Coast-to-Coast Spread of SARS-CoV-2 during the Early

Cell 181, 990-996.e5 DOI: 10.1016/j.cell.2020.04.021

Citation Report

#	Article	IF	CITATIONS
1	Sequencing identifies multiple early introductions of SARS-CoV-2 to the New York City region. Genome Research, 2020, 30, 1781-1788.	5.5	66
2	Temporal Detection and Phylogenetic Assessment of SARS-CoV-2 in Municipal Wastewater. Cell Reports Medicine, 2020, 1, 100098.	6.5	424
3	COVID-19: facts and failures, a tale of two worlds. European Journal of Epidemiology, 2020, 35, 991-994.	5.7	6
4	Genomic epidemiology of superspreading events in Austria reveals mutational dynamics and transmission properties of SARS-CoV-2. Science Translational Medicine, 2020, 12, .	12.4	203
5	COVID-19: US federal accountability for entry, spread, and inequities—lessons for the future. European Journal of Epidemiology, 2020, 35, 995-1006.	5.7	38
6	Sensitive Recovery of Complete SARS-CoV-2 Genomes from Clinical Samples by Use of Swift Biosciences' SARS-CoV-2 Multiplex Amplicon Sequencing Panel. Journal of Clinical Microbiology, 2020, 59, .	3.9	58
7	Revealing fine-scale spatiotemporal differences in SARS-CoV-2 introduction and spread. Nature Communications, 2020, 11, 5558.	12.8	39
8	The Covid-19 Global Pandemic: A Natural Experiment in the Making. Lifestyle Genomics, 2020, 13, 135-137.	1.7	6
9	COVIDâ€19 in Patients With Inflammatory Arthritis: A Prospective Study on the Effects of Comorbidities and Diseaseâ€Modifying Antirheumatic Drugs on Clinical Outcomes. Arthritis and Rheumatology, 2020, 72, 1981-1989.	5.6	92
10	Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell, 2020, 182, 1295-1310.e20.	28.9	1,726
11	Understanding the complexities of SARS-CoV2 infection and its immunology: A road to immune-based therapeutics. International Immunopharmacology, 2020, 88, 106980.	3.8	31
12	High-Density Amplicon Sequencing Identifies Community Spread and Ongoing Evolution of SARS-CoV-2 in the Southern United States. Cell Reports, 2020, 33, 108352.	6.4	38
13	Accommodating individual travel history and unsampled diversity in Bayesian phylogeographic inference of SARS-CoV-2. Nature Communications, 2020, 11, 5110.	12.8	118
14	The SARS-CoV-2 Spike Glycoprotein Biosynthesis, Structure, Function, and Antigenicity: Implications for the Design of Spike-Based Vaccine Immunogens. Frontiers in Immunology, 2020, 11, 576622.	4.8	317
15	Genetic grouping of SARS-CoV-2 coronavirus sequences using informative subtype markers for pandemic spread visualization. PLoS Computational Biology, 2020, 16, e1008269.	3.2	38
16	Real-time public health communication of local SARS-CoV-2 genomic epidemiology. PLoS Biology, 2020, 18, e3000869.	5.6	15
17	Rapid multiplex MinION nanopore sequencing workflow for Influenza A viruses. BMC Infectious Diseases, 2020, 20, 648.	2.9	35
18	In vivo antiviral host transcriptional response to SARS-CoV-2 by viral load, sex, and age. PLoS Biology, 2020, 18, e3000849.	5.6	225

#	Article	IF	CITATIONS
19	The emergence of SARS-CoV-2 in Europe and North America. Science, 2020, 370, 564-570.	12.6	331
20	Cryptic transmission of SARS-CoV-2 in Washington state. Science, 2020, 370, 571-575.	12.6	217
21	Whole Genome Sequencing of SARS-CoV-2: Adapting Illumina Protocols for Quick and Accurate Outbreak Investigation during a Pandemic. Genes, 2020, 11, 949.	2.4	65
22	SARS-CoV-2 Seroprevalence among a Southern U.S. Population Indicates Limited Asymptomatic Spread under Physical Distancing Measures. MBio, 2020, 11, .	4.1	25
23	Intra-host non-synonymous diversity at a neutralizing antibody epitope of SARS-CoV-2 spike protein N-terminal domain. Clinical Microbiology and Infection, 2021, 27, 1350.e1-1350.e5.	6.0	20
24	Analytical validity of nanopore sequencing for rapid SARS-CoV-2 genome analysis. Nature Communications, 2020, 11, 6272.	12.8	183
25	Full genome viral sequences inform patterns of SARS-CoV-2 spread into and within Israel. Nature Communications, 2020, 11, 5518.	12.8	115
26	An Early Pandemic Analysis of SARS-CoV-2 Population Structure and Dynamics in Arizona. MBio, 2020, 11, .	4.1	29
27	SARS-CoV-2 and COVID-19: A genetic, epidemiological, and evolutionary perspective. Infection, Genetics and Evolution, 2020, 84, 104384.	2.3	115
28	Introductions and early spread of SARS-CoV-2 in the New York City area. Science, 2020, 369, 297-301.	12.6	356
29	Ten recommendations for supporting open pathogen genomic analysis in public health. Nature Medicine, 2020, 26, 832-841.	30.7	63
30	A compendium answering 150 questions on COVIDâ€19 and SARSâ€CoVâ€2. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2503-2541.	5.7	95
31	Nanopore Targeted Sequencing for the Accurate and Comprehensive Detection of SARS oVâ€⊋ and Other Respiratory Viruses. Small, 2020, 16, e2002169.	10.0	169
32	The laboratory's role in combating COVID-19. Critical Reviews in Clinical Laboratory Sciences, 2020, 57, 400-414.	6.1	42
33	<scp>COVID</scp> â€19: test, trace and <scp>isolateâ€new</scp> epidemiological data. Environmental Microbiology, 2020, 22, 2445-2456.	3.8	8
34	Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California. Science, 2020, 369, 582-587.	12.6	253
35	Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell, 2020, 182, 812-827.e19.	28.9	3,551
36	Molecular mechanisms and epidemiology of COVID-19 from an allergist's perspective. Journal of Allergy and Clinical Immunology, 2020, 146, 285-299.	2.9	46

TION P

	CITATION R	EPORT	
#	ARTICLE Identification of multiple large deletions in ORF7a resulting in in-frame gene fusions in clinical	IF	CITATIONS
37	SARS-CoV-2 isolates. Journal of Clinical Virology, 2020, 129, 104523.	3.1	71
38	On the founder effect in COVID-19 outbreaks: how many infected travelers may have started them all?. National Science Review, 2021, 8, nwaa246.	9.5	27
39	Correlating USA COVID-19 cases at epidemic onset days to domestic flights passenger inflows by state. International Journal of Modern Physics C, 2021, 32, 2150014.	1.7	3
40	SARSâ€CoVâ€2 infection in patients with a normal or abnormal liver. Journal of Viral Hepatitis, 2021, 28, 4-11.	2.0	29
41	Spike mutation D614G alters SARS-CoV-2 fitness. Nature, 2021, 592, 116-121.	27.8	1,380
42	<i>Coronapp</i> : A web application to annotate and monitor SARSâ€CoVâ€2 mutations. Journal of Medical Virology, 2021, 93, 3238-3245.	5.0	75
43	The D614G mutations in the SARS-CoV-2 spike protein: Implications for viral infectivity, disease severity and vaccine design. Biochemical and Biophysical Research Communications, 2021, 538, 104-107.	2.1	85
44	Ravaging SARS-CoV-2: rudimentary diagnosis and puzzling immunological responses. Current Medical Research and Opinion, 2021, 37, 207-217.	1.9	5
45	Structural basis of severe acute respiratory syndrome coronavirus 2 infection. Current Opinion in HIV and AIDS, 2021, 16, 74-81.	3.8	7
46	Early transmission of SARS-CoV-2 in South Africa: An epidemiological and phylogenetic report. International Journal of Infectious Diseases, 2021, 103, 234-241.	3.3	63
47	Molecular epidemiology in the HIV and SARS-CoV-2 pandemics. Current Opinion in HIV and AIDS, 2021, 16, 11-24.	3.8	5
50	Validation of multiplex PCR sequencing assay of SIV. Virology Journal, 2021, 18, 21.	3.4	2
51	COVID-19 Dynamics: A Heterogeneous Model. Frontiers in Public Health, 2020, 8, 558368.	2.7	7
53	The Genetic Variant of SARS-CoV-2: Would it matter for Controlling the Devastating Pandemic?. International Journal of Biological Sciences, 2021, 17, 1476-1485.	6.4	23
54	Nanopore sequencing and its application to the study of microbial communities. Computational and Structural Biotechnology Journal, 2021, 19, 1497-1511.	4.1	106
55	SIR Model Parameter Fitting of SARS-CoV-2 Basic Reproduction Number in Venezuela and Ecuador Epidemic. Advances in Intelligent Systems and Computing, 2021, , 94-108.	0.6	0
56	Bioinformatics resources for SARS-CoV-2 discovery and surveillance. Briefings in Bioinformatics, 2021, 22, 631-641.	6.5	38
58	SARS-CoV-2 Genomic Variation in Space and Time in Hospitalized Patients in Philadelphia. MBio, 2021, 12, .	4.1	27

#	Article	IF	Citations
59	Disease severity-specific neutrophil signatures in blood transcriptomes stratify COVID-19 patients. Genome Medicine, 2021, 13, 7.	8.2	193
60	Miniaturized DNA Sequencers for Personal Use: Unreachable Dreams or Achievable Goals. Frontiers in Nanotechnology, 2021, 3, .	4.8	7
61	Optimal inference of the start of COVID-19. Physical Review Research, 2021, 3, .	3.6	10
62	A streamlined clinical metagenomic sequencing protocol for rapid pathogen identification. Scientific Reports, 2021, 11, 4405.	3.3	15
63	The characteristics of multi-source mobility datasets and how they reveal the luxury nature of social distancing in the U.S. during the COVID-19 pandemic. International Journal of Digital Earth, 2021, 14, 424-442.	3.9	62
64	Dynamic Panel Data Modeling and Surveillance of COVID-19 in Metropolitan Areas in the United States: Longitudinal Trend Analysis. Journal of Medical Internet Research, 2021, 23, e26081.	4.3	14
65	Impact of domestic travel restrictions on transmission of COVID-19 infection using public transportation network approach. Scientific Reports, 2021, 11, 3109.	3.3	53
66	Molecular diagnostic assays for COVID-19: an overview. Critical Reviews in Clinical Laboratory Sciences, 2021, 58, 385-398.	6.1	47
69	Genomic sequencing effort for SARS-CoV-2 by country during the pandemic. International Journal of Infectious Diseases, 2021, 103, 305-307.	3.3	54
70	Evolutionary Dynamics and Dissemination Pattern of the SARS-CoV-2 Lineage B.1.1.33 During the Early Pandemic Phase in Brazil. Frontiers in Microbiology, 2020, 11, 615280.	3.5	62
71	Quantifying asymptomatic infection and transmission of COVID-19 in New York City using observed cases, serology, and testing capacity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	196
73	High Throughput Sequencing for the Detection and Characterization of RNA Viruses. Frontiers in Microbiology, 2021, 12, 621719.	3.5	28
74	Systematic Review of Mutations Associated with Isoniazid Resistance Points to Continuing Evolution and Subsequent Evasion of Molecular Detection, and Potential for Emergence of Multidrug Resistance in Clinical Strains of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherany, 2021, 65	3.2	14
77	COVIDâ€19: emergence and mutational diversification of SARS oVâ€2. Microbial Biotechnology, 2021, 14, 756-768.	4.2	17
78	Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates type I interferon response. Cell Host and Microbe, 2021, 29, 489-502.e8.	11.0	95
80	Genomic epidemiology of COVID-19 in care homes in the east of England. ELife, 2021, 10, .	6.0	20
81	Japanese travel behavior trends and change under COVID-19 state-of-emergency declaration: Nationwide observation by mobile phone location data. Transportation Research Interdisciplinary Perspectives, 2021, 9, 100288.	2.7	41
82	Non-Pharmaceutical Interventions. Cascade Journal of Knowledge, 0, , 0-7:42 minutes.	0.0	0

щ		IF	CITATIONS
#	ARTICLE Shotgun transcriptome, spatial omics, and isothermal profiling of SARS-CoV-2 infection reveals	IF	CITATIONS
83	unique host responses, viral diversification, and drug interactions. Nature Communications, 2021, 12, 1660.	12.8	132
84	Case Study: Longitudinal immune profiling of a SARS-CoV-2 reinfection in a solid organ transplant recipient. , 2021, , .		3
86	Genomic diversity of SARS-CoV-2 during early introduction into the Baltimore–Washington metropolitan area. JCI Insight, 2021, 6, .	5.0	31
87	Emergence of novel SARS-CoV-2 variants in the Netherlands. Scientific Reports, 2021, 11, 6625.	3.3	22
88	Whole-genome sequencing of SARS-CoV-2 reveals the detection of G614 variant in Pakistan. PLoS ONE, 2021, 16, e0248371.	2.5	34
89	Estimation of Secondary Household Attack Rates for Emergent Spike L452R Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants Detected by Genomic Surveillance at a Community-Based Testing Site in San Francisco. Clinical Infectious Diseases, 2022, 74, 32-39.	5.8	39
90	The role of weather conditions in COVID-19 transmission: A study of a global panel of 1236 regions. Journal of Cleaner Production, 2021, 292, 125987.	9.3	26
91	Introduction, Transmission Dynamics, and Fate of Early Severe Acute Respiratory Syndrome Coronavirus 2 Lineages in Santa Clara County, California. Journal of Infectious Diseases, 2021, 224, 207-217.	4.0	2
92	Temporal dynamics of SARS-CoV-2 mutation accumulation within and across infected hosts. PLoS Pathogens, 2021, 17, e1009499.	4.7	86
93	SARS-CoV-2 ORF6 Disrupts Bidirectional Nucleocytoplasmic Transport through Interactions with Rae1 and Nup98. MBio, 2021, 12, .	4.1	92
96	Genetic evidence for the association between COVID-19 epidemic severity and timing of non-pharmaceutical interventions. Nature Communications, 2021, 12, 2188.	12.8	23
97	Investigation and public health response to a COVID-19 outbreak in a rural resort community—Blaine County, Idaho, 2020. PLoS ONE, 2021, 16, e0250322.	2.5	4
99	Rapid High-Throughput Whole-Genome Sequencing of SARS-CoV-2 by Using One-Step Reverse Transcription-PCR Amplification with an Integrated Microfluidic System and Next-Generation Sequencing. Journal of Clinical Microbiology, 2021, 59, .	3.9	15
100	Fundamental evolution of all <i>Orthocoronavirinae</i> including three deadly lineages descendent from Chiropteraâ€hosted coronaviruses: SARSâ€CoV, MERSâ€CoV and SARSâ€CoVâ€2. Cladistics, 2021, 37, 461-	488.	16
101	An Evolutionary Portrait of the Progenitor SARS-CoV-2 and Its Dominant Offshoots in COVID-19 Pandemic. Molecular Biology and Evolution, 2021, 38, 3046-3059.	8.9	54
103	Testing at scale during the COVID-19 pandemic. Nature Reviews Genetics, 2021, 22, 415-426.	16.3	261
104	Retrospective Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Symptomatic Patients Prior to Widespread Diagnostic Testing in Southern California. Clinical Infectious Diseases, 2022, 74, 271-277.	5.8	4
105	Early introductions and transmission of SARS-CoV-2 variant B.1.1.7 in the United States. Cell, 2021, 184, 2595-2604.e13.	28.9	113

#	ARTICLE	١F	Citations
108	Genomic epidemiology of SARS-COV-2 in Estelo, Rio Grande do Sul, Brazil. BMC Genomics, 2021, 22, 371.	2.8	22
109	Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: a review of current evidence. Expert Review of Clinical Pharmacology, 2021, 14, 601-621.	3.1	144
112	Ultrafast Sample placement on Existing tRees (UShER) enables real-time phylogenetics for the SARS-CoV-2 pandemic. Nature Genetics, 2021, 53, 809-816.	21.4	264
113	Experiences and Views of Domestic Summer Travelers During the COVID-19 Pandemic: Findings from a National Survey. Health Security, 2021, 19, 338-348.	1.8	2
114	New variants of SARS-CoV-2. Revista Espanola De Quimioterapia, 2021, 34, 419-428.	1.3	49
115	Visualizing and assessing US county-level COVID19 vulnerability. American Journal of Infection Control, 2021, 49, 678-684.	2.3	10
116	Rapid feedback on hospital onset SARS-CoV-2 infections combining epidemiological and sequencing data. ELife, 2021, 10, .	6.0	26
118	Molecular benchmarks of a SARS-CoV-2 epidemic. Nature Communications, 2021, 12, 3633.	12.8	3
119	The coSIR model predicts effective strategies to limit the spread of SARS-CoV-2 variants with low severity and high transmissibility. Nonlinear Dynamics, 2021, 105, 2757-2773.	5.2	6
120	Trends in COVID-19 cases and clinical management in Veterans Health Administration medical facilities: A national cohort study. PLoS ONE, 2021, 16, e0246217.	2.5	4
121	L-SIGN is a receptor on liver sinusoidal endothelial cells for SARS-CoV-2 virus. JCI Insight, 2021, 6, .	5.0	31
122	Emerging mutation in SARS-CoV-2 spike: Widening distribution over time in different geographic areas. Biomedical Journal, 2021, 44, 570-581.	3.1	6
123	How coronavirus disease will change the face of travel medicine. Current Opinion in Infectious Diseases, 2021, 34, 409-414.	3.1	2
124	Modification of the Spike Protein for Vaccines against Enveloped RNA Viruses. Molecular Biology, 2021, 55, 538-547.	1.3	2
125	Estimation of COVID-19 Dynamics in the Different States of the United States during the First Months of the Pandemic. Engineering Proceedings, 2021, 5, .	0.4	4
126	Temporal landscape of mutational frequencies in SARS-CoV-2 genomes of Bangladesh: possible implications from the ongoing outbreak in Bangladesh. Virus Genes, 2021, 57, 413-425.	1.6	7
127	The role of mask mandates, stay at home orders and school closure in curbing the COVID-19 pandemic prior to vaccination. American Journal of Infection Control, 2021, 49, 1036-1042.	2.3	32
128	SARS-CoV-2: Understanding the Transcriptional Regulation of ACE2 and TMPRSS2 and the Role of Single Nucleotide Polymorphism (SNP) at Codon 72 of p53 in the Innate Immune Response against Virus Infection. International Journal of Molecular Sciences, 2021, 22, 8660.	4.1	14

#	Article	IF	CITATIONS
130	Effect of mutation and vaccination on spread, severity, and mortality of COVIDâ€19 disease. Journal of Medical Virology, 2022, 94, 197-204.	5.0	42
131	How COVID-19 has transformed my science. Neuron, 2021, 109, 3041-3044.	8.1	0
132	Patterns of within-host genetic diversity in SARS-CoV-2. ELife, 2021, 10, .	6.0	110
133	Recovery of Deleted Deep Sequencing Data Sheds More Light on the Early Wuhan SARS-CoV-2 Epidemic. Molecular Biology and Evolution, 2021, 38, 5211-5224.	8.9	24
134	Factors associated with SARS-CoV2 infection and care pathways among the most vulnerable populations living in Marseille: a case control study. BMC Public Health, 2021, 21, 1704.	2.9	1
137	SARS-CoV-2 transmission dynamics in Belarus in 2020 revealed by genomic and incidence data analysis. Communications Medicine, 2021, 1, .	4.2	7
138	Phylogenetic estimates of SARS-CoV-2 introductions into Washington State. The Lancet Regional Health Americas, 2021, 1, 100018.	2.6	8
139	Investigating the first stage of the COVID-19 pandemic in Ukraine using epidemiological and genomic data. Infection, Genetics and Evolution, 2021, 95, 105087.	2.3	10
140	Decomposing the sources of SARS-CoV-2 fitness variation in the United States. Virus Evolution, 2021, 7, veab073.	4.9	14
141	Emergence of an early SARS-CoV-2 epidemic in the United States. Cell, 2021, 184, 4939-4952.e15.	28.9	31
142	Clinical outcomes in patients infected with different SARS-CoV-2 variants at one hospital during three phases of the COVID-19 epidemic in Marseille, France. Infection, Genetics and Evolution, 2021, 95, 105092.	2.3	22
142 143	Clinical outcomes in patients infected with different SARS-CoV-2 variants at one hospital during three phases of the COVID-19 epidemic in Marseille, France. Infection, Genetics and Evolution, 2021, 95, 105092. Immune response variables and viral mutations impact on COVID-19 reinfection and relapse. International Immunopharmacology, 2021, 100, 108108.	2.3	22
142 143 144	Clinical outcomes in patients infected with different SARS-CoV-2 variants at one hospital during three phases of the COVID-19 epidemic in Marseille, France. Infection, Genetics and Evolution, 2021, 95, 105092. Immune response variables and viral mutations impact on COVID-19 reinfection and relapse. International Immunopharmacology, 2021, 100, 108108. Felsenstein Phylogenetic Likelihood. Journal of Molecular Evolution, 2021, 89, 134-145.	2.3 3.8 1.8	22 7 9
142 143 144 145	Clinical outcomes in patients infected with different SARS-CoV-2 variants at one hospital during three phases of the COVID-19 epidemic in Marseille, France. Infection, Genetics and Evolution, 2021, 95, 105092. Immune response variables and viral mutations impact on COVID-19 reinfection and relapse. International Immunopharmacology, 2021, 100, 108108. Felsenstein Phylogenetic Likelihood. Journal of Molecular Evolution, 2021, 89, 134-145. Geographic Patterns of the Pandemic in the United States: Covid-19 Response Within a Disunified Federal System., 2021, 451-467.	2.3 3.8 1.8	22 7 9 1
142 143 144 145 146	Clinical outcomes in patients infected with different SARS-CoV-2 variants at one hospital during three phases of the COVID-19 epidemic in Marseille, France. Infection, Genetics and Evolution, 2021, 95, 105092. Immune response variables and viral mutations impact on COVID-19 reinfection and relapse. International Immunopharmacology, 2021, 100, 108108. Felsenstein Phylogenetic Likelihood. Journal of Molecular Evolution, 2021, 89, 134-145. Geographic Patterns of the Pandemic in the United States: Covid-19 Response Within a Disunified Federal System., 2021,, 451-467. Microsecond molecular dynamics suggest that a non-synonymous mutation, frequently observed in patients with mild symptoms in Tokyo, alters dynamics of the SARS-CoV-2 main protease. Biophysics and Physicobiology, 2021, 18, 215-222.	2.3 3.8 1.8 1.0	22 7 9 1 3
142 143 144 145 146 148	Clinical outcomes in patients infected with different SARS-CoV-2 variants at one hospital during three phases of the COVID-19 epidemic in Marseille, France. Infection, Genetics and Evolution, 2021, 95, 105092. Immune response variables and viral mutations impact on COVID-19 reinfection and relapse. International Immunopharmacology, 2021, 100, 108108. Felsenstein Phylogenetic Likelihood. Journal of Molecular Evolution, 2021, 89, 134-145. Geographic Patterns of the Pandemic in the United States: Covid-19 Response Within a Disunified Federal System., 2021,, 451-467. Microsecond molecular dynamics suggest that a non-synonymous mutation, frequently observed in patients with mild symptoms in Tokyo, alters dynamics of the SARS-CoV-2 main protease. Biophysics and Physicobiology, 2021, 18, 215-222.	2.3 3.8 1.8 1.0 4.1	22 7 9 1 3 284
 142 143 144 145 146 148 149 	Clinical outcomes in patients infected with different SARS-CoV-2 variants at one hospital during three phases of the COVID-19 epidemic in Marseille, France. Infection, Genetics and Evolution, 2021, 95, 105092. Immune response variables and viral mutations impact on COVID-19 reinfection and relapse. International Immunopharmacology, 2021, 100, 108108. Felsenstein Phylogenetic Likelihood. Journal of Molecular Evolution, 2021, 89, 134-145. Geographic Patterns of the Pandemic in the United States: Covid-19 Response Within a Disunified Federal System , 2021, 451-467. Microsecond molecular dynamics suggest that a non-synonymous mutation, frequently observed in patients with mild symptoms in Tokyo, alters dynamics of the SARS-CoV-2 main protease. Biophysics and Physicobiology, 2021, 18, 215-222. Genome Sequencing of Sewage Detects Regionally Prevalent SARS-CoV-2 Variants. MBio, 2021, 12, . How do we share data in COVID-19 research? A systematic review of COVID-19 datasets in PubMed Central Articles. Briefings in Bioinformatics, 2021, 22, 800-811.	2.3 3.8 1.8 1.0 4.1 6.5	22 7 9 1 3 284 22

#	Article	IF	CITATIONS
187	Genomic epidemiology reveals multiple introductions and spread of SARS-CoV-2 in the Indian state of Karnataka. PLoS ONE, 2020, 15, e0243412.	2.5	26
188	Evidence for Limited Early Spread of COVID-19 Within the United States, January–February 2020. Morbidity and Mortality Weekly Report, 2020, 69, 680-684.	15.1	141
190	The Role of Weather Conditions in COVID-19 Transmission: A Study of a Global Panel of 1236 Regions. SSRN Electronic Journal, 0, , .	0.4	1
191	Longitudinal Surveillance for SARS-CoV-2 Among Staff in Six Colorado Long Term Care Facilities: Epidemiologic, Virologic and Sequence Analysis. SSRN Electronic Journal, 0, , .	0.4	4
192	Risk Assessment of Importation and Local Transmission of COVID-19 in South Korea: Statistical Modeling Approach. JMIR Public Health and Surveillance, 2021, 7, e26784.	2.6	12
193	SARS-Cov-2 genome sequence analysis suggests rapid spread followed by epidemic slowdown in France. Peer Community in Evolutionary Biology, 0, , .	0.0	1
195	Epidemiological Model Suggests D614G Spike Protein Mutation Accelerates Transmission of COVID-19 — Worldwide, 2020. China CDC Weekly, 2020, 2, 946-947.	2.3	5
196	Impact of computational approaches in the fight against COVID-19: an Al guided review of 17 000 studies. Briefings in Bioinformatics, 2022, 23, .	6.5	20
197	Cryptic transmission of SARS-CoV-2 and the first COVID-19 wave. Nature, 2021, 600, 127-132.	27.8	61
198	Pathogenesis, Symptomatology, and Transmission of SARS-CoV-2 through Analysis of Viral Genomics and Structure. MSystems, 2021, 6, e0009521.	3.8	26
199	Noninvasive Technologies for Primate Conservation in the 21st Century. International Journal of Primatology, 2022, 43, 133-167.	1.9	16
200	A Comprehensive Overview of the Newly Emerged COVID-19 Pandemic: Features, Origin, Genomics, Epidemiology, Treatment, and Prevention. Biologics, 2021, 1, 357-383.	4.1	8
202	Switchover phenomenon induced by epidemic seeding on geometric networks. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	5
204	Scalable Reconstruction of SARS-CoV-2 Phylogeny with Recurrent Mutations. Journal of Computational Biology, 2021, 28, 1130-1141.	1.6	2
205	Interventions to Disrupt Coronavirus Disease Transmission at a University, Wisconsin, USA, August–October 2020. Emerging Infectious Diseases, 2021, 27, 2776-2785.	4.3	24
206	Strength and Weakness of Molecular Identification Strategies Against Causative Viral Agent from Emerging COVID-19. Journal of Bacteriology and Virology, 2020, 50, 65-75.	0.1	0
210	Genomic epidemiology reveals multiple introductions of SARS-CoV-2 followed by community and nosocomial spread, Germany, February to May 2020. Eurosurveillance, 2021, 26, .	7.0	11
211	Longitudinal Immune Profiling of a Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection in a Solid Organ Transplant Recipient. Journal of Infectious Diseases, 2022, 225, 374-384.	4.0	7

#	Article	IF	CITATIONS
212	Comprehensive analyses of bioinformatics applications in the fight against COVID-19 pandemic. Computational Biology and Chemistry, 2021, 95, 107599.	2.3	21
213	A reconstruction of early cryptic COVID spread. Nature, 2021, 600, 40-41.	27.8	3
215	Narrative review of the novel coronavirus SARS-CoV-2: update on genomic characteristics, transmissions and animal model. Journal of Thoracic Disease, 2020, 12, 7454-7466.	1.4	1
219	Contagion Modeling and Simulation in Transport and Air Travel Networks During the COVID-19 Pandemic: A Survey. IEEE Access, 2021, 9, 149529-149541.	4.2	6
220	COVID-19 Vaccination, Herd Immunity and The Transition Toward Normalcy: Challenges with The Upcoming Sports Events. Annals of Applied Sport Science, 2021, 9, 0-0.	0.4	17
221	Analysis of SARS-COV2 spike protein variants among Iraqi isolates. Gene Reports, 2022, 26, 101420.	0.8	12
227	纳米å"测å⁰技æœ⁻在é‡ç—‡æ–°å†è,ºç,Žæ,£è€ç»§å'感柑'è⁻Šæ–ä,的应用. Zhejiang Da Xue Xue Bao Y	'i Xua Ban	= j ournal of 2

228	Algorithm for Preventing the Spread of COVID-19 in Airports and Air Routes by Applying Fuzzy Logic and a Markov Chain. Mathematics, 2021, 9, 3040.	2.2	3
229	A machine learning model for nowcasting epidemic incidence. Mathematical Biosciences, 2022, 343, 108677.	1.9	8
230	Early Adoption of Longitudinal Surveillance for SARS-CoV-2 among Staff in Long-Term Care Facilities: Prevalence, Virologic and Sequence Analysis. Microbiology Spectrum, 2021, 9, e0100321.	3.0	18
231	InterARTIC: an interactive web application for whole-genome nanopore sequencing analysis of SARS-CoV-2 and other viruses. Bioinformatics, 2022, 38, 1443-1446.	4.1	8
232	A symbiosis between cellular automata and dynamic weighted multigraph with application on virus spread modeling. Chaos, Solitons and Fractals, 2022, 155, 111660.	5.1	5
235	Measures to prevent nosocomial transmissions of COVID-19 based on interpersonal contact data. Primary Health Care Research and Development, 2022, 23, e4.	1.2	3
237	Of vascular defense, hemostasis, cancer, and platelet biology: an evolutionary perspective. Cancer and Metastasis Reviews, 2022, 41, 147-172.	5.9	6
239	Mutations in viral nucleocapsid protein and endoRNase are discovered to associate with COVID19 hospitalization risk. Scientific Reports, 2022, 12, 1206.	3.3	12
240	The first three waves of the Covid-19 pandemic hint at a limited genetic repertoire for SARS-CoV-2. FEMS Microbiology Reviews, 2022, 46, .	8.6	11
241	Distinct mutations and lineages of SARSâ€CoVâ€2 virus in the early phase of COVIDâ€19 pandemic and subsequent 1â€year global expansion. Journal of Medical Virology, 2022, 94, 2035-2049.	5.0	7
242	SARS-CoV-2 introductions and early dynamics of the epidemic in Portugal. Communications Medicine, 2022, 2, .	4.2	5

		CITATION R	EPORT	
#	Article		IF	Citations
243	COVID-19 in Southeast Asia: current status and perspectives. Bioengineered, 2022, 13	, 3797-3809.	3.2	36
244	SARS-CoV-2 Variants Associated with Vaccine Breakthrough in the Delaware Valley thro 2021. MBio, 2022, 13, e0378821.	ough Summer	4.1	11
245	Spatial analysis of socioâ€economic factors and their relationship with the cases of CO Pernambuco, Brazil. Tropical Medicine and International Health, 2022, 27, 397-407.	VIDâ€ 1 9 in	2.3	9
246	The emergence, genomic diversity and global spread of SARS-CoV-2. Nature, 2021, 600), 408-418.	27.8	249
249	Future-proofing and maximizing the utility of metadata: The PHA4GE SARS-CoV-2 contespecification package. GigaScience, 2022, 11, .	extual data	6.4	18
250	Unrecognized introductions of SARS-CoV-2 into the US state of Georgia shaped the ear Virus Evolution, 2022, 8, veac011.	rly epidemic.	4.9	2
251	A Bayesian Spatiotemporal Nowcasting Model for Public Health Decision-Making and S American Journal of Epidemiology, 2022, , .	urveillance.	3.4	3
252	Mutations and Phylogenetic Analyses of SARS-CoV-2 Among Imported COVID-19 From China. Frontiers in Microbiology, 2022, 13, 851323.	Abroad in Nanjing,	3.5	4
253	Nonfatal opioid overdoses before and after Covid-19: Regional variation in rates of char 2022, 17, e0263893.	ıge. PLoS ONE,	2.5	7
254	Travel ban effects on SARS-CoV-2 transmission lineages in the UAE as inferred by genor epidemiology. PLoS ONE, 2022, 17, e0264682.	nic	2.5	3
256	Using genomic epidemiology of SARS-CoV-2 to support contact tracing and public heal in rural Humboldt County, California. BMC Public Health, 2022, 22, 456.	th surveillance	2.9	10
257	Evolutionary history and introduction of SARS-CoV-2 Alpha VOC/B.1.1.7 in Pakistan thr international travelers. Virus Evolution, 2022, 8, veac020.	ough	4.9	8
258	New Insights for Biosensing: Lessons from Microbial Defense Systems. Chemical Review 8126-8180.	vs, 2022, 122,	47.7	15
259	Unlocking capacities of genomics for the COVID-19 response and future pandemics. Na 2022, 19, 374-380.	ature Methods,	19.0	35
260	Genomic epidemiology of the Los Angeles COVID-19 outbreak and the early history of 1 in the USA. BMC Genomics, 2022, 23, 260.	he B.1.43 strain:	2.8	0
261	Role of genomics in combating COVID-19 pandemic. Gene, 2022, 823, 146387.		2.2	20
262	The spike glycoprotein of SARS-CoV-2: A review of how mutations of spike glycoproteir the emergence of variants with high transmissibility and immune escape. International Biological Macromolecules, 2022, 208, 105-125.	ıs have driven Journal of	7.5	41
263	Describing, Modelling and Forecasting the Spatial and Temporal Spread of COVID-19: A Fields Institute Communications, 2022, , 25-51.	Short Review.	1.3	13

#	Article	IF	CITATIONS
264	Diverse Local Epidemics Reveal the Distinct Effects of Population Density, Demographics, Climate, Depletion of Susceptibles, and Intervention in the First Wave of COVID-19 in the United States. Fields Institute Communications, 2022, , 1-23.	1.3	2
265	EXTENT OF ANXIETY AND STRESS IN DIFFERENT GROUPS OF HEALTH CARE WORKERS OF SIKKIM BASED ON THEIR EXTENT OF INSOMNIA. , 2021, , 93-95.		0
268	Viral surface geometry shapes influenza and coronavirus spike evolution through antibody pressure. PLoS Computational Biology, 2021, 17, e1009664.	3.2	4
269	Translating virus evolution into epidemiology. Cell Host and Microbe, 2022, 30, 444-448.	11.0	4
270	Phylogenetic and phylodynamic approaches to understanding and combating the early SARS-CoV-2 pandemic. Nature Reviews Genetics, 2022, 23, 547-562.	16.3	70
271	Extracorporeal membrane oxygenation for respiratory failure in phases of COVIDâ€19 variants. Journal of Cardiac Surgery, 2022, 37, 2972-2979.	0.7	5
272	Evolution and Epidemiology of SARS-CoV-2 Virus. Methods in Molecular Biology, 2022, 2452, 3-18.	0.9	0
273	An Electrostatically-steered Conformational Selection Mechanism Promotes SARS-CoV-2 Spike Protein Variation. Journal of Molecular Biology, 2022, 434, 167637.	4.2	1
274	A measure to estimate the risk of imported COVID-19 cases and its application for evaluating travel-related control measures. Scientific Reports, 2022, 12, .	3.3	2
276	Before you go: a packing list for portable DNA sequencing of microbiomes and metagenomes. Microbiology (United Kingdom), 2022, 168, .	1.8	4
277	Rapid and Affordable High Throughput Screening of SARS-CoV-2 Variants Using Denaturing High-Performance Liquid Chromatography Analysis. Frontiers in Virology, 0, 2, .	1.4	0
279	Clinical Performance Characteristics of the Swift Normalase Amplicon Panel for Sensitive Recovery of Severe Acute Respiratory Syndrome Coronavirus 2 Genomes. Journal of Molecular Diagnostics, 2022, 24, 963-976.	2.8	7
280	New Phylogenetic Models Incorporating Interval-Specific Dispersal Dynamics Improve Inference of Disease Spread. Molecular Biology and Evolution, 2022, 39, .	8.9	5
281	covSampler: A subsampling method with balanced genetic diversity for large-scale SARS-CoV-2 genome data sets. Virus Evolution, 2022, 8, .	4.9	3
282	The SARS-CoV-2 Variants and their Impacts. Journal of Pure and Applied Microbiology, 2022, 16, 1409-1424.	0.9	3
283	Genomic surveillance of SARS-CoV-2 in Puerto Rico enabled early detection and tracking of variants. Communications Medicine, 2022, 2, .	4.2	4
284	STArS (STrain-Amplicon-Seq), a targeted Nanopore sequencing workflow for SARS-CoV-2 diagnostics and genotyping. Biology Methods and Protocols, O, , .	2.2	0
285	SARS-COV-2/COVID-19: scenario, epidemiology, adaptive mutations, and environmental factors. Environmental Science and Pollution Research, 2022, 29, 69117-69136.	5.3	7

#	Article	IF	CITATIONS
287	NanoCoV19: An analytical pipeline for rapid detection of severe acute respiratory syndrome coronavirus 2. Frontiers in Genetics, 0, 13, .	2.3	2
288	Phylodynamic analysis of SARS-CoV-2 spread in Rio de Janeiro, Brazil, highlights how metropolitan areas act as dispersal hubs for new variants. Microbial Genomics, 2022, 8, .	2.0	2
289	New rules for genomics-informed COVID-19 responses–Lessons learned from the first waves of the Omicron variant in Australia. PLoS Genetics, 2022, 18, e1010415.	3.5	9
290	Associations Between Mobility Indices and the COVID-19 Pandemic in Thailand. Nakhara: Journal of Environmental Design and Planning, 2022, 21, 215.	0.1	0
291	Amino acid variants of SARS-CoV-2 papain-like protease have impact on drug binding. PLoS Computational Biology, 2022, 18, e1010667.	3.2	3
292	Social vulnerability amplifies the disparate impact of mobility on COVID-19 transmissibility across the United States. Humanities and Social Sciences Communications, 2022, 9, .	2.9	4
293	Nasal host response-based screening for undiagnosed respiratory viruses: a pathogen surveillance and detection study. Lancet Microbe, The, 2023, 4, e38-e46.	7.3	10
294	Sentinel Surveillance System Implementation and Evaluation for SARS-CoV-2 Genomic Data, Washington, USA, 2020–2021. Emerging Infectious Diseases, 2023, 29, 242-251.	4.3	4
295	One Health Investigation of SARS-CoV-2 in People and Animals on Multiple Mink Farms in Utah. Viruses, 2023, 15, 96.	3.3	4
296	Accelerated SARS-CoV-2 intrahost evolution leading to distinct genotypes during chronic infection. Cell Reports Medicine, 2023, 4, 100943.	6.5	31
297	Correlated substitutions reveal SARS-like coronaviruses recombine frequently with a diverse set of structured gene pools. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	4
298	The DataHarmonizer: a tool for faster data harmonization, validation, aggregation and analysis of pathogen genomics contextual information. Microbial Genomics, 2023, 9, .	2.0	1
299	Using metagenomics to detect West Nile virus in mosquitoes collected in Oklahoma. Bios, 2023, 93, .	0.0	2
300	The effect of changing COVID-19 restrictions on the transmission rate in a veterinary clinic. Infectious Disease Modelling, 2023, 8, 294-308.	1.9	Ο
301	Dissecting Phenotype from Genotype with Clinical Isolates of SARS-CoV-2 First Wave Variants. Viruses, 2023, 15, 611.	3.3	1
303	Estimating the undetected emergence of COVID-19 in the US. PLoS ONE, 2023, 18, e0284025.	2.5	0
304	Maximum likelihood pandemic-scale phylogenetics. Nature Genetics, 2023, 55, 746-752.	21.4	11
305	Realâ€ŧime genomics for One Health. Molecular Systems Biology, 2023, 19, .	7.2	8

#	Article	IF	Citations
306	Population genomics of diarrheagenic Escherichia coli uncovers high connectivity between urban and rural communities in Ecuador. Infection, Genetics and Evolution, 2023, 113, 105476.	2.3	1
307	Genetic determination of regional connectivity in modelling the spread of COVID-19 outbreak for more efficient mitigation strategies. Scientific Reports, 2023, 13, .	3.3	0
310	Antigenic evolution of SARS coronavirus 2. Current Opinion in Virology, 2023, 62, 101349.	5.4	12
311	Genomic epidemiology of SARS-CoV-2 from Uttar Pradesh, India. Scientific Reports, 2023, 13, .	3.3	0
312	A fast and accurate method for SARS-CoV-2 genomic tracing. Briefings in Bioinformatics, 2023, 24, .	6.5	1
313	Establishment and evaluation of a multiplex PCR amplification-based sequencing method for respiratory virus type A. Future Virology, 0, , .	1.8	0
315	SARS-CoV-2 genomics and impact on clinical care for COVID-19. Journal of Antimicrobial Chemotherapy, 2023, 78, ii25-ii36.	3.0	1
316	SARS-CoV-2 in an immunocompromised host: convalescent plasma therapy and viral evolution elucidated by whole genome sequencing. BMJ Case Reports, 2023, 16, e255255.	0.5	0
318	NASCarD (Nanopore Adaptive Sampling with Carrier DNA): A Rapid, PCR-Free Method for SARS-CoV-2 Whole-Genome Sequencing in Clinical Samples. Pathogens, 2024, 13, 61.	2.8	0
319	Bioinformatics in the study of microbial infections. , 2024, , 1975-1992.		0
320	Redefining pandemic preparedness: Multidisciplinary insights from the CERP modelling workshop in infectious diseases, workshop report. Infectious Disease Modelling, 2024, 9, 501-518.	1.9	0
321	Underdetected dispersal and extensive local transmission drove the 2022 mpox epidemic. Cell, 2024, 187, 1374-1386.e13.	28.9	0