spot of soybean (Glycine max) in Pakistan., 0, , .		0
235	Nanomaterials for the Rapid Identification of Agriculturally Important Plant Pathogens. , 2024, , 179-198.		0
237	Candida albicans and Antifungal Peptides. Infectious Diseases and Therapy, 2023, 12, 2631-2648.	1.8	1
244	Pillar Centroid Tracker for the Measurement of Protrusive Forces Generated by Hyphal Microorganisms. , 2023, , .		0
245	The future of foods. , 2024, 2, 253-265.		0
253	Editorial: Conservation implications of pathogens, parasites, and pollutants for sea turtles. Frontiers in Marine Science, 0, 11 , .	1.2	0
259	Biogenic nanofungicides: Next-generation anti-microbial materials. , 2024, , 51-64.		0
266	Fungal Control Through Plant Phenolics: A Biotic Constraint. , 2024, , 339-365.		0