Cell entry mechanisms of SARS-CoV-2

Proceedings of the National Academy of Sciences of the Unite 117, 11727-11734

DOI: 10.1073/pnas.2003138117

Citation Report

#	Article	IF	CITATIONS
1	Genetics of COVID-19. Jornal De Pediatria, 2021, 97, 378-386.	2.0	17
2	Comparative docking studies to understand the binding affinity of nicotine with soluble ACE2 (sACE2)-SARS-CoV-2 complex over sACE2. Toxicology Reports, 2020, 7, 1366-1372.	3.3	9
3	Experimental and in silico evidence suggests vaccines are unlikely to be affected by D614G mutation in SARS-CoV-2 spike protein. Npj Vaccines, 2020, 5, 96.	6.0	56
4	The sequence at Spike S1/S2 site enables cleavage by furin and phospho-regulation in SARS-CoV2 but not in SARS-CoV1 or MERS-CoV. Scientific Reports, 2020, 10, 16944.	3.3	125
5	The Controversy of Renin–Angiotensin-System Blocker Facilitation Versus Countering COVID-19 Infection. Journal of Cardiovascular Pharmacology, 2020, 76, 397-406.	1.9	16
6	Effects of COVID-19 on the Nervous System. Cell, 2020, 183, 16-27.e1.	28.9	526
7	Curcumin, a traditional spice component, can hold the promise against COVID-19?. European Journal of Pharmacology, 2020, 886, 173551.	3.5	80
8	Nucleic acid-based therapy for coronavirus disease 2019. Heliyon, 2020, 6, e05007.	3.2	31
9	Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus. Phytomedicine, 2020, 79, 153333.	5.3	46
10	Covid-19 pandemic and food: Present knowledge, risks, consumers fears and safety. Trends in Food Science and Technology, 2020, 105, 145-160.	15.1	68
11	COVID-19 and Respiratory System Disorders. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2586-2597.	2.4	110
12	Druggable targets from coronaviruses for designing new antiviral drugs. Bioorganic and Medicinal Chemistry, 2020, 28, 115745.	3.0	20
13	The influence of ABO blood groups on COVID-19 susceptibility and severity: A molecular hypothesis based on carbohydrate-carbohydrate interactions. Medical Hypotheses, 2020, 144, 110155.	1.5	42
14	Identifying pathophysiological bases of disease in COVID-19. Translational Medicine Communications, 2020, 5, 15.	1.4	8
15	Defusing SARS-CoV-2: Emergency Brakes in a Vaccine Failure Scenario. ACS Pharmacology and Translational Science, 2020, 3, 1425-1426.	4.9	2
16	Therapeutically Targeted Destabilization of the Quaternary Structure of the Spike Protein in the Dominant G614 Strain of SARS-CoV-2. ACS Pharmacology and Translational Science, 2020, 3, 1027-1029.	4.9	4
17	Higher mortality of COVID-19 in males: sex differences in immune response and cardiovascular comorbidities. Cardiovascular Research, 2020, 116, 2197-2206.	3.8	205
18	Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science, 2020, 370, 861-865.	12.6	1,015

ATION REDO

#	Article	IF	CITATIONS
19	Can endolysosomal deacidification and inhibition of autophagy prevent severe COVID-19?. Life Sciences, 2020, 262, 118541.	4.3	12
20	2020 update on human coronaviruses: One health, one world. Medicine in Novel Technology and Devices, 2020, 8, 100043.	1.6	21
21	Targeting Proteases for Treating COVID-19. Journal of Proteome Research, 2020, 19, 4316-4326.	3.7	68
22	Pharmacological agents to therapeutic treatment of cardiac injury caused by Covid-19. Life Sciences, 2020, 262, 118510.	4.3	41
23	Ultrastructure of cell trafficking pathways and coronavirus: how to recognise the wolf amongst the sheep. Journal of Pathology, 2020, 252, 346-357.	4.5	13
24	The expression of SARS-CoV-2 receptor ACE2 and CD147, and protease TMPRSS2 in human and mouse brain tissues. Biochemical and Biophysical Research Communications, 2020, 533, 867-871.	2.1	84
25	Projected supportive effects of PycnogenolⓇ in patients suffering from multi-dimensional health impairments after a SARS-CoV2 infection. International Journal of Antimicrobial Agents, 2020, 56, 106191.	2.5	6
26	SARS-CoV-2 receptor networks in diabetic and COVID-19–associated kidney disease. Kidney International, 2020, 98, 1502-1518.	5.2	64
27	Ebselen, Disulfiram, Carmofur, PX-12, Tideglusib, and Shikonin Are Nonspecific Promiscuous SARS-CoV-2 Main Protease Inhibitors. ACS Pharmacology and Translational Science, 2020, 3, 1265-1277.	4.9	194
28	Inhibiting Ebola virus and SARS-CoV-2 entry. Science, 2020, 370, 167-168.	12.6	6
29	Nanoparticlesâ€assisted delivery of antiviralâ€siRNA as inhalable treatment for human respiratory viruses: A candidate approach against SARS OVâ€2. Nano Select, 2020, 1, 612-621.	3.7	22
30	Host-pathogen interaction in COVID-19: Pathogenesis, potential therapeutics and vaccination strategies. Immunobiology, 2020, 225, 152008.	1.9	65
31	Host Receptors of Influenza Viruses and Coronaviruses—Molecular Mechanisms of Recognition. Vaccines, 2020, 8, 587.	4.4	13
32	Biomarkers of COVID-19 and technologies to combat SARS-CoV-2. Advances in Biomarker Sciences and Technology, 2020, 2, 1-23.	1.8	79
33	Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends in Immunology, 2020, 41, 1100-1115.	6.8	794
34	A materials-science perspective on tackling COVID-19. Nature Reviews Materials, 2020, 5, 847-860.	48.7	228
35	Emerging strategies on in silico drug development against COVID-19: challenges and opportunities. European Journal of Pharmaceutical Sciences, 2020, 155, 105522.	4.0	25
36	Enhanced elicitation of potent neutralizing antibodies by the SARS-CoV-2 spike receptor binding domain Fc fusion protein in mice. Vaccine, 2020, 38, 7205-7212.	3.8	31

#	Article	IF	CITATIONS
37	Prospect of SARS-CoV-2 spike protein: Potential role in vaccine and therapeutic development. Virus Research, 2020, 288, 198141.	2.2	116
38	Molecular Simulations and Network Modeling Reveal an Allosteric Signaling in the SARS-CoV-2 Spike Proteins. Journal of Proteome Research, 2020, 19, 4587-4608.	3.7	72
39	Insult to Injury-Potential Contribution of Coronavirus Disease-19 to Neuroinflammation and the Development of HIV-Associated Neurocognitive Disorders. AIDS Research and Human Retroviruses, 2021, 37, 601-609.	1.1	2
40	The molecular virology of coronaviruses. Journal of Biological Chemistry, 2020, 295, 12910-12934.	3.4	365
41	Broad and Differential Animal Angiotensin-Converting Enzyme 2 Receptor Usage by SARS-CoV-2. Journal of Virology, 2020, 94, .	3.4	139
42	microRNAs as new possible actors in gender disparities of Covidâ€19 pandemic. Acta Physiologica, 2020, 230, e13538.	3.8	31
43	Comprehensive Review on Current Interventions, Diagnostics, and Nanotechnology Perspectives against SARS-CoV-2. Bioconjugate Chemistry, 2020, 31, 2021-2045.	3.6	58
44	The interaction between SARS-CoV-2 and ACE2 may have consequences for skeletal muscle viral susceptibility and myopathies. Journal of Applied Physiology, 2020, 129, 864-867.	2.5	84
45	Involvement of Spike Protein, Furin, and ACE2 in SARS-CoV-2-Related Cardiovascular Complications. SN Comprehensive Clinical Medicine, 2020, 2, 1103-1108.	0.6	15
46	Current and Future Direct-Acting Antivirals Against COVID-19. Frontiers in Microbiology, 2020, 11, 587944.	3.5	16
47	COVID-19 during Pregnancy and Postpartum:. Journal of Dietary Supplements, 2022, 19, 115-142.	2.6	24
48	Impact of SARS-CoV-2 on Male Reproductive Health: A Review of the Literature on Male Reproductive Involvement in COVID-19. Frontiers in Medicine, 2020, 7, 594364.	2.6	22
49	The Pivotal Role of Adipocyte-Na K peptide in Reversing Systemic Inflammation in Obesity and COVID-19 in the Development of Heart Failure. Antioxidants, 2020, 9, 1129.	5.1	7
50	COVID-19 and COPD: a narrative review of the basic science and clinical outcomes. European Respiratory Review, 2020, 29, 200199.	7.1	73
51	The Need for Ocular Protection for Health Care Workers During SARS-CoV-2 Outbreak and a Hypothesis for a Potential Personal Protective Equipment. Frontiers in Public Health, 2020, 8, 599757.	2.7	6
52	Modeling Multi-organ Infection by SARS-CoV-2ÂUsing Stem Cell Technology. Cell Stem Cell, 2020, 27, 859-868.	11.1	27
53	Three Properties of SARS-CoV-2 That Promote COVID-19. Infectious Diseases in Clinical Practice, 2020, 28, 324-326.	0.3	1
54	SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nature Communications, 2020, 11, 6013.	12.8	828

#	Article	IF	CITATIONS
55	Insights into the Origin, Transmission and Outbreak of Coronavirus Disease (Covid 19): A Recent Study. Asian Journal of Chemistry, 2020, 32, 2403-2415.	0.3	0
56	A Novel Purification Procedure for Active Recombinant Human DPP4 and the Inability of DPP4 to Bind SARS-CoV-2. Molecules, 2020, 25, 5392.	3.8	26
57	Cross-Neutralization of a SARS-CoV-2 Antibody to a Functionally Conserved Site Is Mediated by Avidity. Immunity, 2020, 53, 1272-1280.e5.	14.3	185
58	SARS-CoV-2 Receptors and Entry Genes Are Expressed in the Human Olfactory Neuroepithelium and Brain. IScience, 2020, 23, 101839.	4.1	173
59	Regional and global contributions of air pollution to risk of death from COVID-19. Cardiovascular Research, 2020, 116, 2247-2253.	3.8	262
60	Molecular mechanisms of the novel coronavirus SARS-CoV-2 and potential anti-COVID19 pharmacological targets since the outbreak of the pandemic. Food and Chemical Toxicology, 2020, 146, 111805.	3.6	31
61	Identifying the Zoonotic Origin of SARS-CoV-2 by Modeling the Binding Affinity between the Spike Receptor-Binding Domain and Host ACE2. Journal of Proteome Research, 2020, 19, 4844-4856.	3.7	27
62	Non-Receptor-Mediated Lipid Membrane Permeabilization by the SARS-CoV-2 Spike Protein S1 Subunit. ACS Applied Materials & Interfaces, 2020, 12, 55649-55658.	8.0	21
63	The biomaterial polyphosphate blocks stoichiometric binding of the SARS-CoV-2 S-protein to the cellular ACE2 receptor. Biomaterials Science, 2020, 8, 6603-6610.	5.4	23
64	FDA efficiency for approval process of COVID-19 therapeutics. Infectious Agents and Cancer, 2020, 15, 73.	2.6	8
65	Computational Insights into the Conformational Accessibility and Binding Strength of SARS-CoV-2 Spike Protein to Human Angiotensin-Converting Enzyme 2. Journal of Physical Chemistry Letters, 2020, 11, 10482-10488.	4.6	42
66	COVID-19: The Emerging Immunopathological Determinants for Recovery or Death. Frontiers in Microbiology, 2020, 11, 588409.	3.5	19
67	Non-Coding RNAs and SARS-Related Coronaviruses. Viruses, 2020, 12, 1374.	3.3	29
68	The Human Leukocyte Antigen Class II Immunopeptidome of the SARS-CoV-2 Spike Glycoprotein. Cell Reports, 2020, 33, 108454.	6.4	37
69	SARS-CoV-2 Receptor Angiotensin I-Converting Enzyme Type 2 (ACE2) Is Expressed in Human Pancreatic β-Cells and in the Human Pancreas Microvasculature. Frontiers in Endocrinology, 2020, 11, 596898.	3.5	144
70	Efforts at COVID-19 Vaccine Development: Challenges and Successes. Vaccines, 2020, 8, 739.	4.4	98
71	Adaptive Evolution of Peptide Inhibitors for Mutating SARS oVâ€2. Advanced Theory and Simulations, 2020, 3, 2000156.	2.8	20
72	Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro. Cell Discovery, 2020, 6, 80.	6.7	172

	CITATION	Report	
#	Article	IF	Citations
73	Antibody-Based Immunotherapeutic Strategies for COVID-19. Pathogens, 2020, 9, 917.	2.8	12
74	SARS-CoV-2Âcell receptor gene ACE2 -mediated immunomodulation in breast cancer subtypes. Biochemistry and Biophysics Reports, 2020, 24, 100844.	1.3	6
75	SARS-CoV-2 receptor is co-expressed with elements of the kinin–kallikrein, renin–angiotensin and coagulation systems in alveolar cells. Scientific Reports, 2020, 10, 19522.	3.3	39
76	SARS-CoV-2 Cell Entry Factors ACE2 and TMPRSS2 Are Expressed in the Microvasculature and Ducts of Human Pancreas but Are Not Enriched in β Cells. Cell Metabolism, 2020, 32, 1028-1040.e4.	16.2	148
77	Spike Glycoprotein-Mediated Entry of SARS Coronaviruses. Viruses, 2020, 12, 1289.	3.3	35
78	Peptide and peptide-based inhibitors of SARS-CoV-2 entry. Advanced Drug Delivery Reviews, 2020, 167, 47-65.	13.7	132
79	Genetic variability in the expression of the SARS-CoV-2 host cell entry factors across populations. Genes and Immunity, 2020, 21, 269-272.	4.1	40
80	A modular framework for the development of targeted Covid-19 blood transcript profiling panels. Journal of Translational Medicine, 2020, 18, 291.	4.4	13
82	COVID-19 and comorbidities: Deleterious impact on infected patients. Journal of Infection and Public Health, 2020, 13, 1833-1839.	4.1	601
83	Quantitative determination of mechanical stability in the novel coronavirus spike protein. Nanoscale, 2020, 12, 16409-16413.	5.6	49
84	Intracellular autoactivation of TMPRSS11A, an airway epithelial transmembrane serine protease. Journal of Biological Chemistry, 2020, 295, 12686-12696.	3.4	22
85	While We Wait for a Vaccine Against SARS-CoV-2, Why Not Think About Available Drugs?. Frontiers in Physiology, 2020, 11, 820.	2.8	13
86	Potential Anti-COVID-19 Therapeutics that Block the Early Stage of the Viral Life Cycle: Structures, Mechanisms, and Clinical Trials. International Journal of Molecular Sciences, 2020, 21, 5224.	4.1	42
87	Mechanistic insights of host cell fusion of SARS-CoV-1 and SARS-CoV-2 from atomic resolution structure and membrane dynamics. Biophysical Chemistry, 2020, 265, 106438.	2.8	35
88	Identification of an anti–SARS–CoV-2 receptor-binding domain–directed human monoclonal antibody from a naÃīve semisynthetic library. Journal of Biological Chemistry, 2020, 295, 12814-12821.	3.4	46
89	Differences and similarities between SARS-CoV and SARS-CoV-2: spike receptor-binding domain recognition and host cell infection with support of cellular serine proteases. Infection, 2020, 48, 665-669.	4.7	78
90	Hypertension and related diseases in the era of COVID-19: a report from the Japanese Society of Hypertension Task Force on COVID-19. Hypertension Research, 2020, 43, 1028-1046.	2.7	131
91	Transcription Factor Nrf2 as a Potential Therapeutic Target for Prevention of Cytokine Storm in COVID-19 Patients. Biochemistry (Moscow), 2020, 85, 833-837.	1.5	54

#	Article	IF	CITATIONS
92	Phosphodiesterase Inhibitors: Could They Be Beneficial for the Treatment of COVID-19?. International Journal of Molecular Sciences, 2020, 21, 5338.	4.1	37
93	Potential Therapeutic Agents and Associated Bioassay Data for COVID-19 and Related Human Coronavirus Infections. ACS Pharmacology and Translational Science, 2020, 3, 813-834.	4.9	25
94	Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica, 2020, 41, 1141-1149.	6.1	1,611
95	The interaction of RAAS inhibitors with COVID-19: Current progress, perspective and future. Life Sciences, 2020, 257, 118142.	4.3	14
96	The Novel Insight of SARS-CoV-2 Molecular Biology and Pathogenesis and Therapeutic Options. DNA and Cell Biology, 2020, 39, 1741-1753.	1.9	37
97	Nicotine and the nicotinic cholinergic system in COVIDâ€∎9. FEBS Journal, 2020, 287, 3656-3663.	4.7	49
98	Potential diagnostics and therapeutic approaches in COVID-19. Clinica Chimica Acta, 2020, 510, 488-497.	1.1	33
99	Repurposing of host-based therapeutic agents for the treatment of coronavirus disease 2019 (COVID-19): a link between antiviral and anticancer mechanisms?. International Journal of Antimicrobial Agents, 2020, 56, 106125.	2.5	7
100	Significant Unresolved Questions and Opportunities for Bioengineering in Understanding and Treating COVID-19 Disease Progression. Cellular and Molecular Bioengineering, 2020, 13, 259-284.	2.1	5
101	ACE2, COVID-19 Infection, Inflammation, and Coagulopathy: Missing Pieces in the Puzzle. Frontiers in Physiology, 2020, 11, 574753.	2.8	54
102	Antivirals for COVID-19 in Solid Organ Transplant Recipients. Current Transplantation Reports, 2020, 7, 355-365.	2.0	12
103	Progress and Pitfalls in the Quest for Effective SARS-CoV-2 (COVID-19) Vaccines. Frontiers in Immunology, 2020, 11, 579250.	4.8	72
104	Mesenchymal Stem Cells and Their Extracellular Vesicles: A Potential Game Changer for the COVID-19 Crisis. Frontiers in Cell and Developmental Biology, 2020, 8, 587866.	3.7	14
105	ACE2 in the Era of SARS-CoV-2: Controversies and Novel Perspectives. Frontiers in Molecular Biosciences, 2020, 7, 588618.	3.5	77
106	Genetic Spectrum and Distinct Evolution Patterns of SARS-CoV-2. Frontiers in Microbiology, 2020, 11, 593548.	3.5	44
107	SARSâ€CoVâ€2 RBD Neutralizing Antibody Induction is Enhanced by Particulate Vaccination. Advanced Materials, 2020, 32, e2005637.	21.0	74
108	High-throughput virtual screening of drug databanks for potential inhibitors of SARS-CoV-2 spike glycoprotein. Journal of Biomolecular Structure and Dynamics, 2022, 40, 2099-2112.	3.5	28
109	The SARS-CoV-2 Spike Glycoprotein as a Drug and Vaccine Target: Structural Insights into Its Complexes with ACE2 and Antibodies. Cells, 2020, 9, 2343.	4.1	73

#	ARTICLE	IF	CITATIONS
110	Molecular Basis of SARS-CoV-2 Infection and Rational Design of Potential Antiviral Agents: Modeling and Simulation Approaches. Journal of Proteome Research, 2020, 19, 4291-4315.	3.7	68
111	Immunoinflammatory, Thrombohaemostatic, and Cardiovascular Mechanisms in COVID-19. Thrombosis and Haemostasis, 2020, 120, 1629-1641.	3.4	44
112	The SARS-CoV-2 Spike Glycoprotein Biosynthesis, Structure, Function, and Antigenicity: Implications for the Design of Spike-Based Vaccine Immunogens. Frontiers in Immunology, 2020, 11, 576622.	4.8	317
113	COVID-19-Associated Neurological Disorders: The Potential Route of CNS Invasion and Blood-Brain Barrier Relevance. Cells, 2020, 9, 2360.	4.1	125
114	In silico identification of drug candidates against COVID-19. Informatics in Medicine Unlocked, 2020, 21, 100461.	3.4	17
115	COVID-19 and Orchi-epididymitis. Pediatric Infectious Disease Journal, 2020, 39, e385-e385.	2.0	2
116	Neurological injuries in COVID-19 patients: direct viral invasion or a bystander injury after infection of epithelial/endothelial cells. Journal of NeuroVirology, 2020, 26, 631-641.	2.1	38
117	Potential interactions of SARSâ€CoVâ€⊋ with human cell receptors in the skin: Understanding the enigma for a lower frequency of skin lesions compared to other tissues. Experimental Dermatology, 2020, 29, 936-944.	2.9	5
118	COVID-19 and Genetic Variants of Protein Involved in the SARS-CoV-2 Entry into the Host Cells. Genes, 2020, 11, 1010.	2.4	88
119	Studying the neuropsychological sequelae of SARS-CoV-2: lessons learned from 35 years of neuroHIV research. Journal of NeuroVirology, 2020, 26, 809-823.	2.1	19
120	An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nature Communications, 2020, 11, 4420.	12.8	261
121	A Simplified Quantitative Real-Time PCR Assay for Monitoring SARS-CoV-2 Growth in Cell Culture. MSphere, 2020, 5, .	2.9	32
122	Direct or Collateral Liver Damage in SARS-CoV-2–Infected Patients. Seminars in Liver Disease, 2020, 40, 321-330.	3.6	29
123	Complex Immunometabolic Profiling Reveals the Activation of Cellular Immunity and Biliary Lesions in Patients with Severe COVID-19. Journal of Clinical Medicine, 2020, 9, 3000.	2.4	2
124	Vaccines for COVID-19: perspectives from nucleic acid vaccines to BCG as delivery vector system. Microbes and Infection, 2020, 22, 515-524.	1.9	23
125	SARS-CoV-2 Infection of Pluripotent Stem Cell-Derived Human Lung Alveolar Type 2 Cells Elicits a Rapid Epithelial-Intrinsic Inflammatory Response. Cell Stem Cell, 2020, 27, 962-973.e7.	11.1	266
126	Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-CoV-2 Neurotropism Predominates in Choroid Plexus Epithelium. Cell Stem Cell, 2020, 27, 937-950.e9.	11.1	314
127	Bioactive Virus-Mimicking Nanovesicles From Dendrimersomes: A Novel Approach to Understanding SARS-CoV-2 Host-Interactions to Better Design Therapeutics. Frontiers in Molecular Biosciences, 2020, 7, 188.	3.5	5

#	Article	IF	CITATIONS
128	Cardiovascular Complications Associated with COVID-19 and Potential Therapeutic Strategies. International Journal of Molecular Sciences, 2020, 21, 6790.	4.1	52
129	Insights into the structural and dynamical changes of spike glycoprotein mutations associated with SARS-CoV-2 host receptor binding. Journal of Biomolecular Structure and Dynamics, 2022, 40, 263-275.	3.5	29
130	Epigenetic susceptibility to severe respiratory viral infections and its therapeutic implications: a narrative review. British Journal of Anaesthesia, 2020, 125, 1002-1017.	3.4	36
131	In Silico Identification of Potential Natural Product Inhibitors of Human Proteases Key to SARS-CoV-2 Infection. Molecules, 2020, 25, 3822.	3.8	51
132	Potential Therapeutic Roles for Direct Factor Xa Inhibitors in Coronavirus Infections. American Journal of Cardiovascular Drugs, 2020, 20, 525-533.	2.2	23
133	Antibody Response to Severe Acute Respiratory Syndrome―Corona Virus 2, Diagnostic and Therapeutic Implications. Hepatology Communications, 2020, 4, 1731-1743.	4.3	6
134	Engineering photonics solutions for COVID-19. APL Photonics, 2020, 5, 090901.	5.7	26
135	Insights on SARS-CoV-2 Molecular Interactions With the Renin-Angiotensin System. Frontiers in Cell and Developmental Biology, 2020, 8, 559841.	3.7	50
136	Achilles' Heel of SARS-CoV-2 Structure. ACS Pharmacology and Translational Science, 2020, 3, 1030-1031.	4.9	5
137	<i>In silico</i> investigation of spice molecules as potent inhibitor of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 2022, 40, 860-874.	3.5	35
138	The Challenges of Vaccine Development against Betacoronaviruses: Antibody Dependent Enhancement and Sendai Virus as a Possible Vaccine Vector. Molecular Biology, 2020, 54, 812-826.	1.3	23
139	Commentary: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Frontiers in Oncology, 2020, 10, 1448.	2.8	44
140	Treatment and Control of Hypertension in 2020. JAMA - Journal of the American Medical Association, 2020, 324, 1166.	7.4	23
141	Identification of immunodominant linear epitopes from SARS-CoV-2 patient plasma. PLoS ONE, 2020, 15, e0238089.	2.5	71
142	No small matter: a perspective on nanotechnology-enabled solutions to fight COVID-19. Nanomedicine, 2020, 15, 2411-2427.	3.3	19
143	Dendritic Cells and SARS-CoV-2 Infection: Still an Unclarified Connection. Cells, 2020, 9, 2046.	4.1	46
144	A dynamic COVID-19 immune signature includes associations with poor prognosis. Nature Medicine, 2020, 26, 1623-1635.	30.7	765
145	Obesity and COVID-19: Molecular Mechanisms Linking Both Pandemics. International Journal of Molecular Sciences, 2020, 21, 5793.	4.1	101

#	Article	IF	CITATIONS
146	COVID-19 Is a Multifaceted Challenging Pandemic Which Needs Urgent Public Health Interventions. Microorganisms, 2020, 8, 1228.	3.6	29
147	Putative SARS-CoV-2 Mpro Inhibitors from an In-House Library of Natural and Nature-Inspired Products: A Virtual Screening and Molecular Docking Study. Molecules, 2020, 25, 3745.	3.8	29
148	Diseases with health disparities as drivers of COVIDâ€19 outcome. Journal of Cellular and Molecular Medicine, 2020, 24, 11038-11045.	3.6	38
149	Plasmin Cascade Mediates Thrombotic Events in SARS-CoV-2 Infection via Complement and Platelet-Activating Systems. IEEE Open Journal of Engineering in Medicine and Biology, 2020, 1, 220-227.	2.3	12
150	Role of Endolysosomes in Severe Acute Respiratory Syndrome Coronavirus-2 Infection and Coronavirus Disease 2019 Pathogenesis: Implications for Potential Treatments. Frontiers in Pharmacology, 2020, 11, 595888.	3.5	44
151	Repositioning of Ligands That Target the Spike Glycoprotein as Potential Drugs for SARS-CoV-2 in an In Silico Study. Molecules, 2020, 25, 5615.	3.8	15
152	Screening of Natural Products Targeting SARS-CoV-2–ACE2 Receptor Interface – A MixMD Based HTVS Pipeline. Frontiers in Chemistry, 2020, 8, 589769.	3.6	14
153	SARS-CoV-2 and Viral Sepsis: Immune Dysfunction and Implications in Kidney Failure. Journal of Clinical Medicine, 2020, 9, 4057.	2.4	31
154	Challenges and Opportunities from Targeting Inflammatory Responses to SARS-CoV-2 Infection: A Narrative Review. Journal of Clinical Medicine, 2020, 9, 4021.	2.4	13
155	Antimicrobial and Amyloidogenic Activity of Peptides. Can Antimicrobial Peptides Be Used against SARS-CoV-2?. International Journal of Molecular Sciences, 2020, 21, 9552.	4.1	45
156	Virus-Mediated Cell-Cell Fusion. International Journal of Molecular Sciences, 2020, 21, 9644.	4.1	70
157	Severe Acute Respiratory Syndrome Coronavirus 2-Induced Neurological Complications. Frontiers in Cell and Developmental Biology, 2020, 8, 605972.	3.7	10
158	Characterization of Structural and Energetic Differences between Conformations of the SARS-CoV-2 Spike Protein. Materials, 2020, 13, 5362.	2.9	46
159	HCoV-NL63 and SARS-CoV-2 Share Recognized Epitopes by the Humoral Response in Sera of People Collected Pre- and during CoV-2 Pandemic. Microorganisms, 2020, 8, 1993.	3.6	25
160	An ACE2 Microbody Containing a Single Immunoglobulin Fc Domain Is a Potent Inhibitor of SARS-CoV-2. Cell Reports, 2020, 33, 108528.	6.4	77
161	Role of Nutraceuticals in COVID-19 Mediated Liver Dysfunction. Molecules, 2020, 25, 5905.	3.8	11
162	Gallium maltolate has <i>in vitro</i> antiviral activity against SARS-CoV-2 and is a potential treatment for COVID-19. Antiviral Chemistry and Chemotherapy, 2020, 28, 204020662098378.	0.6	14
163	Ketonuria with or without ketoacidosis as the presenting manifestation of SARS-CoV-2 (COVID-19) among uncontrolled type 2 diabetic patients. Medical Hypotheses, 2020, 144, 110226.	1.5	5

# 164	ARTICLE Chasing COVID-19 through SARS-CoV-2 spike glycoprotein. VirusDisease, 2020, 31, 399-407.	IF 2.0	CITATIONS
165	The Potential for Repurposing Anti-TNF as a Therapy for the Treatment of COVID-19. Med, 2020, 1, 90-102.	4.4	87
166	ACE2 and Furin Expressions in Oral Epithelial Cells Possibly Facilitate COVID-19 Infection via Respiratory and Fecal–Oral Routes. Frontiers in Medicine, 2020, 7, 580796.	2.6	59
167	How Does SARS-CoV-2 Affect the Central Nervous System? A Working Hypothesis. Frontiers in Psychiatry, 2020, 11, 582345.	2.6	33
168	Inhibition of SARS-CoV-2 Entry into Host Cells Using Small Molecules. Pharmaceuticals, 2020, 13, 447.	3.8	24
169	Osmotic Adaptation by Na+-Dependent Transporters and ACE2: Correlation with Hemostatic Crisis in COVID-19. Biomedicines, 2020, 8, 460.	3.2	11
170	Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against M ^{pro} and cathepsin L. Science Advances, 2020, 6, .	10.3	297
171	De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science, 2020, 370, 1208-1214.	12.6	172
172	Change of Antigenic Determinants of SARS-CoV-2 Virus S-Protein as a Possible Cause of Antibody-Dependent Enhancement of Virus Infection and Cytokine Storm. Biophysics (Russian) Tj ETQq0 0 0 rgB	T / Q.v erloc	:k 1200 Tf 50 4
173	COVID-19 Vaccines Currently under Preclinical and Clinical Studies, and Associated Antiviral Immune Response. Vaccines, 2020, 8, 649.	4.4	42
174	Small RNA Plays Important Roles in Virus–Host Interactions. Viruses, 2020, 12, 1271.	3.3	6
175	Massive dissemination of a SARS-CoV-2 Spike Y839 variant in Portugal. Emerging Microbes and Infections, 2020, 9, 2488-2496.	6.5	20
176	The endosomal lipid bis(monoacylglycero) phosphate as a potential key player in the mechanism of action of chloroquine against SARS-COV-2 and other enveloped viruses hijacking the endocytic pathway. Biochimie, 2020, 179, 237-246.	2.6	25
177	Efficient production of recombinant SARS-CoV-2 spike protein using the baculovirus-silkworm system. Biochemical and Biophysical Research Communications, 2020, 529, 257-262.	2.1	40
178	The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner. Viruses, 2020, 12, 629.	3.3	232
179	Screening and druggability analysis of some plant metabolites against SARS-CoV-2: An integrative computational approach. Informatics in Medicine Unlocked, 2020, 20, 100367.	3.4	46
180	A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science, 2020, 369, 650-655.	12.6	1,292
181	A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell, 2020, 27, 125-136.e7.	11.1	543

#	Article	IF	CITATIONS
182	SARS oVâ€2 endothelial infection causes COVIDâ€19 chilblains: histopathological, immunohistochemical and ultrastructural study of seven paediatric cases. British Journal of Dermatology, 2020, 183, 729-737.	1.5	361
183	Metabolic Syndrome and COVID 19: Endocrine-Immune-Vascular Interactions Shapes Clinical Course. Endocrinology, 2020, 161, .	2.8	80
184	COVID-19 and the Chemical Senses: Supporting Players Take Center Stage. Neuron, 2020, 107, 219-233.	8.1	256
185	LY6E Restricts Entry of Human Coronaviruses, Including Currently Pandemic SARS-CoV-2. Journal of Virology, 2020, 94, .	3.4	73
186	Impact of glycoscience in fighting Covid-19. Glycoconjugate Journal, 2020, 37, 511-512.	2.7	5
187	SARS-CoV-2 infection risk assessment in the endometrium: viral infection-related gene expression across the menstrual cycle. Fertility and Sterility, 2020, 114, 223-232.	1.0	84
188	Targeting the Heme-Heme Oxygenase System to Prevent Severe Complications Following COVID-19 Infections. Antioxidants, 2020, 9, 540.	5.1	63
189	Immunology of COVIDâ€19: Mechanisms, clinical outcome, diagnostics, and perspectives—A report of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2445-2476.	5.7	132
190	A Replication-Competent Vesicular Stomatitis Virus for Studies of SARS-CoV-2 Spike-Mediated Cell Entry and Its Inhibition. Cell Host and Microbe, 2020, 28, 486-496.e6.	11.0	178
191	COVID-19: unravelling the clinical progression of nature's virtually perfect biological weapon. Annals of Translational Medicine, 2020, 8, 693-693.	1.7	95
192	Integrated approaches to reveal mechanisms by which RNA viruses reprogram the cellular environment. Methods, 2020, 183, 50-56.	3.8	7
193	A Contemporary Review of Neurological Sequelae of COVID-19. Frontiers in Neurology, 2020, 11, 640.	2.4	58
194	Structural features of coronavirus SARS-CoV-2 spike protein: Targets for vaccination. Life Sciences, 2020, 257, 118056.	4.3	175
195	Structural Basis of SARS-CoV-2– and SARS-CoV–Receptor Binding and Small-Molecule Blockers as Potential Therapeutics. Annual Review of Pharmacology and Toxicology, 2021, 61, 465-493.	9.4	36
196	Human coronavirus spike protein-host receptor recognition. Progress in Biophysics and Molecular Biology, 2021, 161, 39-53.	2.9	34
197	Design of a highly thermotolerant, immunogenic SARS-CoV-2 spike fragment. Journal of Biological Chemistry, 2021, 296, 100025.	3.4	43
198	Severe COVID-19: A multifaceted viral vasculopathy syndrome. Annals of Diagnostic Pathology, 2021, 50, 151645.	1.3	76
199	Animal coronaviruses and SARSâ€CoVâ€⊋. Transboundary and Emerging Diseases, 2021, 68, 1097-1110.	3.0	33

#	Article	IF	CITATIONS
200	Receptor utilization of angiotensinâ€converting enzyme 2 (ACE2) indicates a narrower host range of SARSâ€CoVâ€2 than that of SARSâ€CoV. Transboundary and Emerging Diseases, 2021, 68, 1046-1053.	3.0	15
201	Is <i>FURIN</i> gene expression in salivary glands related to SARS-CoV-2 infectivity through saliva?. Journal of Clinical Pathology, 2021, 74, 209-211.	2.0	15
202	<i>ACE2, TMPRSS2</i> , and Furin variants and SARSâ€CoVâ€2 infection in Madrid, Spain. Journal of Medical Virology, 2021, 93, 863-869.	5.0	72
203	Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 2021, 19, 141-154.	28.6	3,334
204	Advancement in biosensors for inflammatory biomarkers of SARS-CoV-2 during 2019–2020. Biosensors and Bioelectronics, 2021, 171, 112703.	10.1	32
205	Multiple Neuroinvasive Pathways in COVID-19. Molecular Neurobiology, 2021, 58, 564-575.	4.0	86
206	Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection. Cell, 2021, 184, 76-91.e13.	28.9	418
207	Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nature Reviews Nephrology, 2021, 17, 46-64.	9.6	444
208	Antiviral Activity of Reagents in Mouth Rinses against SARS-CoV-2. Journal of Dental Research, 2021, 100, 124-132.	5.2	114
209	Pathogenesisâ€directed therapy of 2019 novel coronavirus disease. Journal of Medical Virology, 2021, 93, 1320-1342.	5.0	40
210	The role of kallikrein-kinin and renin-angiotensin systems in COVID-19 infection. Peptides, 2021, 135, 170428.	2.4	19
211	Angiotensin-converting enzyme 2 (ACE2): SARS-CoV-2 receptor and RAS modulator. Acta Pharmaceutica Sinica B, 2021, 11, 1-12.	12.0	93
212	Rapid in vitro assays for screening neutralizing antibodies and antivirals against SARS-CoV-2. Journal of Virological Methods, 2021, 287, 113995.	2.1	39
213	A novel rapid detection for SARS-CoV-2 spike 1 antigens using human angiotensin converting enzyme 2 (ACE2). Biosensors and Bioelectronics, 2021, 171, 112715.	10.1	150
214	Repurposing existing drugs for the treatment of COVID-19/SARS-CoV-2 infection: A review describing drug mechanisms of action. Biochemical Pharmacology, 2021, 183, 114296.	4.4	79
215	Antiviral drugs targeting endosomal membrane proteins inhibit distant animal and human pathogenic viruses. Antiviral Research, 2021, 186, 104990.	4.1	23
216	Impact of SARS-CoV-2 Pandemic on Patients with Primary Immunodeficiency. Journal of Clinical Immunology, 2021, 41, 345-355.	3.8	97
217	Investigation of beta-lactoglobulin derived bioactive peptides against SARS-CoV-2 (COVID-19): In silico analysis. European Journal of Pharmacology, 2021, 891, 173781.	3.5	33

#	Article	IF	CITATIONS
218	A review of COVID-19 biomarkers and drug targets: resources and tools. Briefings in Bioinformatics, 2021, 22, 701-713.	6.5	20
219	Camostat mesylate against SARS oVâ€2 and COVIDâ€19—Rationale, dosing and safety. Basic and Clinical Pharmacology and Toxicology, 2021, 128, 204-212.	2.5	105
220	Transition metal complexes as potential tools against SARS-CoV-2: an <i>in silico</i> approach. New Journal of Chemistry, 2021, 45, 1924-1933.	2.8	32
221	SARS-CoV-2 spike protein-mediated cell signaling in lung vascular cells. Vascular Pharmacology, 2021, 137, 106823.	2.1	64
222	Hypertension, medications, and risk of severe COVIDâ€19: A Massachusetts communityâ€based observational study. Journal of Clinical Hypertension, 2021, 23, 21-27.	2.0	31
223	SARS-CoV-2: a new dimension to our understanding of coronaviruses. International Microbiology, 2021, 24, 19-24.	2.4	25
224	A comprehensive review on potential therapeutics interventions for COVID-19. European Journal of Pharmacology, 2021, 890, 173741.	3.5	30
225	Rapid design and development of CRISPR-Cas13a targeting SARS-CoV-2 spike protein. Theranostics, 2021, 11, 649-664.	10.0	43
226	Establishment of an African green monkey model for COVID-19 and protection against re-infection. Nature Immunology, 2021, 22, 86-98.	14.5	162
227	COVID-19 and Cancer Comorbidity: Therapeutic Opportunities and Challenges. Theranostics, 2021, 11, 731-753.	10.0	60
228	Diagnosis of COVID-19 for controlling the pandemic: A review of the state-of-the-art. Biosensors and Bioelectronics, 2021, 174, 112830.	10.1	149
229	Functional importance of the D614G mutation in the SARS-CoV-2 spike protein. Biochemical and Biophysical Research Communications, 2021, 538, 108-115.	2.1	79
230	Comparative Analysis of Nanomechanical Features of Coronavirus Spike Proteins and Correlation with Lethality and Infection Rate. Matter, 2021, 4, 265-275.	10.0	20
231	COVID-19: A review of therapeutic strategies and vaccine candidates. Clinical Immunology, 2021, 222, 108634.	3.2	180
232	Inhibitors of thiol-mediated uptake. Chemical Science, 2021, 12, 626-631.	7.4	38
233	In well-differentiated primary human bronchial epithelial cells, TGF- β 1 and TGF- β 2 induce expression of furin. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L246-L253.	2.9	14
234	COVIDâ€19: Virology, biology and novel laboratory diagnosis. Journal of Gene Medicine, 2021, 23, e3303.	2.8	197
235	The ACE2-binding Interface of SARS-CoV-2 Spike Inherently Deflects Immune Recognition. Journal of Molecular Biology, 2021, 433, 166748.	4.2	12

#	Article	IF	CITATIONS
236	Recent Insights into Emerging Coronavirus: SARS-CoV-2. ACS Infectious Diseases, 2021, 7, 1369-1388.	3.8	27
237	Design of an epitope-based peptide vaccine against the SARS-CoV-2: a vaccine-informatics approach. Briefings in Bioinformatics, 2021, 22, 1309-1323.	6.5	28
238	Targeting ACE2 for COVID-19 Therapy: Opportunities and Challenges. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 416-425.	2.9	68
239	The biogenesis of SARS-CoV-2 spike glycoprotein: multiple targets for host-directed antiviral therapy. Biochemical and Biophysical Research Communications, 2021, 538, 80-87.	2.1	21
240	Identification and computational analysis of mutations in SARS-CoV-2. Computers in Biology and Medicine, 2021, 129, 104166.	7.0	14
241	Using Cardiovascular Cells from Human Pluripotent Stem Cells for COVID-19 Research: Why the Heart Fails. Stem Cell Reports, 2021, 16, 385-397.	4.8	25
242	COVID-19: The Effect of Host Genetic Variations on Host–Virus Interactions. Journal of Proteome Research, 2021, 20, 139-153.	3.7	14
243	Structural basis of severe acute respiratory syndrome coronavirus 2 infection. Current Opinion in HIV and AIDS, 2021, 16, 74-81.	3.8	7
244	ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation. Developmental Cell, 2021, 56, 427-442.e5.	7.0	250
245	Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM. Science Advances, 2021, 7, .	10.3	320
246	Neutralizing antibodies targeting SARS-CoV-2 spike protein. Stem Cell Research, 2021, 50, 102125.	0.7	89
247	Dysregulation of Cell Signaling by SARS-CoV-2. Trends in Microbiology, 2021, 29, 224-237.	7.7	62
248	Overview of Targets and Potential Drugs of SARS-CoV-2 According to the Viral Replication. Journal of Proteome Research, 2021, 20, 49-59.	3.7	32
249	The SARS-CoV-2 Cytopathic Effect Is Blocked by Lysosome Alkalizing Small Molecules. ACS Infectious Diseases, 2021, 7, 1389-1408.	3.8	74
250	The SARS-CoV-2 RNA–protein interactome in infected human cells. Nature Microbiology, 2021, 6, 339-353.	13.3	245
251	Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature, 2021, 589, 270-275.	27.8	389
252	Sensing of COVIDâ€19 Antibodies in Seconds via Aerosol Jet Nanoprinted Reducedâ€Grapheneâ€Oxideâ€Coated 3D Electrodes. Advanced Materials, 2021, 33, e2006647.	21.0	200
253	Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhancedÂviral infectivity and systemic COVID-19 infection. Journal of Biological Chemistry, 2021, 296, 100135.	3.4	63

#	Article	IF	CITATIONS
254	Coronavirus biology and replication: implications for SARS-CoV-2. Nature Reviews Microbiology, 2021, 19, 155-170.	28.6	2,062
255	Molecular diversity of coronavirus host cell entry receptors. FEMS Microbiology Reviews, 2021, 45, .	8.6	75
256	ACE2 & TMPRSS2 Expressions in Head & Neck Tissues: A Systematic Review. Head and Neck Pathology, 2021, 15, 225-235.	2.6	45
257	Beyond dexamethasone, emerging immunoâ€thrombotic therapies for COVIDâ€19. British Journal of Clinical Pharmacology, 2021, 87, 845-857.	2.4	6
258	Site-specific characterization of SARS-CoV-2 spike glycoprotein receptor-binding domain. Glycobiology, 2021, 31, 181-187.	2.5	40
259	Severe acute respiratory syndromeâ€coronavirusâ€2: Current advances in therapeutic targets and drug development. Reviews in Medical Virology, 2021, 31, e2174.	8.3	7
260	Viral infection and smell loss: The case of COVIDâ€19. Journal of Neurochemistry, 2021, 157, 930-943.	3.9	43
261	A Common <i>TMPRSS2</i> Variant Protects Against Severe COVID-19. SSRN Electronic Journal, 0, , .	0.4	2
263	SARS-CoV-2/human interactome reveals ACE2 locus crosstalk with the immune regulatory network in the host. Pathogens and Disease, 2021, 79, .	2.0	5
264	Role of endothelial cell receptors in the context of SARS-CoV-2 infection (COVID-19). Baylor University Medical Center Proceedings, 2021, 34, 262-268.	0.5	5
265	Screening coronavirus and human proteins for sialic acid binding sites using a docking approach. AIMS Biophysics, 2021, 8, 248-263.	0.6	4
267	Search, Identification, and Design of Effective Antiviral Drugs Against Pandemic Human Coronaviruses. Advances in Experimental Medicine and Biology, 2021, 1322, 219-260.	1.6	5
268	Newcastle Disease Virus-Like Particles Displaying Prefusion-Stabilized SARS-CoV-2 Spikes Elicit Potent Neutralizing Responses. Vaccines, 2021, 9, 73.	4.4	24
269	A facile chemoenzymatic synthesis of SARS-CoV-2 glycopeptides for probing glycosylation functions. Chemical Communications, 2021, 57, 6804-6807.	4.1	10
270	Hypercoagulability in COVID-19: A review of the potential mechanisms underlying clotting disorders. SAGE Open Medicine, 2021, 9, 205031212110029.	1.8	18
271	Mesenchymal Stem Cell-Derived Extracellular Vesicles Carrying miRNA as a Potential Multi Target Therapy to COVID-19: an In Silico Analysis. Stem Cell Reviews and Reports, 2021, 17, 341-356.	3.8	37
272	Kinetic Analysis of a Protein-protein Complex to Determine its Dissociation Constant (KD) and the Effective Concentration (EC50) of an Interplaying Effector Molecule Using Bio-layer Interferometry. Bio-protocol, 2021, 11, e4152.	0.4	10
274	SARS-CoV-2 3D database: understanding the coronavirus proteome and evaluating possible drug targets. Briefings in Bioinformatics, 2021, 22, 769-780.	6.5	31

ARTICLE IF CITATIONS # Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): a Systemic Infection. Clinical 275 13.6 136 Microbiology Reviews, 2021, 34, . Population Variation of the Human Genome., 2021, , 329-350. 276 Silver nanoparticle based multifunctional approach for combating COVID-19. Sensors International, 277 8.4 59 2021, 2, 100101. Exploring G protein-coupled receptors and yeast surface display strategies for viral detection in 279 baker's yeast: SARS-CoV-2 as a case study. FEMS Yeast Research, 2021, 21, . Dietary Supplements for COVID-19. Advances in Experimental Medicine and Biology, 2021, 1318, 499-515. 280 1.6 9 Elucidating Interactions Between SARS-CoV-2 Trimeric Spike Protein and ACE2 Using Homology 3.6 Modeling and Molecular Dynamics Simulations. Frontiers in Chemistry, 2020, 8, 622632. 282 Structure of SARS-CoV-2 Proteins., 2021, , 91-120. 0 Sex Differences in Respiratory Infection. Physiology in Health and Disease, 2021, , 365-404. 0.3 284 285 The role of chemical biology in the fight against SARS-CoV-2. Biochemical Journal, 2021, 478, 157-177. 2 3.7 Does Angiotensin II Peak in Response to SARS-CoV-2?. Frontiers in Immunology, 2020, 11, 577875. 4.8 COVID-19 and Sepsis. Turkish Journal of Medical Sciences, 2021, 51, 3301-3311. 287 0.9 37 Self-Organizing, Symmetry Breaking, Isogenic Human Lung Buds on Microchips Identify Alveolar Stem Cells as Novel Targets of SARS-CoV-2. SSRN Electronic Journal, 0, , . 288 0.4 An Update on the Pathogenesis of COVID-19 and the Reportedly Rare Thrombotic Events Following 289 1.7 29 Vaccination. Clinical and Applied Thrombosis/Hemostasis, 2021, 27, 107602962110214. Morphological Analysis of Angiotensin-Converting Enzyme 2 Expression in the Salivary Glands and Associated Tissues. Journal of Hard Tissue Biology, 2021, 30, 265-272. 0.4 A Year of Living Dangerously: Challenges and Recommendations for Safely Performing Ophthalmic Surgery During the COVID-19 Pandemic, from Start to Finish. Clinical Ophthalmology, 2021, Volume 15, 291 1.8 3 261-278. Human induced pluripotent stem cells as a tool for disease modeling and drug screening for COVID-19. Genetics and Molecular Biology, 2021, 44, e20200198. SARS-CoV-2 Infection and Oral Health: Therapeutic Opportunities and Challenges. Journal of Clinical 296 2.4 28 Medicine, 2021, 10, 156. Effect of ambient temperature on respiratory tract cells exposed to SARS-CoV-2 viral mimicking 1.6 nanospheresâ€"An experimental study. Biointerphases, 2021, 16, 011006.

#	Article	IF	CITATIONS
298	ANTIVIRAL EFFECTS OF BACTERIOCIN AGAINST ANIMAL-TO-HUMAN TRANSMITTABLE MUTATED SARS-COV-2: A SYSTEMATIC REVIEW. Frontiers of Agricultural Science and Engineering, 2021, 8, 603.	1.4	14
299	Context contribution to the intermolecular recognition of human ACE2-derived peptides by SARS-CoV-2 spike protein: implications for improving the peptide affinity but not altering the peptide specificity by optimizing indirect readout. Molecular Omics, 2021, 17, 86-94.	2.8	41
300	Severe COVID-19 Lung Infection in Older People and Periodontitis. Journal of Clinical Medicine, 2021, 10, 279.	2.4	35
301	Similarities and Dissimilarities of COVID-19 and Other Coronavirus Diseases. Annual Review of Microbiology, 2021, 75, 19-47.	7.3	52
302	Transcriptomic Analysis of Respiratory Tissue and Cell Line Models to Examine Glycosylation Machinery during SARS-CoV-2 Infection. Viruses, 2021, 13, 82.	3.3	5
303	Bioinformatic Approaches for Identification of Potential Repurposable Drugs in COVID-19. Journal of Drug Delivery and Therapeutics, 2021, 11, 13-22.	0.5	1
304	Viral strategies for circumventing p53: the case of severe acute respiratory syndrome coronavirus. Current Opinion in Oncology, 2021, 33, 149-158.	2.4	32
305	Coronaviruses: What Should We Know About the Characteristics of Viruses?. Advances in Experimental Medicine and Biology, 2021, 1318, 23-39.	1.6	1
306	D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction. Cell Reports, 2021, 34, 108630.	6.4	263
308	MASPs at the crossroad between the complement and the coagulation cascades - the case for COVID-19. Genetics and Molecular Biology, 2021, 44, e20200199.	1.3	17
309	Molecular diagnostics in the era of COVID-19. Analytical Methods, 2021, 13, 3744-3763.	2.7	10
310	Interactions of Influenza and SARS-CoV-2 with the Lung Endothelium: Similarities, Differences, and Implications for Therapy. Viruses, 2021, 13, 161.	3.3	17
311	Nanomedicine for the SARS-CoV-2: State-of-the-Art and Future Prospects. International Journal of Nanomedicine, 2021, Volume 16, 539-560.	6.7	62
312	<scp>ACE2</scp> expression is elevated in airway epithelial cells from older and male healthy individuals but reduced in asthma. Respirology, 2021, 26, 442-451.	2.3	59
313	Can SARS-CoV-2 Virus Use Multiple Receptors to Enter Host Cells?. International Journal of Molecular Sciences, 2021, 22, 992.	4.1	106
314	Structural Analysis of Neutralizing Epitopes of the SARS-CoV-2 Spike to Guide Therapy and Vaccine Design Strategies. Viruses, 2021, 13, 134.	3.3	56
315	Persistent SARS-CoV-2-positive over 4 months in a COVID-19 patient with CHB. Open Medicine (Poland), 2021, 16, 749-753.	1.3	2
316	Serine Protease Inhibitors to Treat Lung Inflammatory Diseases. Advances in Experimental Medicine and Biology, 2021, 1304, 215-226.	1.6	3

#	Article	IF	CITATIONS
317	Calming the Storm: Natural Immunosuppressants as Adjuvants to Target the Cytokine Storm in COVID-19. Frontiers in Pharmacology, 2020, 11, 583777.	3.5	73
318	Identification of potential antivirals against SARS-CoV-2 using virtual screening method. Informatics in Medicine Unlocked, 2021, 23, 100531.	3.4	17
319	SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and Complement System Leading to Thrombus Formation. SSRN Electronic Journal, 0, , .	0.4	1
320	Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. International Journal of Molecular Sciences, 2021, 22, 1203.	4.1	26
321	Understanding the implications of SARS-CoV-2 re-infections on immune response milieu, laboratory tests and control measures against COVID-19. Heliyon, 2021, 7, e05951.	3.2	15
322	The dual role of the immune system in the course of COVID-19. The fatal impact of the aging immune system. Central-European Journal of Immunology, 2021, 46, 1-9.	1.2	12
323	Enfuvirtide, an HIV-1 fusion inhibitor peptide, can act as a potent SARS-CoV-2 fusion inhibitor: an <i>in silico</i> drug repurposing study. Journal of Biomolecular Structure and Dynamics, 2022, 40, 5566-5576.	3.5	26
324	COVID-19 pandemic: Can zinc supplementation provide an additional shield against the infection?. Computational and Structural Biotechnology Journal, 2021, 19, 1371-1378.	4.1	38
325	Furin cleavage of SARS-CoV-2 Spike promotes but is not essential for infection and cell-cell fusion. PLoS Pathogens, 2021, 17, e1009246.	4.7	268
326	Role of vitamin D in regulating COVID-19 severity—An immunological perspective. Journal of Leukocyte Biology, 2021, 110, 809-819.	3.3	17
328	Exploring COVID-19: Relating the spike protein to infectivity, pathogenicity and Immunogenicity. International Journal of Clinical Virology, 2021, 5, 001-010.	0.2	2
330	Deciphering the role of nanostructured materials in the point-of-care diagnostics for COVID-19: a comprehensive review. Journal of Materials Chemistry B, 2021, 9, 5967-5981.	5.8	15
331	SARS-CoV-2 protein drug targets landscape: a potential pharmacological insight view for the new drug development. Expert Review of Clinical Pharmacology, 2021, 14, 225-237.	3.1	18
333	SARS-CoV-2 Entry Genes Expression in Relation with Interferon Response in Cystic Fibrosis Patients. Microorganisms, 2021, 9, 93.	3.6	4
336	Overview of COVID-19 and neurological complications. Reviews in the Neurosciences, 2021, 32, 671-691.	2.9	16
338	Potential Role of Antioxidant and Anti-Inflammatory Therapies to Prevent Severe SARS-Cov-2 Complications. Antioxidants, 2021, 10, 272.	5.1	47
339	Making sense of spike D614G in SARS-CoV-2 transmission. Science China Life Sciences, 2021, 64, 1062-1067.	4.9	8
341	Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide. Nature Communications, 2021, 12, 866.	12.8	73

	CITATION REI	PORT	
#	Article	IF	Citations
342	Single-Molecule FRET Imaging of Virus Spike–Host Interactions. Viruses, 2021, 13, 332.	3.3	18
343	Challenges for Targeting SARS-CoV-2 Proteases as a Therapeutic Strategy for COVID-19. ACS Infectious Diseases, 2021, 7, 1457-1468.	3.8	75
344	Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free Fatty Acid Pocket of the SARS oVâ€⊋ Spike Protein**. Angewandte Chemie - International Edition, 2021, 60, 7098-7110.	13.8	77
345	The triumvirate: why hypertension, obesity, and diabetes are risk factors for adverse effects in patients with COVID-19. Acta Diabetologica, 2021, 58, 831-843.	2.5	46
346	Berberine and Obatoclax Inhibit SARS-Cov-2 Replication in Primary Human Nasal Epithelial Cells In Vitro. Viruses, 2021, 13, 282.	3.3	50
347	Susceptibility to COVID-19 in Pregnancy, Labor, and Postpartum Period: Immune System, Vertical Transmission, and Breastfeeding. Frontiers in Global Women S Health, 2021, 2, 602572.	2.3	21
350	Neutralizing antibodies targeting the SARS oVâ€2 receptor binding domain isolated from a naÃ⁻ve human antibody library. Protein Science, 2021, 30, 716-727.	7.6	16
351	Why Is COVID-19 More Severe in Patients With Diabetes? The Role of Angiotensin-Converting Enzyme 2, Endothelial Dysfunction and the Immunoinflammatory System. Frontiers in Cardiovascular Medicine, 2020, 7, 629933.	2.4	43
352	Safety and Outcomes Associated with the Pharmacological Inhibition of the Kinin–Kallikrein System in Severe COVID-19. Viruses, 2021, 13, 309.	3.3	35
354	A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening. IScience, 2021, 24, 102021.	4.1	66
355	The COVID-19 Pandemic: an Appraisal of its Impact on Human Immunodeficiency Virus Infection and Pre-Eclampsia. Current Hypertension Reports, 2021, 23, 9.	3.5	10
356	COVID-19: Molecular and Cellular Response. Frontiers in Cellular and Infection Microbiology, 2021, 11, 563085.	3.9	31
357	Endothelial Cells in Emerging Viral Infections. Frontiers in Cardiovascular Medicine, 2021, 8, 619690.	2.4	54
358	Graphene Sheets with Defined Dual Functionalities for the Strong SARSâ€CoVâ€2 Interactions. Small, 2021, 17, e2007091.	10.0	42
359	Experimental Models of SARS-CoV-2 Infection: Possible Platforms to Study COVID-19 Pathogenesis and Potential Treatments. Annual Review of Pharmacology and Toxicology, 2022, 62, 25-53.	9.4	20
360	Evolutionary analysis of SARS oVâ€2 spike protein for its different clades. Journal of Medical Virology, 2021, 93, 3000-3006.	5.0	22
361	Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free Fatty Acid Pocket of the SARS oVâ€2 Spike Protein**. Angewandte Chemie, 2021, 133, 7174-7186.	2.0	6
363	SARS-CoV-2 and endothelial cell interaction in COVID-19: molecular perspectives. Vascular Biology (Bristol, England), 2021, 3, R15-R23.	3.2	31

#	Article	IF	CITATIONS
364	Electrochemical Biosensors for the Detection of SARS-CoV-2 and Other Viruses. Micromachines, 2021, 12, 174.	2.9	48
365	In Silico Investigation of the New UK (B.1.1.7) and South African (501Y.V2) SARS-CoV-2 Variants with a Focus at the ACE2–Spike RBD Interface. International Journal of Molecular Sciences, 2021, 22, 1695.	4.1	72
366	Safety and immunogenicity of S-Trimer (SCB-2019), a protein subunit vaccine candidate for COVID-19 in healthy adults: a phase 1, randomised, double-blind, placebo-controlled trial. Lancet, The, 2021, 397, 682-694.	13.7	235
367	Axial Chiral Binaphthoquinone and Perylenequinones from the Stromata of <i>Hypocrella bambusae</i> Are SARS-CoV-2 Entry Inhibitors. Journal of Natural Products, 2021, 84, 436-443.	3.0	24
369	Adaptive Evolution of Peptide Inhibitors for Mutating SARS-CoV-2. Biophysical Journal, 2021, 120, 175a.	0.5	0
370	A Biochemical Perspective of the Nonstructural Proteins (NSPs) and the Spike Protein of SARS CoV-2. Protein Journal, 2021, 40, 260-295.	1.6	24
371	Structural stability predictions and molecular dynamics simulations of RBD and HR1 mutations associated with SARS-CoV-2 spike glycoprotein. Journal of Biomolecular Structure and Dynamics, 2021, , 1-13.	3.5	11
372	Comparison of Antiviral Activity of Gemcitabine with 2′-Fluoro-2′-Deoxycytidine and Combination Therapy with Remdesivir against SARS-CoV-2. International Journal of Molecular Sciences, 2021, 22, 1581.	4.1	18
373	A Comprehensive Review of Viral Characteristics, Transmission, Pathophysiology, Immune Response, and Management of SARS-CoV-2 and COVID-19 as a Basis for Controlling the Pandemic. Frontiers in Immunology, 2021, 12, 631139.	4.8	117
374	Association between circulating furin levels, obesity and proâ€inflammatory markers in children. Acta Paediatrica, International Journal of Paediatrics, 2021, 110, 1863-1868.	1.5	9
375	SARS-CoV-2 tropism, entry, replication, and propagation: Considerations for drug discovery and development. PLoS Pathogens, 2021, 17, e1009225.	4.7	160
376	SARS-CoV-2 Causes Severe Epithelial Inflammation and Barrier Dysfunction. Journal of Virology, 2021, 95, .	3.4	70
377	Serine 477 plays a crucial role in the interaction of the SARS-CoV-2 spike protein with the human receptor ACE2. Scientific Reports, 2021, 11, 4320.	3.3	93
378	Downregulation of Membrane-bound Angiotensin Converting Enzyme 2 (ACE2) Receptor has a Pivotal Role in COVID-19 Immunopathology. Current Drug Targets, 2021, 22, 254-281.	2.1	27
380	SARS-CoV-2 proteins: Are they useful as targets for COVID-19 drugs and vaccines?. Current Molecular Medicine, 2021, 21, .	1.3	9
381	How signalling games explain mimicry at many levels: from viral epidemiology to human sociology. Journal of the Royal Society Interface, 2021, 18, 20200689.	3.4	9
382	SARSâ€CoVâ€2 innate effector associations and viral load in early nasopharyngeal infection. Physiological Reports, 2021, 9, e14761.	1.7	15
384	Tracing the origins of SARS-COV-2 in coronavirus phylogenies: a review. Environmental Chemistry Letters, 2021, 19, 769-785.	16.2	53

#	Article	IF	CITATIONS
385	Angiotensin-converting enzyme 2, coronavirus disease 2019, and abdominal aortic aneurysms. Journal of Vascular Surgery, 2021, 74, 1740-1751.	1.1	16
386	Temporin G, an amphibian antimicrobial peptide against influenza and parainfluenza respiratory viruses: Insights into biological activity and mechanism of action. FASEB Journal, 2021, 35, e21358.	0.5	21
387	Structural insights into SARS-CoV-2 spike protein and its natural mutants found in Mexican population. Scientific Reports, 2021, 11, 4659.	3.3	30
388	In Vitro and In Vivo Models for Studying SARS-CoV-2, the Etiological Agent Responsible for COVID-19 Pandemic. Viruses, 2021, 13, 379.	3.3	53
389	Virtual screening and molecular dynamics simulation study of plant-derived compounds to identify potential inhibitors of main protease from SARS-CoV-2. Briefings in Bioinformatics, 2021, 22, 1402-1414.	6.5	75
391	SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nature Communications, 2021, 12, 848.	12.8	389
395	Silence of the Lambs: The Immunological and Molecular Mechanisms of COVID-19 in Children in Comparison with Adults. Microorganisms, 2021, 9, 330.	3.6	11
396	A genome-wide CRISPR screen identifies host factors that regulate SARS-CoV-2 entry. Nature Communications, 2021, 12, 961.	12.8	204
397	Murine-β-coronavirus-induced neuropathogenesis sheds light on CNS pathobiology of SARS-CoV2. Journal of NeuroVirology, 2021, 27, 197-216.	2.1	11
398	Structural analysis of COVID-19 spike protein in recognizing the ACE2 receptor of different mammalian species and its susceptibility to viral infection. 3 Biotech, 2021, 11, 109.	2.2	18
399	Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a Standardized Virus Neutralization Assay Allows for Cross-Cohort Comparisons of COVID-19 Sera. MBio, 2021, 12, .	4.1	64
400	Pathophysiologic mechanisms of cerebral endotheliopathy and stroke due to Sars-CoV-2. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1179-1192.	4.3	16
402	Hepatic Steatosis, Rather Than Underlying Obesity, Increases the Risk of Infection and Hospitalization for COVID-19. Frontiers in Medicine, 2021, 8, 636637.	2.6	19
403	Current opinion in neurological manifestations of SARS-CoV-2 infection. Current Opinion in Toxicology, 2021, 25, 49-56.	5.0	10
405	Inhibition of coronavirus infection by a synthetic STING agonist in primary human airway system. Antiviral Research, 2021, 187, 105015.	4.1	33
406	Evidence of SARS-CoV-2 Infection in Cells, Tissues, and Organs and the Risk of Transmission Through Transplantation, 2021, 105, 1405-1422.	1.0	50
407	Unique and complementary suppression of cGAS-STING and RNA sensing- triggered innate immune responses by SARS-CoV-2 proteins. Signal Transduction and Targeted Therapy, 2021, 6, 123.	17.1	89
408	Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes. PLoS Biology, 2021, 19, e3001143.	5.6	180

#	Article	IF	CITATIONS
409	Repurposing Quinoline and Artemisinin Antimalarials as Therapeutics for SARS-CoV-2: Rationale and Implications. ACS Pharmacology and Translational Science, 2021, 4, 613-623.	4.9	9
410	Prostate specific antigen in COVIDâ€19 patients. Andrology, 2021, 9, 1042-1042.	3.5	3
411	Pan-cancer analysis of RNA expression of ANGIOTENSIN-I-CONVERTING ENZYME 2 reveals high variability and possible impact on COVID-19 clinical outcomes. Scientific Reports, 2021, 11, 5639.	3.3	1
412	Immunotoxic role of organophosphates: An unseen risk escalating SARS-CoV-2 pathogenicity. Food and Chemical Toxicology, 2021, 149, 112007.	3.6	31
413	SARS-CoV-2 variants reveal features critical for replication in primary human cells. PLoS Biology, 2021, 19, e3001006.	5.6	46
414	Spiking dependence of SARSâ€CoVâ€2 pathogenicity on TMPRSS2. Journal of Medical Virology, 2021, 93, 4205-4218.	5.0	23
415	Single-component, self-assembling, protein nanoparticles presenting the receptor binding domain and stabilized spike as SARS-CoV-2 vaccine candidates. Science Advances, 2021, 7, .	10.3	80
416	Assessing Antigen Structural Integrity through Glycosylation Analysis of the SARS-CoV-2 Viral Spike. ACS Central Science, 2021, 7, 586-593.	11.3	68
417	Should we discount the laboratory origin of COVID-19?. Environmental Chemistry Letters, 2021, 19, 2743-2757.	16.2	23
418	Targeting the Main Protease of SARS oVâ€2: From the Establishment of High Throughput Screening to the Design of Tailored Inhibitors. Angewandte Chemie - International Edition, 2021, 60, 10423-10429.	13.8	95
419	A high-affinity RBD-targeting nanobody improves fusion partner's potency against SARS-CoV-2. PLoS Pathogens, 2021, 17, e1009328.	4.7	37
420	A Clinical-Stage Cysteine Protease Inhibitor blocks SARS-CoV-2 Infection of Human and Monkey Cells. ACS Chemical Biology, 2021, 16, 642-650.	3.4	74
421	Boceprevir, Calpain Inhibitors II and XII, and GC-376 Have Broad-Spectrum Antiviral Activity against Coronaviruses. ACS Infectious Diseases, 2021, 7, 586-597.	3.8	76
422	Approaching the Interpretation of Discordances in SARS-CoV-2 Testing. Open Forum Infectious Diseases, 2021, 8, ofab144.	0.9	2
424	Essentials in saline pharmacology for nasal or respiratory hygiene in times of COVID-19. European Journal of Clinical Pharmacology, 2021, 77, 1275-1293.	1.9	24
425	Establishment of a well-characterized SARS-CoV-2 lentiviral pseudovirus neutralization assay using 293T cells with stable expression of ACE2 and TMPRSS2. PLoS ONE, 2021, 16, e0248348.	2.5	102
426	Cardiovascular Injury Due to SARS-CoV-2. Current Clinical Microbiology Reports, 2021, 8, 167-177.	3.4	18
427	SARS-CoV-2 Infects Human Pluripotent Stem Cell-Derived Cardiomyocytes, Impairing Electrical and Mechanical Function. Stem Cell Reports, 2021, 16, 478-492.	4.8	75

#	Article	IF	CITATIONS
428	Essential requirement for JPT2 in NAADP-evoked Ca ²⁺ signaling. Science Signaling, 2021, 14,	3.6	69
429	Anti-Inflammatory and Antiviral Osmotic Polymeric Film to Treat Covid-19 Early-Stage Infection. Journal of Inflammation Research, 2021, Volume 14, 1195-1206.	3.5	3
430	Entry, egress and vertical transmission of SARS-CoV-2. Journal of Molecular Cell Biology, 2021, 13, 168-174.	3.3	10
432	SARS-CoV 2 in Cellular Level: Do we dominate the whole picture and how can we intervene?. Journal of Contemporary Medicine, 2021, 11, 248-253.	0.2	0
433	Die Hauptprotease von SARSâ€CoVâ€2 als Zielstruktur: Von der Etablierung eines Hochdurchsatzâ€5creenings zum Design maßgeschneiderter Inhibitoren. Angewandte Chemie, 2021, 133, 10515-10521.	2.0	3
434	Impact of pathogen reduction methods on immunological properties of the COVIDâ€19 convalescent plasma. Vox Sanguinis, 2021, 116, 665-672.	1.5	13
435	Targeting androgen regulation of TMPRSS2 and ACE2 as a therapeutic strategy to combat COVID-19. IScience, 2021, 24, 102254.	4.1	72
436	MRC5 cells engineered to express ACE2 serve as a model system for the discovery of antivirals targeting SARS-CoV-2. Scientific Reports, 2021, 11, 5376.	3.3	18
437	Gastrointestinal manifestations in COVID-19. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 1362-1388.	1.8	76
438	Repurposing of anticancer phytochemicals for identifying potential fusion inhibitor for SARS-CoV-2 using molecular docking and molecular dynamics (MD) simulations. Journal of Biomolecular Structure and Dynamics, 2022, 40, 7744-7761.	3.5	16
439	Repurposing the Ebola and Marburg Virus Inhibitors Tilorone, Quinacrine, and Pyronaridine: <i>In Vitro</i> Activity against SARS-CoV-2 and Potential Mechanisms. ACS Omega, 2021, 6, 7454-7468.	3.5	56
440	Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection. Cell, 2021, 184, 1188-1200.e19.	28.9	154
441	Membrane Nanoparticles Derived from ACE2-Rich Cells Block SARS-CoV-2 Infection. ACS Nano, 2021, 15, 6340-6351.	14.6	62
442	СвобоÐƊ½Ñ‹Ðµ S1-ÑŇſбъеÐƊ,Đ½Ð,цы белкD° ÑԴÐ,пов вÐ,Ñ€ÑſÑа SARS-CoV	/-2 ᡚ ℣₄Đ¾	ŀĐĐÑſÑ, ĐĐļ
443	COVID-19 in Children: Respiratory Involvement and Some Differences With the Adults. Frontiers in Pediatrics, 2021, 9, 622240.	1.9	15
445	Dual targeting of Toll-like receptor 4 and angiotensin-converting enzyme 2: aÂproposed approach to SARS-CoV-2 treatment. Future Microbiology, 2021, 16, 205-209.	2.0	23
446	A meta-analysis of comorbidities in COVID-19: Which diseases increase the susceptibility of SARS-CoV-2 infection?. Computers in Biology and Medicine, 2021, 130, 104219.	7.0	48
448	Frontrunners in the race to develop a SARS-CoV-2 vaccine. Canadian Journal of Microbiology, 2021, 67, 189-212.	1.7	11

#	Article	IF	CITATIONS
450	A proof of concept for neutralizing antibody-guided vaccine design against SARS-CoV-2. National Science Review, 2021, 8, nwab053.	9.5	36
451	Elucidation of interactions regulating conformational stability and dynamics of SARS-CoV-2 S-protein. Biophysical Journal, 2021, 120, 1060-1071.	0.5	57
452	Structural and molecular perspectives of SARS-CoV-2. Methods, 2021, 195, 23-28.	3.8	17
453	D614G substitution at the hinge region enhances the stability of trimeric SARS-CoV-2 spike protein. Bioinformation, 2021, 17, 439-445.	0.5	7
455	AT-527, a Double Prodrug of a Guanosine Nucleotide Analog, Is a Potent Inhibitor of SARS-CoV-2 <i>In Vitro</i> and a Promising Oral Antiviral for Treatment of COVID-19. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	105
456	COVID-19 vaccines: The status and perspectives in delivery points of view. Advanced Drug Delivery Reviews, 2021, 170, 1-25.	13.7	262
457	The envelope protein of SARS oVâ€2 increases intraâ€Golgi pH and forms a cation channel that is regulated by pH. Journal of Physiology, 2021, 599, 2851-2868.	2.9	51
458	Germline Genetic Variants of Viral Entry and Innate Immunity May Influence Susceptibility to SARS-CoV-2 Infection: Toward a Polygenic Risk Score for Risk Stratification. Frontiers in Immunology, 2021, 12, 653489.	4.8	10
459	Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2. Nature Genetics, 2021, 53, 435-444.	21.4	162
460	The neuropsychiatric manifestations of COVID-19: Interactions with psychiatric illness and pharmacological treatment. Biomedicine and Pharmacotherapy, 2021, 135, 111200.	5.6	69
461	A Study on Using Mouthwash before Providing Dental Treatment to Patients in Dental Clinics during the COVID-19 Pandemic. International Journal of Clinical Preventive Dentistry, 2021, 17, 21-26.	0.1	2
465	Toward the Effective Bioengineering of a Pathological Tissue for Cardiovascular Disease Modeling: Old Strategies and New Frontiers for Prevention, Diagnosis, and Therapy. Frontiers in Cardiovascular Medicine, 2020, 7, 591583.	2.4	3
466	Long-COVID postural tachycardia syndrome: an American Autonomic Society statement. Clinical Autonomic Research, 2021, 31, 365-368.	2.5	144
468	Quantitative assays reveal cell fusion at minimal levels of SARS-CoV-2 spike protein and fusion from without. IScience, 2021, 24, 102170.	4.1	30
469	Therapeutic activity of an inhaled potent SARS-CoV-2 neutralizing human monoclonal antibody in hamsters. Cell Reports Medicine, 2021, 2, 100218.	6.5	57
470	What makes (hydroxy)chloroquine ineffective against COVID-19: insights from cell biology. Journal of Molecular Cell Biology, 2021, 13, 175-184.	3.3	15
471	Antibody isotype diversity against SARS-CoV-2 is associated with differential serum neutralization capacities. Scientific Reports, 2021, 11, 5538.	3.3	37
472	Perspectives on RNA Vaccine Candidates for COVID-19. Frontiers in Molecular Biosciences, 2021, 8, 635245.	3.5	44

#	Article	IF	CITATIONS
474	SARS-CoV-2 Entry Related Viral and Host Genetic Variations: Implications on COVID-19 Severity, Immune Escape, and Infectivity. International Journal of Molecular Sciences, 2021, 22, 3060.	4.1	32
475	Mutational analysis of structural proteins of SARS-CoV-2. Heliyon, 2021, 7, e06572.	3.2	30
476	Single-Dilution COVID-19 Antibody Test with Qualitative and Quantitative Readouts. MSphere, 2021, 6, .	2.9	11
478	Commentary to Angiotensin-Converting-Enzyme 2 and Renin–Angiotensin System Inhibitors in COVID-19: An Update. High Blood Pressure and Cardiovascular Prevention, 2021, 28, 251-252.	2.2	0
479	Genetic variability in COVID-19-related genes in the Brazilian population. Human Genome Variation, 2021, 8, 15.	0.7	29
480	Multidisciplinary Approaches Identify Compounds that Bind to Human ACE2 or SARS-CoV-2 Spike Protein as Candidates to Block SARS-CoV-2–ACE2 Receptor Interactions. MBio, 2021, 12, .	4.1	47
482	Recent advances in nanomaterials based biosensors for point of care (PoC) diagnosis of Covid-19 – A minireview. TrAC - Trends in Analytical Chemistry, 2021, 137, 116205.	11.4	85
484	Enhancing the Prefusion Conformational Stability of SARS-CoV-2 Spike Protein Through Structure-Guided Design. Frontiers in Immunology, 2021, 12, 660198.	4.8	28
485	ORF8 contributes to cytokine storm during SARS-CoV-2 infection by activating IL-17 pathway. IScience, 2021, 24, 102293.	4.1	94
486	A novel pseudovirusâ€based mouse model of SARS-CoV-2 infection to test COVID-19 interventions. Journal of Biomedical Science, 2021, 28, 34.	7.0	23
487	Soluble ACE2-mediated cell entry of SARS-CoV-2 via interaction with proteins related to the renin-angiotensin system. Cell, 2021, 184, 2212-2228.e12.	28.9	216
488	Host barriers to SARS-CoV-2 demonstrated by ferrets in a high-exposure domestic setting. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
489	The SARS-CoV-2 and other human coronavirus spike proteins are fine-tuned towards temperature and proteases of the human airways. PLoS Pathogens, 2021, 17, e1009500.	4.7	91
490	SARS-CoV-2 requires cholesterol for viral entry and pathological syncytia formation. ELife, 2021, 10, .	6.0	160
491	Drug repurposing screens reveal cell-type-specific entry pathways and FDA-approved drugs active against SARS-Cov-2. Cell Reports, 2021, 35, 108959.	6.4	176
492	Potential antiviral activity of isorhamnetin against <scp>SARS oV</scp> â€2 spike pseudotyped virus in vitro. Drug Development Research, 2021, 82, 1124-1130.	2.9	51
493	Prevention of SARS-CoV-2 Proliferation with a Novel and Potent Main Protease Inhibitor by Docking, ADMET, MM-PBSA, and Molecular Dynamics Simulation. Journal of Computational Biophysics and Chemistry, 2021, 20, 305-322.	1.7	8
494	Can ketone bodies inactivate coronavirus spike protein? The potential of biocidal agents against SARSâ€CoVâ€2. BioEssays, 2021, 43, e2000312.	2.5	5

#	Article	IF	CITATIONS
497	Analysis of the SARS-CoV-2-host protein interaction network reveals new biology and drug candidates: focus on the spike surface glycoprotein and RNA polymerase. Expert Opinion on Drug Discovery, 2021, 16, 1-15.	5.0	6
500	Molecular basis for higher affinity of <scp>SARSâ€CoV</scp> â€2 spike <scp>RBD</scp> for human <scp>ACE2</scp> receptor. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1134-1144.	2.6	31
501	Critical ACE2 Determinants of SARS-CoV-2 and Group 2B Coronavirus Infection and Replication. MBio, 2021, 12, .	4.1	8
502	Initial determination of COVID-19 seroprevalence among outpatients and healthcare workers in Minnesota using a novel SARS-CoV-2 total antibody ELISA. Clinical Biochemistry, 2021, 90, 15-22.	1.9	19
503	Integrated Biophysical Modeling of the SARS-CoV-2 Spike Protein Binding and Allosteric Interactions with Antibodies. Journal of Physical Chemistry B, 2021, 125, 4596-4619.	2.6	60
504	Obesity and its impact on COVID-19. Journal of Molecular Medicine, 2021, 99, 899-915.	3.9	41
505	A real-time and high-throughput neutralization test based on SARS-CoV-2 pseudovirus containing monomeric infrared fluorescent protein as reporter. Emerging Microbes and Infections, 2021, 10, 894-904.	6.5	16
506	Binding of the SARS-CoV-2 Spike Protein to the Asialoglycoprotein Receptor on Human Primary Hepatocytes and Immortalized Hepatocyte-Like Cells by Confocal Analysis. Hepatic Medicine: Evidence and Research, 2021, Volume 13, 37-44.	2.5	11
508	SARS CoV-2 Nucleoprotein Enhances the Infectivity of Lentiviral Spike Particles. Frontiers in Cellular and Infection Microbiology, 2021, 11, 663688.	3.9	13
510	MSC-derived exosomes carrying a cocktail of exogenous interfering RNAs an unprecedented therapy in era of COVID-19 outbreak. Journal of Translational Medicine, 2021, 19, 164.	4.4	16
511	The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nature Microbiology, 2021, 6, 899-909.	13.3	556
512	Repositioning of histamine H1 receptor antagonist: Doxepin inhibits viropexis of SARS-CoV-2 Spike pseudovirus by blocking ACE2. European Journal of Pharmacology, 2021, 896, 173897.	3.5	32
513	Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomedicine and Pharmacotherapy, 2021, 136, 111193.	5.6	42
514	D936Y and Other Mutations in the Fusion Core of the SARS-CoV-2 Spike Protein Heptad Repeat 1: Frequency, Geographical Distribution, and Structural Effect. Molecules, 2021, 26, 2622.	3.8	21
515	Enhanced binding of the N501Yâ€mutated SARSâ€CoVâ€⊋ spike protein to the human ACE2 receptor: insights from molecular dynamics simulations. FEBS Letters, 2021, 595, 1454-1461.	2.8	165
518	Review of the Microbiological Diagnostic Approaches of COVID-19. Frontiers in Public Health, 2021, 9, 592500.	2.7	4
519	Structural insights into SARS-CoV-2 infection and therapeutics development. Stem Cell Research, 2021, 52, 102219.	0.7	7
520	Why Do Some People Develop Serious COVID-19 Disease After Infection, While Others Only Exhibit Mild Symptoms?. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 1442-1448.	3.8	21

#	Article	IF	CITATIONS
521	Targeting SARS oVâ€2 Spike Protein/ACE2 Proteinâ€Protein Interactions: a Computational Study. Molecular Informatics, 2021, 40, e2060080.	2.5	12
523	Screening for inhibitory effects of crude drugs on furin-like enzymatic activities. Journal of Natural Medicines, 2021, 75, 1080-1085.	2.3	8
524	Epigenetic regulation of ACE2, the receptor of the SARS-CoV-2 virus ¹ . Genome, 2021, 64, 386-399.	2.0	58
528	Coronavirus entry: how we arrived at SARS-CoV-2. Current Opinion in Virology, 2021, 47, 113-120.	5.4	51
529	Human Cathelicidin Inhibits SARS-CoV-2 Infection: Killing Two Birds with One Stone. ACS Infectious Diseases, 2021, 7, 1545-1554.	3.8	64
530	Animal Models of COVID-19. I. Comparative Virology and Disease Pathogenesis. ILAR Journal, 2021, 62, 35-47.	1.8	23
531	SARS-CoV-2 and SARS-CoV Spike-Mediated Cell-Cell Fusion Differ in Their Requirements for Receptor Expression and Proteolytic Activation. Journal of Virology, 2021, 95, .	3.4	79
532	mRNA-based SARS-CoV-2 vaccine candidate CVnCoV induces high levels of virus-neutralising antibodies and mediates protection in rodents. Npj Vaccines, 2021, 6, 57.	6.0	118
533	COVID-19 and the human innate immune system. Cell, 2021, 184, 1671-1692.	28.9	524
534	Cytokine storm associated coagulation complications in COVID-19 patients: Pathogenesis and Management. Expert Review of Anti-Infective Therapy, 2021, 19, 1397-1413.	4.4	39
535	The Interplay Between the Immune System, the Reninâ€Angiotensinâ€Aldosterone System (RAAS), and RAAS Inhibitors May Modulate the Outcome of COVIDâ€19: A Systematic Review. Journal of Clinical Pharmacology, 2021, 61, 987-1000.	2.0	11
536	Dissecting lipid metabolism alterations in SARS-CoV-2. Progress in Lipid Research, 2021, 82, 101092.	11.6	71
538	Molecular Dynamic Simulation Search for Possible Amphiphilic Drug Discovery for Covid-19. Molecules, 2021, 26, 2214.	3.8	0
539	Nano-Enabled COVID-19 Vaccines: Meeting the Challenges of Durable Antibody Plus Cellular Immunity and Immune Escape. ACS Nano, 2021, 15, 5793-5818.	14.6	32
540	IL-6 modulation for COVID-19: the right patients at the right time?. , 2021, 9, e002285.		32
541	The COVID-19 Vaccine in Clinical Trials: Where Are We Now?. Infectious Diseases & Immunity, 2021, 1, 43-51.	0.6	4
542	Biological characteristics and biomarkers of novel SARS-CoV-2 facilitated rapid development and implementation of diagnostic tools and surveillance measures. Biosensors and Bioelectronics, 2021, 177, 112969.	10.1	22
543	Host-Directed FDA-Approved Drugs with Antiviral Activity against SARS-CoV-2 Identified by Hierarchical In Silico/In Vitro Screening Methods. Pharmaceuticals, 2021, 14, 332.	3.8	21

#	Article	IF	CITATIONS
544	The airborne dilemma. Archives of Clinical Nephrology, 2021, , 006-008.	0.1	0
546	Molecular Aspects Concerning the Use of the SARS-CoV-2 Receptor Binding Domain as a Target for Preventive Vaccines. ACS Central Science, 2021, 7, 757-767.	11.3	46
547	Pandemic analysis of infection and death correlated with genomic open reading frame 10 mutation in severe acute respiratory syndrome coronavirus 2 victims. Journal of the Chinese Medical Association, 2021, 84, 478-484.	1.4	12
548	Biomimetic bacterial and viral-based nanovesicles for drug delivery, theranostics, and vaccine applications. Drug Discovery Today, 2021, 26, 902-915.	6.4	20
549	SARS-CoV-2 spike variants exhibit differential infectivity and neutralization resistance to convalescent or post-vaccination sera. Cell Host and Microbe, 2021, 29, 522-528.e2.	11.0	173
551	Chemoinformatic Analysis of Psychotropic and Antihistaminic Drugs in the Light of Experimental Anti-SARS-CoV-2 Activities. Advances and Applications in Bioinformatics and Chemistry, 2021, Volume 14, 71-85.	2.6	12
552	Microarray patches enable the development of skin-targeted vaccines against COVID-19. Advanced Drug Delivery Reviews, 2021, 171, 164-186.	13.7	45
553	Coronavirus 2019 Infectious Disease Epidemic: Where We Are, What Can Be Done and Hope For. Journal of Thoracic Oncology, 2021, 16, 546-571.	1.1	25
554	Comparative Perturbation-Based Modeling of the SARS-CoV-2 Spike Protein Binding with Host Receptor and Neutralizing Antibodies: Structurally Adaptable Allosteric Communication Hotspots Define Spike Sites Targeted by Global Circulating Mutations. Biochemistry, 2021, 60, 1459-1484.	2.5	62
555	Fundamental evolution of all <i>Orthocoronavirinae</i> including three deadly lineages descendent from Chiropteraâ€hosted coronaviruses: SARS oV, MERS oV and SARS oVâ€2. Cladistics, 2021, 37, 461	-488.	16
557	Metabolomics and computational analysis of the role of monoamine oxidase activity in delirium and SARS-COV-2 infection. Scientific Reports, 2021, 11, 10629.	3.3	20
558	The PRRA Insert at the S1/S2 Site Modulates Cellular Tropism of SARS-CoV-2 and ACE2 Usage by the Closely Related Bat RaTG13. Journal of Virology, 2021, 95, .	3.4	15
559	Virtual screening of quinoline derived library for SARS-COV-2 targeting viral entry and replication. Journal of Biomolecular Structure and Dynamics, 2022, 40, 8464-8493.	3.5	4
560	Role of Serine Proteases and Host Cell Receptors Involved in Proteolytic Activation, Entry of SARS-CoV-2 and Its Current Therapeutic Options. Infection and Drug Resistance, 2021, Volume 14, 1883-1892.	2.7	10
561	Human-Based Advanced in vitro Approaches to Investigate Lung Fibrosis and Pulmonary Effects of COVID-19. Frontiers in Medicine, 2021, 8, 644678.	2.6	31
562	Demyelination as a result of an immune response in patients with COVID-19. Acta Neurologica Belgica, 2021, 121, 859-866.	1.1	31
563	SARS-CoV-2, Endothelial Dysfunction, and the Renin-Angiotensin System (RAS): A Potentially Dangerous Triad for the Development of Pre-Eclampsia. Reproductive Medicine, 2021, 2, 95-106.	1.1	4
564	The Rise and Fall of Hydroxychloroquine with the COVID-19 Pandemic: Narrative Review of Selected Data. Rheumatology and Therapy, 2021, 8, 681-691.	2.3	4

#	ARTICLE	IF	CITATIONS
565	Identification and characterization of a monoclonal antibody blocking the SARS-CoV-2 spike protein–ACE2 interaction. Cellular and Molecular Immunology, 2021, 18, 1562-1564.	10.5	11
566	Differential Signaling and Virus Production in Calu-3 Cells and Vero Cells upon SARS-CoV-2 Infection. Biomolecules and Therapeutics, 2021, 29, 273-281.	2.4	36
567	Fundamental and Advanced Therapies, Vaccine Development against SARS-CoV-2. Pathogens, 2021, 10, 636.	2.8	2
569	Comparative analyses of ACE2 and TMPRSS2 gene: Implications for the risk to which vertebrate animals are susceptible to SARSâ€CoVâ€2. Journal of Medical Virology, 2021, 93, 5487-5504.	5.0	11
571	Nanobased Platforms for Diagnosis and Treatment of COVID-19: From Benchtop to Bedside. ACS Biomaterials Science and Engineering, 2021, 7, 2150-2176.	5.2	27
572	Deletion of the SARS-CoV-2 Spike Cytoplasmic Tail Increases Infectivity in Pseudovirus Neutralization Assays. Journal of Virology, 2021, 95, .	3.4	80
573	Saliva Exhibits High Sensitivity and Specificity for the Detection of SARS-COV-2. Diseases (Basel,) Tj ETQq0 0 0 rg	gBT_/Overlo	ock 10 Tf 50 25
574	Maternal respiratory SARS-CoV-2 infection in pregnancy is associated with a robust inflammatory response at the maternal-fetal interface. Med, 2021, 2, 591-610.e10.	4.4	122
575	SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome. Nature Chemistry, 2021, 13, 651-659.	13.6	190
576	High-resolution profiling of pathways of escape for SARS-CoV-2 spike-binding antibodies. Cell, 2021, 184, 2927-2938.e11.	28.9	35
577	SARS-CoV-2 cell entry and targeted antiviral development. Acta Pharmaceutica Sinica B, 2021, 11, 3879-3888.	12.0	21
578	Current understanding on molecular drug targets and emerging treatment strategy for novel coronavirus-19. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 1383-1402.	3.0	3
580	Confronting COVID-19-associated cough and the post-COVID syndrome: role of viral neurotropism, neuroinflammation, and neuroimmune responses. Lancet Respiratory Medicine,the, 2021, 9, 533-544.	10.7	190
581	Targeting the viralâ€entry facilitators of SARSâ€CoVâ€2 as a therapeutic strategy in COVIDâ€19. Journal of Medical Virology, 2021, 93, 5260-5276.	5.0	26
582	The direct evidence and mechanism of traditional Chinese medicine treatment of COVID-19. Biomedicine and Pharmacotherapy, 2021, 137, 111267.	5.6	70
583	A comprehensive library of fluorescent constructs of SARSâ€CoVâ€2 proteins and their initial characterisation in different cell types. Biology of the Cell, 2021, 113, 311-328.	2.0	17
584	Hypoxia induces expression of angiotensinâ€converting enzyme II in alveolar epithelial cells: Implications for the pathogenesis of acute lung injury in COVIDâ€19. Physiological Reports, 2021, 9, e14854.	1.7	9
585	Zebrafish as a Translational Model: An Experimental Alternative to Study the Mechanisms Involved in Anosmia and Possible Neurodegenerative Aspects of COVID-19?. ENeuro, 2021, 8, ENEURO.0027-21.2021.	1.9	9

#	Article	IF	CITATIONS
587	Molecular Analysis of SARS-CoV-2 Circulating in Bangladesh during 2020 Revealed Lineage Diversity and Potential Mutations. Microorganisms, 2021, 9, 1035.	3.6	7
588	The Immunological Role of the Placenta in SARS-CoV-2 Infection—Viral Transmission, Immune Regulation, and Lactoferrin Activity. International Journal of Molecular Sciences, 2021, 22, 5799.	4.1	17
589	Co-Evolution between New Coronavirus (SARS-CoV-2) and Genetic Diversity: Insights on Population Susceptibility and Potential Therapeutic Innovations. , 0, , .		2
590	Multifactorial Traits of SARS-CoV-2 Cell Entry Related to Diverse Host Proteases and Proteins. Biomolecules and Therapeutics, 2021, 29, 249-262.	2.4	2
591	Not so sweet and simple: impacts of SARS-CoV-2 on the \hat{l}^2 cell. Islets, 2021, 13, 66-79.	1.8	18
592	Effect of Biomedical Materials in the Implementation of a Long and Healthy Life Policy. Processes, 2021, 9, 865.	2.8	21
593	SARS-CoV-2-Induced Gut Microbiome Dysbiosis: Implications for Colorectal Cancer. Cancers, 2021, 13, 2676.	3.7	21
594	Interfering with Host Proteases in SARS-CoV-2 Entry as a Promising Therapeutic Strategy. Current Medicinal Chemistry, 2022, 29, 635-665.	2.4	11
595	A Multiplex Oneâ€Step RTâ€qPCR Protocol to Detect SARS oVâ€2 in NP/OP Swabs and Saliva. Current Protocols, 2021, 1, e145.	2.9	5
596	Critical Interactions Between the SARS-CoV-2 Spike Glycoprotein and the Human ACE2 Receptor. Journal of Physical Chemistry B, 2021, 125, 5537-5548.	2.6	41
597	Plausible blockers of Spike RBD in SARS-CoV2—molecular design and underlying interaction dynamics from high-level structural descriptors. Journal of Molecular Modeling, 2021, 27, 191.	1.8	10
598	ALG-097111, a potent and selective SARS-CoV-2 3-chymotrypsin-like cysteine protease inhibitor exhibits inÂvivo efficacy in a Syrian Hamster model. Biochemical and Biophysical Research Communications, 2021, 555, 134-139.	2.1	30
599	Randomized Prospective Open Label Study Shows No Impact on Clinical Outcome of Adding Losartan to Hospitalized COVID-19 Patients with Mild Hypoxemia. Infectious Diseases and Therapy, 2021, 10, 1323-1330.	4.0	26
600	Predicting COVID-19—Comorbidity Pathway Crosstalk-Based Targets and Drugs: Towards Personalized COVID-19 Management. Biomedicines, 2021, 9, 556.	3.2	20
601	The human pandemic coronaviruses on the show: The spike glycoprotein as the main actor in the coronaviruses play. International Journal of Biological Macromolecules, 2021, 179, 1-19.	7.5	17
602	Viral Proteases as Targets for Coronavirus Disease 2019 Drug Development. Journal of Pharmacology and Experimental Therapeutics, 2021, 378, 166-172.	2.5	19
603	Mutations in the B.1.1.7 SARS-CoV-2 Spike Protein Reduce Receptor-Binding Affinity and Induce a Flexible Link to the Fusion Peptide. Biomedicines, 2021, 9, 525.	3.2	28
604	The SARS-CoV-2 Transcriptome and the Dynamics of the S Gene Furin Cleavage Site in Primary Human Airway Epithelia. MBio, 2021, 12, .	4.1	21

#	Article	IF	CITATIONS
606	Discovery of Cyclic Peptide Ligands to the SARS-CoV-2 Spike Protein Using mRNA Display. ACS Central Science, 2021, 7, 1001-1008.	11.3	47
608	Population (Antibody) Testing for COVID-19—Technical Challenges, Application and Relevance, an English Perspective. Vaccines, 2021, 9, 550.	4.4	6
609	Effect of COVID-19 on liver abnormalities: a systematic review and metaâ€analysis. Scientific Reports, 2021, 11, 10599.	3.3	29
610	<i>In silico</i> binding profile characterization of SARS-CoV-2 spike protein and its mutants bound to human ACE2 receptor. Briefings in Bioinformatics, 2021, 22, .	6.5	22
611	Immunological Aspects of SARS-CoV-2 Infection and the Putative Beneficial Role of Vitamin-D. International Journal of Molecular Sciences, 2021, 22, 5251.	4.1	43
613	COVIDâ€19 and pulmonary fibrosis: A potential role for lung epithelial cells and fibroblasts. Immunological Reviews, 2021, 302, 228-240.	6.0	126
614	Development of leading first-generation vaccines against SARS-CoV-2. Microbes and Infection, 2021, 23, 104841.	1.9	0
617	Epitope profiling reveals binding signatures of SARS-CoV-2 immune response in natural infection and cross-reactivity with endemic human CoVs. Cell Reports, 2021, 35, 109164.	6.4	44
619	Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: a review of current evidence. Expert Review of Clinical Pharmacology, 2021, 14, 601-621.	3.1	144
620	SARS-CoV-2 Related Ischemic Colitis in an Adolescent With Trisomy 21: Diagnostic Pitfalls and Considerations. Pediatric and Developmental Pathology, 2021, 24, 445-449.	1.0	3
621	Comprehensive Comparison of RNA-Seq Data of SARS-CoV-2, SARS-CoV and MERS-CoV Infections: Alternative Entry Routes and Innate Immune Responses. Frontiers in Immunology, 2021, 12, 656433.	4.8	11
622	Small-Molecule Inhibitors of the Coronavirus Spike: ACE2 Protein–Protein Interaction as Blockers of Viral Attachment and Entry for SARS-CoV-2. ACS Infectious Diseases, 2021, 7, 1519-1534.	3.8	77
623	Shared inflammatory pathways and therapeutic strategies in COVID-19 and cancer immunotherapy. , 2021, 9, e002392.		9
624	Effect of COVID-19 on Male Reproductive System – A Systematic Review. Frontiers in Endocrinology, 2021, 12, 677701.	3.5	67
626	Prospective Role of Peptide-Based Antiviral Therapy Against the Main Protease of SARS-CoV-2. Frontiers in Molecular Biosciences, 2021, 8, 628585.	3.5	31
627	Effect of aspirin on short-term outcomes in hospitalized patients with COVID-19. Vascular Medicine, 2021, 26, 626-632.	1.5	26
629	Treatment of COVID-19 by stage: any space left for mesenchymal stem cell therapy?. Regenerative Medicine, 2021, 16, 477-494.	1.7	2
631	The Contribution of Biophysics and Structural Biology to Current Advances in COVID-19. Annual Review of Biophysics, 2021, 50, 493-523.	10.0	12

# 632	ARTICLE Insights into SARS-CoV-2 Persistence and Its Relevance. Viruses, 2021, 13, 1025.	IF 3.3	CITATIONS 37
633	Thiol-Mediated Uptake. Jacs Au, 2021, 1, 710-728.	7.9	77
634	Human pluripotent stem cell-based organoids and cell platforms for modelling SARS-CoV-2 infection and drug discovery. Stem Cell Research, 2021, 53, 102207.	0.7	13
637	Computational design and modeling of nanobodies toward SARSâ€CoVâ€2 receptor binding domain. Chemical Biology and Drug Design, 2021, 98, 1-18.	3.2	35
639	Dysregulation of COVID-19 related gene expression in the COPD lung. Respiratory Research, 2021, 22, 164.	3.6	22
640	Natural Products Modulating Angiotensin Converting Enzyme 2 (ACE2) as Potential COVID-19 Therapies. Frontiers in Pharmacology, 2021, 12, 629935.	3.5	26
641	Induced dysregulation of ACE2 by SARS-CoV-2 plays a key role in COVID-19 severity. Biomedicine and Pharmacotherapy, 2021, 137, 111363.	5.6	39
642	Genetic susceptibility of COVID-19: a systematic review of current evidence. European Journal of Medical Research, 2021, 26, 46.	2.2	57
643	Underscoring the immense potential of chitosan in fighting a wide spectrum of viruses: A plausible molecule against SARS-CoV-2?. International Journal of Biological Macromolecules, 2021, 179, 33-44.	7.5	31
645	Self-Assembling Nanoparticle Vaccines Displaying the Receptor Binding Domain of SARS-CoV-2 Elicit Robust Protective Immune Responses in Rhesus Monkeys. Bioconjugate Chemistry, 2021, 32, 1034-1046.	3.6	23
646	Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses, 2021, 13, 828.	3.3	74
647	Therapeutic antibodies, targeting the SARS-CoV-2 spike N-terminal domain, protect lethally infected K18-hACE2 mice. IScience, 2021, 24, 102479.	4.1	29
649	Use of Lateral Flow Immunoassay to Characterize SARS-CoV-2 RBD-Specific Antibodies and Their Ability to React with the UK, SA and BR P.1 Variant RBDs. Diagnostics, 2021, 11, 1190.	2.6	10
650	Aerosolized nanoliposomal carrier of remdesivir: an effective alternative for COVID-19 treatment <i>in vitro</i> . Nanomedicine, 2021, 16, 1187-1202.	3.3	58
651	Immunogenicity and crossreactivity of antibodies to the nucleocapsid protein of SARS-CoV-2: utility and limitations in seroprevalence and immunity studies. Translational Research, 2021, 232, 60-74.	5.0	69
653	COVID-19 and gastrointestinal system: A brief review. Biomedical Journal, 2021, 44, 245-251.	3.1	11
654	Molecular biology of the SARsâ€CoVâ€2 spike protein: A review of current knowledge. Journal of Medical Virology, 2021, 93, 5729-5741.	5.0	37
655	COVID-19 pathophysiology and pharmacology: what do we know and how did Canadians respond? A review of Health Canada authorized clinical vaccine and drug trials. Canadian Journal of Physiology and Pharmacology, 2021, 99, 577-588.	1.4	2

#	Article	IF	CITATIONS
656	COVID-19 in Solid Organ Transplant Recipients: a Review of the Current Literature. Current Treatment Options in Infectious Diseases, 2021, 13, 67-82.	1.9	15
657	Remdesivir MD Simulations Suggest a More Favourable Binding to SARS-CoV-2 RNA Dependent RNA Polymerase Mutant P323L Than Wild-Type. Biomolecules, 2021, 11, 919.	4.0	24
658	Evidence For and Against Direct Kidney Infection by SARS-CoV-2 in Patients with COVID-19. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 1755-1765.	4.5	54
660	Innate Immune Response to SARS-CoV-2 Infection: From Cells to Soluble Mediators. International Journal of Molecular Sciences, 2021, 22, 7017.	4.1	43
661	Bioactivity, bioavailability, and gut microbiota transformations of dietary phenolic compounds: implications for COVID-19. Journal of Nutritional Biochemistry, 2021, 97, 108787.	4.2	37
662	Potential Therapeutic Targets and Vaccine Development for SARS-CoV-2/COVID-19 Pandemic Management: A Review on the Recent Update. Frontiers in Immunology, 2021, 12, 658519.	4.8	63
663	The Immunopathobiology of SARS-CoV-2 Infection. FEMS Microbiology Reviews, 2021, 45, .	8.6	9
664	Application of an integrated computational antibody engineering platform to design SARS-CoV-2 neutralizers. Antibody Therapeutics, 2021, 4, 109-122.	1.9	8
666	Antimicrobial Peptides and Physical Activity: A Great Hope against COVID 19. Microorganisms, 2021, 9, 1415.	3.6	16
668	Case Report: Effects of Anti-SARS-CoV-2 Convalescent Antibodies Obtained With Double Filtration Plasmapheresis. Frontiers in Immunology, 2021, 12, 711915.	4.8	2
669	Polysulfate hemmen durch elektrostatische Wechselwirkungen die SARSâ€CoVâ€2â€Infektion**. Angewandte Chemie, 2021, 133, 16005-16014.	2.0	0
670	CoBiD-net: a tailored deep learning ensemble model for time series forecasting of covid-19. Spatial Information Research, 2022, 30, 9-22.	2.2	6
671	Senolytics reduce coronavirus-related mortality in old mice. Science, 2021, 373, .	12.6	184
674	Pinpointing the potential hits for hindering interaction of SARS-CoV-2 S-protein with ACE2 from the pool of antiviral phytochemicals utilizing molecular docking and molecular dynamics (MD) simulations. Journal of Molecular Graphics and Modelling, 2021, 105, 107874.	2.4	37
676	The Fight against COVID-19 on the Multi-Protease Front and Surroundings: Could an Early Therapeutic Approach with Repositioning Drugs Prevent the Disease Severity?. Biomedicines, 2021, 9, 710.	3.2	7
677	NOX2 Activation in COVID-19: Possible Implications for Neurodegenerative Diseases. Medicina (Lithuania), 2021, 57, 604.	2.0	18
678	Landscape-Based Mutational Sensitivity Cartography and Network Community Analysis of the SARS-CoV-2 Spike Protein Structures: Quantifying Functional Effects of the Circulating D614G Variant. ACS Omega, 2021, 6, 16216-16233.	3.5	10
679	Drug targets, mechanisms of drug action, and therapeutics against SARS-CoV-2. Chemical Physics Impact, 2021, 2, 100011.	3.5	18

#	Article	IF	CITATIONS
680	The Effect of COVID-19 on NF-κB and Neurological Manifestations of Disease. Molecular Neurobiology, 2021, 58, 4178-4187.	4.0	31
681	Therapeutic Effectiveness and Safety of Repurposing Drugs for the Treatment of COVID-19: Position Standing in 2021. Frontiers in Pharmacology, 2021, 12, 659577.	3.5	31
682	Milk-derived anti-infectives and their potential to combat bacterial and viral infection. Journal of Functional Foods, 2021, 81, 104442.	3.4	11
683	A phase I study of high dose camostat mesylate in healthy adults provides a rationale to repurpose the TMPRSS2 inhibitor for the treatment of COVIDâ€19. Clinical and Translational Science, 2021, 14, 1967-1976.	3.1	22
684	A Unique SARS-CoV-2 Spike Protein P681H Variant Detected in Israel. Vaccines, 2021, 9, 616.	4.4	25
685	Molecular Perspectives of SARS-CoV-2: Pathology, Immune Evasion, and Therapeutic Interventions. Molecules and Cells, 2021, 44, 408-421.	2.6	18
686	Platelet Activation and Plasma Levels of Furin Are Associated With Prognosis of Patients With Coronary Artery Disease and COVID-19. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2080-2096.	2.4	21
688	Neuromodulatory effects of SARS-CoV2 infection: Possible therapeutic targets. Expert Opinion on Therapeutic Targets, 2021, 25, 509-519.	3.4	0
689	Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Science, 2021, 373, .	12.6	318
690	Heparan Sulfate Binding Cationic Peptides Restrict SARS-CoV-2 Entry. Pathogens, 2021, 10, 803.	2.8	5
691	Inhibitory effect on SARSâ€CoVâ€2 infection of neferine by blocking Ca ²⁺ â€dependent membrane fusion. Journal of Medical Virology, 2021, 93, 5825-5832.	5.0	20
692	Identification of 13 Guanidinobenzoyl- or Aminidinobenzoyl-Containing Drugs to Potentially Inhibit TMPRSS2 for COVID-19 Treatment. International Journal of Molecular Sciences, 2021, 22, 7060.	4.1	10
693	Convalescent-Phase Sera and Vaccine-Elicited Antibodies Largely Maintain Neutralizing Titer against Global SARS-CoV-2 Variant Spikes. MBio, 2021, 12, e0069621.	4.1	61
694	Autophagy, Unfolded Protein Response, and Neuropilin-1 Cross-Talk in SARS-CoV-2 Infection: What Can Be Learned from Other Coronaviruses. International Journal of Molecular Sciences, 2021, 22, 5992.	4.1	25
695	SARS-CoV-2: An Overview of Virus Genetics, Transmission, and Immunopathogenesis. International Journal of Environmental Research and Public Health, 2021, 18, 6312.	2.6	15
696	Polysulfates Block SARSâ€CoVâ€2 Uptake through Electrostatic Interactions**. Angewandte Chemie - International Edition, 2021, 60, 15870-15878.	13.8	49
697	Interactive Interface for Graph-Based Analyses of Dynamic H-Bond Networks: Application to Spike Protein S. Journal of Chemical Information and Modeling, 2021, 61, 2998-3014.	5.4	17
698	Full-Length Computational Model of the SARS-CoV-2 Spike Protein and Its Implications for a Viral Membrane Fusion Mechanism. Viruses, 2021, 13, 1126.	3.3	9

#	Article	IF	CITATIONS
699	Different Neutralization Sensitivity of SARS-CoV-2 Cell-to-Cell and Cell-Free Modes of Infection to Convalescent Sera. Viruses, 2021, 13, 1133.	3.3	19
700	A high-throughput screen for TMPRSS2 expression identifies FDA-approved compounds that can limit SARS-CoV-2 entry. Nature Communications, 2021, 12, 3907.	12.8	50
702	Reinforcing our defense or weakening the enemy? A comparative overview of defensive and offensive strategies developed to confront COVID-19. Drug Metabolism Reviews, 2021, 53, 508-541.	3.6	0
703	Comparative analysis of mutational hotspots in the spike protein of SARS-CoV-2 isolates from different geographic origins. Gene Reports, 2021, 23, 101100.	0.8	3
704	Heparan Sulfate Proteoglycans in Viral Infection and Treatment: A Special Focus on SARS-CoV-2. International Journal of Molecular Sciences, 2021, 22, 6574.	4.1	40
706	Nanotraps for the containment and clearance of SARS-CoV-2. Matter, 2021, 4, 2059-2082.	10.0	38
707	SARS-CoV-2 mutation 614G creates an elastase cleavage site enhancing its spread in high AAT-deficient regions. Infection, Genetics and Evolution, 2021, 90, 104760.	2.3	34
708	Computational design of ultrashort peptide inhibitors of the receptor-binding domain of the SARS-CoV-2 S protein. Briefings in Bioinformatics, 2021, 22, .	6.5	18
709	Mechanism of Action of Chloroquine/Hydroxychloroquine for Covid-19 Infection. Coronaviruses, 2021, 2, .	0.3	3
710	Drug delivery systems as immunomodulators for therapy of infectious disease: Relevance to COVID-19. Advanced Drug Delivery Reviews, 2021, 178, 113848.	13.7	6
711	Inflammatory Response Leads to Neuronal Death in Human Post-Mortem Cerebral Cortex in Patients with COVID-19. ACS Chemical Neuroscience, 2021, 12, 2143-2150.	3.5	50
712	Metal Complexes as Antiviral Agents for SARSâ€CoVâ€2. ChemBioChem, 2021, 22, 2600-2607.	2.6	45
713	Implications of microscale lung damage for COVID-19 pulmonary ventilation dynamics: A narrative review. Life Sciences, 2021, 274, 119341.	4.3	17
714	Multifaced Roles of HDL in Sepsis and SARS-CoV-2 Infection: Renal Implications. International Journal of Molecular Sciences, 2021, 22, 5980.	4.1	21
715	COVID-19: A Redox Disease—What a Stress Pandemic Can Teach Us About Resilience and What We May Learn from the Reactive Species Interactome About Its Treatment. Antioxidants and Redox Signaling, 2021, 35, 1226-1268.	5.4	28
717	Dynamic Profiling of Binding and Allosteric Propensities of the SARS-CoV-2 Spike Protein with Different Classes of Antibodies: Mutational and Perturbation-Based Scanning Reveals the Allosteric Duality of Functionally Adaptable Hotspots. Journal of Chemical Theory and Computation, 2021, 17, 4578-4598.	5.3	39
719	An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies. Cell, 2021, 184, 3452-3466.e18.	28.9	205
720	Renal Considerations in COVID-19: Biology, Pathology, and Pathophysiology. ASAIO Journal, 2021, 67, 1087-1096.	1.6	5

#	Article	IF	CITATIONS
721	Deleterious Effects of SARS-CoV-2 Infection on Human Pancreatic Cells. Frontiers in Cellular and Infection Microbiology, 2021, 11, 678482.	3.9	40
722	Genetic Control of Human Infection with SARS-CoV-2. Russian Journal of Genetics, 2021, 57, 627-641.	0.6	3
723	Rapid, reliable, and reproducible cell fusion assay to quantify SARS-Cov-2 spike interaction with hACE2. PLoS Pathogens, 2021, 17, e1009683.	4.7	18
724	Computational analysis of protein stability and allosteric interaction networks in distinct conformational forms of the SARS-CoV-2 spike D614G mutant: reconciling functional mechanisms through allosteric model of spike regulation. Journal of Biomolecular Structure and Dynamics, 2022, 40, 9724-9741.	3.5	11
725	Genetic and epigenetic control of ACE2 expression and its possible role in COVID â€19. Cell Biochemistry and Function, 2021, 39, 713-726.	2.9	12
726	Angiotensin II Receptor Blockers (ARBs Antihypertensive Agents) Increase Replication of SARS-CoV-2 in Vero E6 Cells. Frontiers in Cellular and Infection Microbiology, 2021, 11, 639177.	3.9	13
727	Viral particle imaging by super-resolution fluorescence microscopy. Chemical Physics Impact, 2021, 2, 100013.	3.5	9
728	Neuropilin-1 assists SARS-CoV-2 infection by stimulating the separation of Spike protein S1 andÂS2. Biophysical Journal, 2021, 120, 2828-2837.	0.5	44
729	SARS_CoV2 RBD gene transcription cannot be driven by CMV promoter. Virology, 2021, 558, 22-27.	2.4	2
730	SARS-CoV-2 infection induces the activation of tissue factor–mediated coagulation via activation of acid sphingomyelinase. Blood, 2021, 138, 344-349.	1.4	35
731	Machine Learning Reveals the Critical Interactions for SARS-CoV-2 Spike Protein Binding to ACE2. Journal of Physical Chemistry Letters, 2021, 12, 5494-5502.	4.6	44
732	Unbiased Identification of Extracellular Protein–Protein Interactions for Drug Target and Biologic Drug Discovery. , 0, , .		1
733	Tagged extracellular vesicles with the RBD of the viral spike protein for delivery of antiviral agents against SARS-COV-2 infection. Journal of Controlled Release, 2021, 335, 584-595.	9.9	29
734	Cytokine-Induced Modulation of SARS-CoV2 Receptor Expression in Primary Human Nasal Epithelial Cells. Pathogens, 2021, 10, 848.	2.8	2
735	COVID-19: Vaccine Delivery System, Drug Repurposing and Application of Molecular Modeling Approach. Drug Design, Development and Therapy, 2021, Volume 15, 3313-3330.	4.3	9
736	MPI8 is Potent against SARSâ€CoVâ€2 by Inhibiting Dually and Selectively the SARSâ€CoVâ€2 Main Protease and the Host Cathepsin L**. ChemMedChem, 2022, 17, .	3.2	41
737	Generation of a Sleeping Beauty Transposon-Based Cellular System for Rapid and Sensitive Screening for Compounds and Cellular Factors Limiting SARS-CoV-2 Replication. Frontiers in Microbiology, 2021, 12, 701198.	3.5	27
738	COVID-19: Đ¼Đ,Ñ,,Ñ‹ Đ, Ñ€ĐµĐ°Đ»ÑŒĐ½Đ¾ÑÑ,ÑŒ. Biochemistry, 2021, 86, 964-984.	0.0	0

#	Article	IF	CITATIONS
740	One Health: EAACI Position Paper on coronaviruses at the humanâ€animal interface, with a specific focus on comparative and zoonotic aspects of SARSâ€CoVâ€2. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 55-71.	5.7	19
741	Is RAS the Link Between COVID-19 and Increased Stress in Head and Neck Cancer Patients?. Frontiers in Cell and Developmental Biology, 2021, 9, 714999.	3.7	4
742	The Post-COVID-19 Era: Interdisciplinary Demands of Contagion Surveillance Mass Spectrometry for Future Pandemics. Sustainability, 2021, 13, 7614.	3.2	2
744	COVID-19 Shuts Doors to Flu but Keeps Them Open to Rhinoviruses. Biology, 2021, 10, 733.	2.8	14
745	Relevance of BET Family Proteins in SARS-CoV-2 Infection. Biomolecules, 2021, 11, 1126.	4.0	11
746	Identification of Potential Binding Sites of Sialic Acids on the RBD Domain of SARS-CoV-2 Spike Protein. Frontiers in Chemistry, 2021, 9, 659764.	3.6	21
747	The virological impacts of SARS-CoV-2 D614G mutation. Journal of Molecular Cell Biology, 2021, 13, 712-720.	3.3	21
748	Emerging neurotropic features of SARS-CoV-2. Journal of Molecular Cell Biology, 2021, 13, 705-711.	3.3	12
749	SARS-CoV-2 serology testing: Progress and challenges. Journal of Immunological Methods, 2021, 494, 113060.	1.4	21
750	SARS-CoV-2 and pathological matrix remodeling mediators. Inflammation Research, 2021, 70, 847-858.	4.0	24
751	A Validated Mathematical Model of the Cytokine Release Syndrome in Severe COVID-19. Frontiers in Molecular Biosciences, 2021, 8, 639423.	3.5	19
752	Structural Analysis of the OC43 Coronavirus 2′-O-RNA Methyltransferase. Journal of Virology, 2021, 95, e0046321.	3.4	10
753	Targeting neuropilins as a viable SARS oVâ€⊋ treatment. FEBS Journal, 2021, 288, 5122-5129.	4.7	11
754	COVID-19 Biomarkers and Advanced Sensing Technologies for Point-of-Care (POC) Diagnosis. Bioengineering, 2021, 8, 98.	3.5	28
757	Functional binding dynamics relevant to the evolution of zoonotic spillovers in endemic and emergent <i>Betacoronavirus</i> strains. Journal of Biomolecular Structure and Dynamics, 2022, 40, 10978-10996.	3.5	7
758	Diverse Effects of Exosomes on COVID-19: A Perspective of Progress From Transmission to Therapeutic Developments. Frontiers in Immunology, 2021, 12, 716407.	4.8	40
759	Role of host factors in SARS-CoV-2 entry. Journal of Biological Chemistry, 2021, 297, 100847.	3.4	67
760	The investigation of mRNA vaccines formulated in liposomes administrated in multiple routes against SARS-CoV-2. Journal of Controlled Release, 2021, 335, 449-456.	9.9	42

#	Article	IF	CITATIONS
761	Molecular Phylogenesis and Spatiotemporal Spread of SARS-CoV-2 in Southeast Asia. Frontiers in Public Health, 2021, 9, 685315.	2.7	8
762	Marine sulfated polysaccharides as potential antiviral drug candidates to treat Corona Virus disease (COVID-19). Carbohydrate Research, 2021, 505, 108326.	2.3	48
763	IFITM proteins promote SARS-CoV-2 infection and are targets for virus inhibition in vitro. Nature Communications, 2021, 12, 4584.	12.8	129
765	Coronavirus Disease (COVID)-19 and Diabetic Kidney Disease. Pharmaceuticals, 2021, 14, 751.	3.8	13
766	ACE2-lentiviral transduction enables mouse SARS-CoV-2 infection and mapping of receptor interactions. PLoS Pathogens, 2021, 17, e1009723.	4.7	28
767	Human Coronaviruses: Counteracting the Damage by Storm. Viruses, 2021, 13, 1457.	3.3	5
768	Age-Related Differences in the Expression of Most Relevant Mediators of SARS-CoV-2 Infection in Human Respiratory and Gastrointestinal Tract. Frontiers in Pediatrics, 2021, 9, 697390.	1.9	25
769	Extracellular Vesicles as a Means of Viral Immune Evasion, CNS Invasion, and Glia-Induced Neurodegeneration. Frontiers in Cellular Neuroscience, 2021, 15, 695899.	3.7	10
770	The Impact of the COVID-19 Pandemic on Dementia Risk: Potential Pathways to Cognitive Decline. Neurodegenerative Diseases, 2021, 21, 1-23.	1.4	18
771	Evolutionary insights into the furin cleavage sites of SARS-CoV-2 variants from humans and animals. Archives of Virology, 2021, 166, 2541-2549.	2.1	13
772	Secreted Expression of mRNAâ€Encoded Truncated ACE2 Variants for SARSâ€CoVâ€2 via Lipidâ€Like Nanoassemblies. Advanced Materials, 2021, 33, e2101707.	21.0	19
773	Effect of clinical isolate or cleavage site mutations in the SARS-CoV-2 spike protein on protein stability, cleavage, and cell–cell fusion. Journal of Biological Chemistry, 2021, 297, 100902.	3.4	17
774	L-SIGN is a receptor on liver sinusoidal endothelial cells for SARS-CoV-2 virus. JCI Insight, 2021, 6, .	5.0	31
776	A Machine-Generated View of the Role of Blood Glucose Levels in the Severity of COVID-19. Frontiers in Public Health, 2021, 9, 695139.	2.7	32
777	COVIDâ€19 and the liver: A 2021 update. Liver International, 2021, 41, 1988-1998.	3.9	34
778	The Spike of SARS-CoV-2: Uniqueness and Applications. Frontiers in Immunology, 2021, 12, 663912.	4.8	14
780	Expression of the ACE2 Virus Entry Protein in the Nervus Terminalis Reveals the Potential for an Alternative Route to Brain Infection in COVID-19. Frontiers in Cellular Neuroscience, 2021, 15, 674123.	3.7	16
781	Presence and strength of binding of IgM, IgG and IgA antibodies against SARS-CoV-2 during CoViD-19 infection. Biosensors and Bioelectronics, 2021, 183, 113165.	10.1	20

#	Article	IF	CITATIONS
782	SARS-CoV 2 spike protein S1 subunit as an ideal target for stable vaccines: A bioinformatic study. Materials Today: Proceedings, 2022, 49, 904-912.	1.8	14
783	ILRUN Downregulates ACE2 Expression and Blocks Infection of Human Cells by SARS-CoV-2. Journal of Virology, 2021, 95, e0032721.	3.4	6
784	Plants and Natural Products with Activity against Various Types of Coronaviruses: A Review with Focus on SARS-CoV-2. Molecules, 2021, 26, 4099.	3.8	25
785	Implications of inadequate water and sanitation infrastructure for community spread of COVID-19 in remote Alaskan communities. Science of the Total Environment, 2021, 776, 145842.	8.0	21
786	Variable Induction of Pro-Inflammatory Cytokines by Commercial SARS CoV-2 Spike Protein Reagents: Potential Impacts of LPS on In Vitro Modeling and Pathogenic Mechanisms In Vivo. International Journal of Molecular Sciences, 2021, 22, 7540.	4.1	12
787	The bacteriophage decides own tracks: When they are with or against the bacteria. Current Research in Microbial Sciences, 2021, 2, 100050.	2.3	4
788	Roles of steroid receptors in the lung and COVID-19. Essays in Biochemistry, 2021, 65, 1025-1038.	4.7	11
789	The antiandrogen enzalutamide downregulates TMPRSS2 and reduces cellular entry of SARS-CoV-2 in human lung cells. Nature Communications, 2021, 12, 4068.	12.8	57
790	Immunogenicity and Protective Efficacy of a Highly Thermotolerant, Trimeric SARS-CoV-2 Receptor Binding Domain Derivative. ACS Infectious Diseases, 2021, 7, 2546-2564.	3.8	34
791	Interference of Polydatin/Resveratrol in the ACE2:Spike Recognition during COVID-19 Infection. A Focus on Their Potential Mechanism of Action through Computational and Biochemical Assays. Biomolecules, 2021, 11, 1048.	4.0	22
792	Effects of Basic Amino Acids and Their Derivatives on SARS-CoV-2 and Influenza-A Virus Infection. Viruses, 2021, 13, 1301.	3.3	21
793	COVID-19: Myths and Reality. Biochemistry (Moscow), 2021, 86, 800-817.	1.5	10
794	Can Host Cell Proteins Like ACE2, ADAM17, TMPRSS2, Androgen Receptor be the Efficient Targets in SARS-CoV-2 Infection?. Current Drug Targets, 2021, 22, 1149-1157.	2.1	0
795	Interplay between hypoxia and inflammation contributes to the progression and severity of respiratory viral diseases. Molecular Aspects of Medicine, 2021, 81, 101000.	6.4	12
796	A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients binds to the ACE2-RBD interface and is tolerant to most known RBD mutations. Cell Reports, 2021, 36, 109433.	6.4	75
797	Free Energy Landscapes from SARS-CoV-2 Spike Glycoprotein Simulations Suggest that RBD Opening Can Be Modulated via Interactions in an Allosteric Pocket. Journal of the American Chemical Society, 2021, 143, 11349-11360.	13.7	54
798	An update review of globally reported SARS-CoV-2 vaccines in preclinical and clinical stages. International Immunopharmacology, 2021, 96, 107763.	3.8	35
799	ACE2 interaction with cytoplasmic PDZ protein enhances SARS-CoV-2 invasion. IScience, 2021, 24, 102770.	4.1	18

ARTICLE IF CITATIONS # Food Enrichment with Glycyrrhiza glabra Extract Suppresses ACE2 mRNA and Protein Expression in 801 4.1 16 Ratsâ€"Possible Implications for COVID-19. Nutrients, 2021, 13, 2321. A synthetic nanobody targeting RBD protects hamsters from SARS-CoV-2 infection. Nature 12.8 Communications, 2021, 12, 4635. SARS-CoV-2: Cross-scale Insights from Ecology and Evolution. Trends in Microbiology, 2021, 29, 803 7.7 12 593-605. Original Hosts, Clinical Features, Transmission Routes, and Vaccine Development for Coronavirus 804 Disease (COVID-19). Frontiers in Medicine, 2021, 8, 702066. A Novel Therapeutic Peptide Blocks SARS-CoV-2 Spike Protein Binding with Host Cell ACE2 Receptor. 805 2.2 20 Drugs in R and D, 2021, 21, 273-283. TMPRSS2 expression dictates the entry route used by SARS $\hat{a}\in CoV\hat{a}\in 2$ to infect host cells. EMBO Journal, 7.8 223 2021, 40, e107821. Identification of HLA-A2 restricted CD8+ T cell epitopes in SARS-CoV-2 structural proteins. Journal of 808 3.3 11 Leukocyte Biology, 2021, 110, 1171-1180. Monocytes and Macrophages in COVID-19. Frontiers in Immunology, 2021, 12, 720109. 809 4.8 168 Neutralizing Antibodies in COVID-19 Patients and Vaccine Recipients after Two Doses of BNT162b2. 811 3.3 72 Viruses, 2021, 13, 1364. Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell. Cell Reports, 2021, 6.4 109 36, 109364. Characterization of SARS-CoV-2 and host entry factors distribution in a COVID-19 autopsy series. 813 4.2 16 Communications Medicine, 2021, 1, . Angiotensin-Converting Enzyme 2 in the Pathogenesis of Renal Abnormalities Observed in COVID-19 814 2.8 Patients. Frontiers in Physiology, 2021, 12, 700220. Rapid and Efficient Detection of the SARS-CoV-2 Spike Protein Using an Electrochemical Aptamer-Based 815 7.8 129 Sensor. ACS Sensors, 2021, 6, 3093-3101. Enzyme Therapy: Current Challenges and Future Perspectives. International Journal of Molecular Sciences, 2021, 22, 9181. 4.1 Wharton's Jelly Mesenchymal Stem Cell-Derived Extracellular Vesicles Reduce SARS-CoV2-Induced 817 Inflammatory Cytokines Under High Glucose and Uremic Toxin Conditions. Stem Cells and 2.1 15 Development, 2021, 30, 758-772. Why All the Fury over Furin?. Journal of Medicinal Chemistry, 2022, 65, 2747-2784. 6.4 23 Well-Known and Novel Players in Endothelial Dysfunction: Updates on a Notch(ed) Landscape. 819 3.215 Biomedicines, 2021, 9, 997. The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates. ELife, 2021, 10, .

#	Article	IF	CITATIONS
823	Spike protein mutational landscape in India during the complete lockdown phase: Could Muller's ratchet be a future game-changer for COVID-19?. Infection, Genetics and Evolution, 2021, 92, 104874.	2.3	1
824	Dynamics of SARS-CoV-2 Spike Proteins in Cell Entry: Control Elements in the Amino-Terminal Domains. MBio, 2021, 12, e0159021.	4.1	49
825	Acute SARS-CoV-2 infection is associated with an increased abundance of bacterial pathogens, including Pseudomonas aeruginosa in the nose. Cell Reports, 2021, 36, 109637.	6.4	39
826	Therapeutic use of specific tumour necrosis factor inhibitors in inflammatory diseases including COVID-19. Biomedicine and Pharmacotherapy, 2021, 140, 111785.	5.6	14
827	Singleâ€dose immunisation with a multimerised SARSâ€CoVâ€2 receptor binding domain (RBD) induces an enhanced and protective response in mice. FEBS Letters, 2021, 595, 2323-2340.	2.8	24
829	Investigation of nonsynonymous mutations in the spike protein of SARS-CoV-2 and its interaction with the ACE2 receptor by molecular docking and MM/GBSA approach. Computers in Biology and Medicine, 2021, 135, 104654.	7.0	37
833	An unexpected biomaterial against SARS-CoV-2: Bio-polyphosphate blocks binding of the viral spike to the cell receptor. Materials Today, 2021, 51, 504-524.	14.2	8
834	Deliver the promise: RNAs as a new class of molecular entities for therapy and vaccination. , 2022, 230, 107967.		40
835	In silico drug repositioning against human NRP1 to block SARS-CoV-2 host entry. Turkish Journal of Biology, 2021, 45, 442-458.	0.8	3
836	TLR3 and TLR7 RNA Sensor Activation during SARS-CoV-2 Infection. Microorganisms, 2021, 9, 1820.	3.6	113
837	Host Serine Proteases: A Potential Targeted Therapy for COVID-19 and Influenza. Frontiers in Molecular Biosciences, 2021, 8, 725528.	3.5	41
839	CIDO ontology updates and secondary analysis of host responses to COVID-19 infection based on ImmPort reports and literature. Journal of Biomedical Semantics, 2021, 12, 18.	1.6	9
840	Antiviral Activity of Umifenovir In Vitro against a Broad Spectrum of Coronaviruses, Including the Novel SARS-CoV-2 Virus. Viruses, 2021, 13, 1665.	3.3	17
841	Age and gender differences in ACE2 and TMPRSS2 expressions in oral epithelial cells. Journal of Translational Medicine, 2021, 19, 358.	4.4	22
842	Nervous System-Systemic Crosstalk in SARS-CoV-2/COVID-19: A Unique Dyshomeostasis Syndrome. Frontiers in Neuroscience, 2021, 15, 727060.	2.8	11
844	Anti-SARS-CoV-2 Strategies and the Potential Role of miRNA in the Assessment of COVID-19 Morbidity, Recurrence, and Therapy. International Journal of Molecular Sciences, 2021, 22, 8663.	4.1	18
846	Host variations in SARS-CoV-2 infection. Turkish Journal of Biology, 2021, 45, 404-424.	0.8	2
848	Human models for COVIDâ€19 research. Journal of Physiology, 2021, 599, 4255-4267.	2.9	7

		CITATION REPORT		
#	Article		IF	CITATIONS
849	Biochemical composition, transmission and diagnosis of SARS-CoV-2. Bioscience Repor	ts, 2021, 41, .	2.4	13
850	Probing the Allosteric Inhibition Mechanism of a Spike Protein Using Molecular Dynami and Active Compound Identifications. Journal of Medicinal Chemistry, 2022, 65, 2827-	cs Simulations 2835.	6.4	15
851	Discovery of potential small molecular SARS-CoV-2 entry blockers targeting the spike p Pharmacologica Sinica, 2022, 43, 788-796.	rotein. Acta	6.1	40
852	Predicted B Cell Epitopes Highlight the Potential for COVID-19 to Drive Self-Reactive In Frontiers in Bioinformatics, 2021, 1, .	nmunity.	2.1	10
853	Role of ACE2 in pregnancy and potential implications for COVID-19 susceptibility. Clini 135, 1805-1824.	cal Science, 2021,	4.3	28
854	Cell Mechanics and Signalization: SARS-CoV-2 Hijacks Membrane Liquid Crystals and C Fractal Topology. Biophysical Reviews and Letters, 2021, 16, 55-75.	ytoskeletal	0.8	1
855	Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram. N Proceedings, 2021, 96, 2081-2094.	1ayo Clinic	3.0	15
856	Evaluation of vertical transmission of SARS-CoV-2 in utero: Nine pregnant women and newborns. Placenta, 2021, 111, 91-96.	their	1.5	12
858	Severe COVID-19 Patients Show an Increase in Soluble TNFR1 and ADAM17, with a Rel Mortality. International Journal of Molecular Sciences, 2021, 22, 8423.	ationship to	4.1	32
859	Various theranostics and immunization strategies based on nanotechnology against Copandemic: An interdisciplinary view. Life Sciences, 2021, 278, 119580.	ovid-19	4.3	5
860	Identification of Novel Gene Signatures using Next-Generation Sequencing Data from (Infection Models: Focus on Neuro-COVID and Potential Therapeutics. Frontiers in Pharr 12, 688227.	COVID-19 nacology, 2021,	3.5	9
862	Synergistic Block of SARS-CoV-2 Infection by Combined Drug Inhibition of the Host En PIKfyve Kinase and TMPRSS2 Protease. Journal of Virology, 2021, 95, e0097521.	ry Factors	3.4	34
863	Major Insights in Dynamics of Host Response to SARS-CoV-2: Impacts and Challenges. Microbiology, 2021, 12, 637554.	Frontiers in	3.5	8
864	Possible Link between Higher Transmissibility of Alpha, Kappa and Delta Variants of SAI Increased Structural Stability of Its Spike Protein and hACE2 Affinity. International Jour Molecular Sciences, 2021, 22, 9131.	RS-CoV-2 and nal of	4.1	68
865	Differentiation of immortalized human multi-lineage progenitor to alveolar type 2-like or angiotensin-converting enzyme 2 expression and binding of severe acute respiratory sy coronavirus 2 spike and spike 1 proteins. Cytotherapy, 2021, 23, 1064-1073.	:ells: /ndrome	0.7	2
867	Molecular Dynamics Simulation Study of the Interaction between Human Angiotensin Enzyme 2 and Spike Protein Receptor Binding Domain of the SARS-CoV-2 B.1.617 Varia 2021, 11, 1244.		4.0	17
868	An Analysis Based on Molecular Docking and Molecular Dynamics Simulation Study of Anti-SARS-CoV-2 Variants. Frontiers in Pharmacology, 2021, 12, 717757.	Bromelain as	3.5	28
869	Vitamin D3 and its hydroxyderivatives as promising drugs against COVID-19: a comput Journal of Biomolecular Structure and Dynamics, 2022, 40, 11594-11610.	ational study.	3.5	16

#	Article	IF	CITATIONS
870	Coronavirus Pseudotypes for All Circulating Human Coronaviruses for Quantification of Cross-Neutralizing Antibody Responses. Viruses, 2021, 13, 1579.	3.3	14
873	Chronic kidney disease linked to SARS-CoV-2 infection: a case report. BMC Nephrology, 2021, 22, 278.	1.8	4
875	The Level of vWF Antigen and Coagulation Markers in Hospitalized Patients with Covid-19. Journal of Blood Medicine, 2021, Volume 12, 809-817.	1.7	8
876	Peptide Platform as a Powerful Tool in the Fight against COVID-19. Viruses, 2021, 13, 1667.	3.3	9
877	Reducing SARS-CoV-2 pathological protein activity with small molecules. Journal of Pharmaceutical Analysis, 2021, 11, 383-397.	5.3	11
878	Modelling conformational state dynamics and its role on infection for SARS-CoV-2 Spike protein variants. PLoS Computational Biology, 2021, 17, e1009286.	3.2	79
879	SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metabolism, 2021, 33, 1577-1591.e7.	16.2	123
880	SARS-CoV-2 Infection: New Molecular, Phylogenetic, and Pathogenetic Insights. Efficacy of Current Vaccines and the Potential Risk of Variants. Viruses, 2021, 13, 1687.	3.3	57
881	Yeast-produced RBD-based recombinant protein vaccines elicit broadly neutralizing antibodies and durable protective immunity against SARS-CoV-2 infection. Cell Discovery, 2021, 7, 71.	6.7	26
883	Peptideâ€Based Inhibitors for SARSâ€CoVâ€⊋ and SARSâ€CoV. Advanced Therapeutics, 2021, 4, 2100104.	3.2	11
884	Mutations of SARS-CoV-2 RBD May Alter Its Molecular Structure to Improve Its Infection Efficiency. Biomolecules, 2021, 11, 1273.	4.0	30
885	Crosstalk of TLR4, vascular NADPH oxidase, and COVID-19 in diabetes: What are the potential implications?. Vascular Pharmacology, 2021, 139, 106879.	2.1	7
886	Risk, Course, and Effect of SARS-CoV-2 Infection in Children and Adults with Chronic Inflammatory Bowel Diseases. Children, 2021, 8, 753.	1.5	3
887	Characterization of ACE Inhibitors and AT1R Antagonists with Regard to Their Effect on ACE2 Expression and Infection with SARS-CoV-2 Using a Caco-2 Cell Model. Life, 2021, 11, 810.	2.4	9
888	mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nature Reviews Drug Discovery, 2021, 20, 817-838.	46.4	577
889	Machine Learning Models Identify Inhibitors of SARS-CoV-2. Journal of Chemical Information and Modeling, 2021, 61, 4224-4235.	5.4	31
890	Acute and chronic neurological disorders in COVID-19: potential mechanisms of disease. Brain, 2021, 144, 3576-3588.	7.6	101
891	Studying SARS-CoV-2 infectivity and therapeutic responses with complex organoids. Nature Cell Biology, 2021, 23, 822-833.	10.3	21

#	Article	IF	CITATIONS
892	Mechanical activation of spike fosters SARS-CoV-2 viral infection. Cell Research, 2021, 31, 1047-1060.	12.0	33
893	An overview on the seven pathogenic human coronaviruses. Reviews in Medical Virology, 2022, 32, e2282.	8.3	72
894	Deciphering epigenetic(s) role in modulating susceptibility to and severity of COVID-19 infection and/or outcome: a systematic rapid review. Environmental Science and Pollution Research, 2021, 28, 54209-54221.	5.3	12
895	The Molecular Interplay between Human Coronaviruses and Autophagy. Cells, 2021, 10, 2022.	4.1	18
896	Cell-Free Hemoglobin Does Not Attenuate the Effects of SARS-CoV-2 Spike Protein S1 Subunit in Pulmonary Endothelial Cells. International Journal of Molecular Sciences, 2021, 22, 9041.	4.1	13
897	Inactivation of SARS-CoV-2 by deep ultraviolet light emitting diode: A review. Japanese Journal of Applied Physics, 2021, 60, 090501.	1.5	8
898	The Promising Enzymes for Inhibitors Development against COVID-19. Mini-Reviews in Medicinal Chemistry, 2021, 21, .	2.4	0
899	Molecular simulation studies of the interactions between the human/pangolin/cat/bat ACE2 and the receptor binding domain of the SARS-CoV-2 spike protein. Biochimie, 2021, 187, 1-13.	2.6	14
900	Possible therapeutic targets and promising drugs based on unsymmetrical hetaryl-substituted porphyrins to combat SARS-CoV-2. Journal of Pharmaceutical Analysis, 2021, 11, 691-698.	5.3	8
901	SARS-CoV-2 Proteome Harbors Peptides Which Are Able to Trigger Autoimmunity Responses: Implications for Infection, Vaccination, and Population Coverage. Frontiers in Immunology, 2021, 12, 705772.	4.8	21
902	Characterization of the SARS-CoV-2 Host Response in Primary Human Airway Epithelial Cells from Aged Individuals. Viruses, 2021, 13, 1603.	3.3	11
903	"Molecular Masks―for ACE2 to Effectively and Safely Block SARS-CoV-2 Virus Entry. International Journal of Molecular Sciences, 2021, 22, 8963.	4.1	7
904	Sterically confined rearrangements of SARS-CoV-2 Spike protein control cell invasion. ELife, 2021, 10, .	6.0	29
905	Safety and immunogenicity of an mRNA-lipid nanoparticle vaccine candidate against SARS-CoV-2. Wiener Klinische Wochenschrift, 2021, 133, 931-941.	1.9	79
906	Myxobacterial depsipeptide chondramides interrupt SARS-CoV-2 entry by targeting its broad, cell tropic spike protein. Journal of Biomolecular Structure and Dynamics, 2022, 40, 12209-12220.	3.5	10
907	Signatures in SARS-CoV-2 spike protein conferring escape to neutralizing antibodies. PLoS Pathogens, 2021, 17, e1009772.	4.7	74
909	An Overview of COVID-19 and the Potential Plant Harboured Secondary Metabolites against SARS-CoV-2: A Review. Journal of Pure and Applied Microbiology, 2021, 15, 1059-1071.	0.9	0
910	Fusion Peptide of SARS-CoV-2 Spike Rearranges into a Wedge Inserted in Bilayered Micelles. Journal of the American Chemical Society, 2021, 143, 13205-13211.	13.7	54

#	Article	IF	CITATIONS
911	A proteome-wide genetic investigation identifies several SARS-CoV-2-exploited host targets of clinical relevance. ELife, 2021, 10, .	6.0	23
912	Antigen Presentation of mRNA-Based and Virus-Vectored SARS-CoV-2 Vaccines. Vaccines, 2021, 9, 848.	4.4	64
913	Identification of lectin receptors for conserved SARSâ€CoVâ€2 glycosylation sites. EMBO Journal, 2021, 40, e108375.	7.8	44
914	Targeting SARS-CoV-2 receptor-binding domain to cells expressing CD40 improves protection to infection in convalescent macaques. Nature Communications, 2021, 12, 5215.	12.8	22
915	A monoclonal antibody against staphylococcal enterotoxin B superantigen inhibits SARS-CoV-2 entry inÂvitro. Structure, 2021, 29, 951-962.e3.	3.3	28
916	Persistence of the immune responses and cross-neutralizing activity with Variants of Concern following two doses of adjuvanted SCB-2019 COVID-19 vaccine. Journal of Infectious Diseases, 2021, , .	4.0	11
918	Computational screening of 645 antiviral peptides against the receptor-binding domain of the spike protein in SARS-CoV-2. Computers in Biology and Medicine, 2021, 136, 104759.	7.0	35
919	Clinical and inÂVitro Evidence against Placenta Infection at Term by Severe Acute Respiratory Syndrome Coronavirus 2. American Journal of Pathology, 2021, 191, 1610-1623.	3.8	30
921	Polyphenolic Natural Products Active In Silico Against SARS-CoV-2 Spike Receptor Binding Domains and Non-structural Proteins - A Review. Combinatorial Chemistry and High Throughput Screening, 2023, 26, 459-488.	1.1	7
922	Ultrasensitive Detection of SARS-CoV-2 Antibody by Graphene Field-Effect Transistors. Nano Letters, 2021, 21, 7897-7904.	9.1	64
923	Identifying key determinants and dynamics of SARS-CoV-2/ACE2 tight interaction. PLoS ONE, 2021, 16, e0257905.	2.5	6
924	Frontiers in the Standardization of the Plant Platform for High Scale Production of Vaccines. Plants, 2021, 10, 1828.	3.5	4
925	Analysis of the Role of N-Linked Glycosylation in Cell Surface Expression, Function, and Binding Properties of SARS-CoV-2 Receptor ACE2. Microbiology Spectrum, 2021, 9, e0119921.	3.0	19
926	COVID-19 Vaccines: Current Conditions and Future Prospects. Biology, 2021, 10, 960.	2.8	14
927	Revealed pathophysiological mechanisms of crosslinking interaction of affected vital organs in COVID-19. Comparative Clinical Pathology, 2021, 30, 1-17.	0.7	1
928	Adipose tissue dysfunction and MAFLD in obesity on the scene of COVID-19. Clinics and Research in Hepatology and Gastroenterology, 2022, 46, 101807.	1.5	10
929	Differential Antibody Response to SARS-CoV-2 Antigens in Recovered and Deceased Iranian COVID-19 Patients. Viral Immunology, 2021, 34, 708-713.	1.3	2
930	Evaluation of Inhibitory Activity In Silico of In-House Thiomorpholine Compounds between the ACE2 Receptor and S1 Subunit of SARS-CoV-2 Spike. Pathogens, 2021, 10, 1208.	2.8	Ο

#	Article	IF	CITATIONS
932	COVID-19 and oral diseases: Assessing manifestations of a new pathogen in oral infections. International Reviews of Immunology, 2022, 41, 423-437.	3.3	12
933	Recent advances in SARS-CoV-2 Spike protein and RBD mutations comparison between new variants Alpha (B.1.1.7, United Kingdom), Beta (B.1.351, South Africa), Gamma (P.1, Brazil) and Delta (B.1.617.2, India). Journal of Virus Eradication, 2021, 7, 100054.	0.5	67
934	Hyperlipidemia and Obesity's Role in Immune Dysregulation Underlying the Severity of COVID-19 Infection. Clinics and Practice, 2021, 11, 694-707.	1.4	3
935	Could live attenuated vaccines better control COVID-19?. Vaccine, 2021, 39, 5719-5726.	3.8	29
936	Structures of synthetic nanobody–SARS-CoV-2 receptor-binding domain complexes reveal distinct sites of interaction. Journal of Biological Chemistry, 2021, 297, 101202.	3.4	28
937	What we know and still ignore on COVIDâ€19 immune pathogenesis and a proposal based on the experience of allergic disorders. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1114-1128.	5.7	6
938	Enrichment of SARS-CoV-2 Entry Factors and Interacting Intracellular Genes in Tissue and Circulating Immune Cells. Viruses, 2021, 13, 1757.	3.3	2
939	In Silico Identification of New Anti-SARS-CoV-2 Agents from Bioactive Phytocompounds Targeting the Viral Spike Glycoprotein and Human TLR4. Letters in Drug Design and Discovery, 2022, 19, 175-191.	0.7	18
941	Antibody screening at reduced <scp>pH</scp> enables preferential selection of potently neutralizing antibodies targeting <scp>SARS oV</scp> â€2. AICHE Journal, 2021, 67, e17440.	3.6	4
942	A CRISPR/Cas9 genetically engineered organoid biobank reveals essential host factors for coronaviruses. Nature Communications, 2021, 12, 5498.	12.8	57
943	Middle East respiratory syndrome coronavirus – The need for global proactive surveillance, sequencing and modeling. Travel Medicine and Infectious Disease, 2021, 43, 102118.	3.0	5
944	Characterising proteolysis during SARS-CoV-2 infection identifies viral cleavage sites and cellular targets with therapeutic potential. Nature Communications, 2021, 12, 5553.	12.8	76
945	On the Road Back to Normalcy: Following Science Over Noise in SARS-CoV-2. Mayo Clinic Proceedings, 2021, 96, 2736-2742.	3.0	0
946	Efficacy and breadth of adjuvanted SARS-CoV-2 receptor-binding domain nanoparticle vaccine in macaques. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	44
947	Proteolytic activation of SARS oVâ€2 spike protein. Microbiology and Immunology, 2022, 66, 15-23.	1.4	106
948	The Upper Respiratory Tract of Felids Is Highly Susceptible to SARS-CoV-2 Infection. International Journal of Molecular Sciences, 2021, 22, 10636.	4.1	16
949	Computational investigation for endocytosis of CoVID-19 virus SARS-CoV-2 in cell membrane. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 7331-7342.	2.1	3
950	Endocytosis and Transcytosis of SARS-CoV-2 Across the Intestinal Epithelium and Other Tissue Barriers. Frontiers in Immunology, 2021, 12, 636966.	4.8	23

#	ARTICLE	IF	CITATIONS
951	The D614G Virus Mutation Enhances Anosmia in COVID-19 Patients: Evidence from a Systematic Review and Meta-analysis of Studies from South Asia. ACS Chemical Neuroscience, 2021, 12, 3535-3549.	3.5	46
952	COVIDâ€19 in an adolescent with aplastic anemia undergoing immunosuppressive therapy: A case report and details of antibody testing for SARSâ€CoVâ€2. Pediatric Blood and Cancer, 2022, 69, e29332.	1.5	3
953	The Immune Response to SARS-CoV-2 and Variants of Concern. Viruses, 2021, 13, 1911.	3.3	18
955	The roles of lipids in SARS-CoV-2 viral replication and the host immune response. Journal of Lipid Research, 2021, 62, 100129.	4.2	47
956	Pomegranate peel extract polyphenols attenuate the SARS-CoV-2 S-glycoprotein binding ability to ACE2 Receptor: In silico and in vitro studies. Bioorganic Chemistry, 2021, 114, 105145.	4.1	30
958	Diabetes and COVID-19: Role of insulin resistance as a risk factor for COVID-19 severity. World Journal of Diabetes, 2021, 12, 1550-1562.	3.5	17
959	Novel virus-like nanoparticle vaccine effectively protects animal model from SARS-CoV-2 infection. PLoS Pathogens, 2021, 17, e1009897.	4.7	49
960	FURIN correlated with immune infiltration serves as a potential biomarker in SARS-CoV-2 infection-related lung adenocarcinoma. Clinical and Experimental Medicine, 2022, 22, 371-384.	3.6	8
961	Activation Pathways and Free Energy Landscapes of the SARS-CoV-2 Spike Protein. ACS Omega, 2021, 6, 23432-23441.	3.5	8
962	Tumor Necrosis Factor-Alpha Exacerbates Viral Entry in SARS-CoV2-Infected iPSC-Derived Cardiomyocytes. International Journal of Molecular Sciences, 2021, 22, 9869.	4.1	11
963	Recent progress on the mutations of SARS-CoV-2 spike protein and suggestions for prevention and controlling of the pandemic. Infection, Genetics and Evolution, 2021, 93, 104971.	2.3	19
964	Repurposing Methotrexate in Dampening SARS-CoV2-S1-Mediated IL6 Expression: Lessons Learnt from Lung Cancer. Inflammation, 2022, 45, 172-179.	3.8	3
965	Cardiomyocytes recruit monocytes upon SARS-CoV-2 infection by secretingÂCCL2. Stem Cell Reports, 2021, 16, 2274-2288.	4.8	37
966	Vaccinia virus-based vaccines confer protective immunity against SARS-CoV-2 virus in Syrian hamsters. PLoS ONE, 2021, 16, e0257191.	2.5	19
967	A Drug Repurposing Approach for Antimalarials Interfering with SARS-CoV-2 Spike Protein Receptor Binding Domain (RBD) and Human Angiotensin-Converting Enzyme 2 (ACE2). Pharmaceuticals, 2021, 14, 954.	3.8	16
968	Allosteric Control of Structural Mimicry and Mutational Escape in the SARS-CoV-2 Spike Protein Complexes with the ACE2 Decoys and Miniprotein Inhibitors: A Network-Based Approach for Mutational Profiling of Binding and Signaling. Journal of Chemical Information and Modeling, 2021, 61, 5172-5191.	5.4	26
969	Cross-neutralizing antibodies bind a SARS-CoV-2 cryptic site and resist circulating variants. Nature Communications, 2021, 12, 5652.	12.8	49
970	Multiomics: unraveling the panoramic landscapes of SARS-CoV-2 infection. Cellular and Molecular Immunology, 2021, 18, 2313-2324.	10.5	31

#	Article	IF	Citations
971	Repurpose but also (nano)-reformulate! The potential role of nanomedicine in the battle against SARS-CoV2. Journal of Controlled Release, 2021, 337, 258-284.	9.9	12
972	A case-based systematic review on the SARS-COVID-2-associated cerebrovascular diseases and the possible virus routes of entry. Journal of NeuroVirology, 2021, 27, 691-701.	2.1	2
973	Binding Mechanism of Neutralizing Nanobodies Targeting SARS-CoV-2 Spike Glycoprotein. Journal of Chemical Information and Modeling, 2021, 61, 5152-5160.	5.4	11
974	Betacoronavirus Assembly: Clues and Perspectives for Elucidating SARS-CoV-2 Particle Formation and Egress. MBio, 2021, 12, e0237121.	4.1	31
975	Host proviral and antiviral factors for SARS-CoV-2. Virus Genes, 2021, 57, 475-488.	1.6	11
976	Computational repurposing of tamibarotene against triple mutant variant of SARS-CoV-2. Computers in Biology and Medicine, 2021, 136, 104748.	7.0	45
977	SARS-CoV-2 Disrupts Proximal Elements in the JAK-STAT Pathway. Journal of Virology, 2021, 95, e0086221.	3.4	58
978	Inhibitory effect of honokiol on furin-like activity and SARS-CoV-2 infection. Journal of Traditional and Complementary Medicine, 2022, 12, 69-72.	2.7	18
979	Impact of the Delta variant on vaccine efficacy and response strategies. Expert Review of Vaccines, 2021, 20, 1201-1209.	4.4	177
980	Identification of Niemann-Pick C1 protein as a potential novel SARS-CoV-2 intracellular target. Antiviral Research, 2021, 194, 105167.	4.1	19
981	Computational studies reveal Fluorine based quinolines to be potent inhibitors for proteins involved in SARS-CoV-2 assembly. Journal of Fluorine Chemistry, 2021, 250, 109865.	1.7	3
982	SARS-CoV-2 S2P spike ages through distinct states with altered immunogenicity. Journal of Biological Chemistry, 2021, 297, 101127.	3.4	9
983	Synthesis of dual-phase Ti3O5/Ti4O7 nanofibers for efficient adsorption of SARS-CoV-2. Materials Letters, 2021, 300, 130167.	2.6	5
984	Enzyme inhibition as a potential therapeutic strategy to treat COVID-19 infection. Bioorganic and Medicinal Chemistry, 2021, 48, 116389.	3.0	7
985	Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking. Nano Today, 2021, 40, 101279.	11.9	69
986	Discovery and evolution of 12N-substituted aloperine derivatives as anti-SARS-CoV-2 agents through targeting late entry stage. Bioorganic Chemistry, 2021, 115, 105196.	4.1	5
987	Evaluation of spike protein antigens for SARS-CoV-2 serology. Journal of Virological Methods, 2021, 296, 114222.	2.1	10
988	Adaptive lymphocyte profile analysis discriminates mild and severe forms of COVID-19 after solid organ transplantation. Kidney International, 2021, 100, 915-927.	5.2	4

#	Article	IF	CITATIONS
989	A model for COVID-19-induced dysregulation of ACE2 shedding by ADAM17. Biochemical and Biophysical Research Communications, 2021, 573, 158-163.	2.1	16
990	Potential therapeutic approaches for the early entry of SARS-CoV-2 by interrupting the interaction between the spike protein on SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2). Biochemical Pharmacology, 2021, 192, 114724.	4.4	8
991	Structural modelling of SARS-CoV-2 alpha variant (B.1.1.7) suggests enhanced furin binding and infectivity. Virus Research, 2021, 303, 198522.	2.2	41
992	COVID-19 and hypertension: Is there a role for dsRNA and activation of Toll-like receptor 3?. Vascular Pharmacology, 2021, 140, 106861.	2.1	3
993	No association between the SARS-CoV-2 variants and mortality rates in the Eastern Mediterranean Region. Gene, 2021, 801, 145843.	2.2	4
994	Active components in Ephedra sinica stapf disrupt the interaction between ACE2 and SARS-CoV-2 RBD: Potent COVID-19 therapeutic agents. Journal of Ethnopharmacology, 2021, 278, 114303.	4.1	27
995	Know your enemy and know yourself – the case of SARS-CoV-2 host factors. Current Opinion in Virology, 2021, 50, 159-170.	5.4	9
996	From the environment to the cells: An overview on pivotal factors which affect spreading and infection in COVID-19 pandemic. Environmental Research, 2021, 201, 111555.	7.5	8
998	Pathogenesis of taste impairment and salivary dysfunction in COVID-19 patients. Japanese Dental Science Review, 2021, 57, 111-122.	5.1	24
999	A mini-review on the impact of COVID 19 on vital organs. Biomedicine and Pharmacotherapy, 2021, 143, 112158.	5.6	29
1000	Syncope and silent hypoxemia in COVID-19: Implications for the autonomic field. Autonomic Neuroscience: Basic and Clinical, 2021, 235, 102842.	2.8	9
1001	COVID-19, cytokines, inflammation, and spices: How are they related?. Life Sciences, 2021, 284, 119201.	4.3	68
1002	Natural medicinal plant products as an immune-boosters: A possible role to lessen the impact of Covid-19. Case Studies in Chemical and Environmental Engineering, 2021, 4, 100105.	6.1	13
1003	Phylogenicity of B.1.1.7 surface glycoprotein, novel distance function and first report of V90T missense mutation in SARS-CoV-2 surface glycoprotein. Meta Gene, 2021, 30, 100967.	0.6	4
1005	A Wearable Tele-Health System towards Monitoring COVID-19 and Chronic Diseases. IEEE Reviews in Biomedical Engineering, 2022, 15, 61-84.	18.0	48
1006	Vitamin D, zinc and glutamine: Synergistic action with OncoTherad immunomodulator in interferon signaling and COVIDâ€19 (Review). International Journal of Molecular Medicine, 2021, 47, .	4.0	12
1008	Cell-based membrane fusion assays with viral fusion proteins for identification of entry inhibitors. Translational and Regulatory Sciences, 2021, , .	0.2	0
1009	Mechanisms of infection by SARS-CoV-2, inflammation and potential links with the microbiome. Future Virology, 2021, 16, 43-57.	1.8	10

#	Article	IF	CITATIONS
1010	Systematic review on role of structure based drug design (SBDD) in the identification of anti-viral leads against SARS-Cov-2. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100026.	3.6	21
1011	Potential detrimental role of soluble ACE2 in severe COVIDâ€19 comorbid patients. Reviews in Medical Virology, 2021, 31, 1-12.	8.3	52
1012	<i>De novo</i> design and synthesis of boomerang-shaped molecules and their <i>in silico</i> and SERS-based interactions with SARS-CoV-2 spike protein and ACE2. New Journal of Chemistry, 2021, 45, 17777-17781.	2.8	7
1013	The <i>in vitro</i> antiviral activity of lactoferrin against common human coronaviruses and SARS-CoV-2 is mediated by targeting the heparan sulfate co-receptor. Emerging Microbes and Infections, 2021, 10, 317-330.	6.5	126
1014	SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells. PLoS Pathogens, 2021, 17, e1009233.	4.7	162
1015	Dynamic Network Modeling of Allosteric Interactions and Communication Pathways in the SARS-CoV-2 Spike Trimer Mutants: Differential Modulation of Conformational Landscapes and Signal Transmission via Cascades of Regulatory Switches. Journal of Physical Chemistry B, 2021, 125, 850-873.	2.6	66
1017	COVID-19 Transmission, Current Treatment, and Future Therapeutic Strategies. Molecular Pharmaceutics, 2021, 18, 754-771.	4.6	193
1018	Host and viral determinants for efficient SARS-CoV-2 infection of the human lung. Nature Communications, 2021, 12, 134.	12.8	112
1019	CoV2K: A Knowledge Base of SARS-CoV-2 Variant Impacts. Lecture Notes in Business Information Processing, 2021, , 274-282.	1.0	9
1021	On the Origin of SARS-CoV-2: Did Cell Culture Experiments Lead to Increased Virulence of the Progenitor Virus for Humans?. In Vivo, 2021, 35, 1313-1326.	1.3	13
1023	Screening, simulation, and optimization design of small molecule inhibitors of the SARS-CoV-2 spike glycoprotein. PLoS ONE, 2021, 16, e0245975.	2.5	11
1024	A Bioelectromagnetic Proposal Approaching the Complex Challenges of COVID-19. Open Journal of Biophysics, 2021, 11, 1-67.	0.5	1
1025	Structure of SARS-CoV-2 Spike Glycoprotein for Therapeutic and Preventive Target. Immune Network, 2021, 21, e8.	3.6	3
1026	Current Status of COVID-19 Vaccine Development: Focusing on Antigen Design and Clinical Trials on Later Stages. Immune Network, 2021, 21, e4.	3.6	26
1027	Could Dermaseptin Analogue be a Competitive Inhibitor for ACE2 Towards Binding with Viral Spike Protein Causing COVID19?: Computational Investigation. International Journal of Peptide Research and Therapeutics, 2021, 27, 1043-1056.	1.9	8
1028	Unexpected tumor reduction in metastatic colorectal cancer patients during SARS-Cov-2 infection. Therapeutic Advances in Medical Oncology, 2021, 13, 175883592110114.	3.2	21
1031	Development and application of therapeutic antibodies against COVID-19. International Journal of Biological Sciences, 2021, 17, 1486-1496.	6.4	47
1032	SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. ELife, 2021, 10, .	6.0	115

C_{1}	DEDODT
	Report
011/11	

#	Article	IF	CITATIONS
1033	Molecular optimization, docking, and dynamic simulation profiling of selective aromatic phytochemical ligands in blocking the SARS-CoV-2 S protein attachment to ACE2 receptor: an in silico approach of targeted drug designing. Journal of Advanced Veterinary and Animal Research, 2021, 8, 1.	1.2	27
1034	Methylene Blue Inhibits the SARS-CoV-2 Spike–ACE2 Protein-Protein Interaction–a Mechanism that can Contribute to its Antiviral Activity Against COVID-19. Frontiers in Pharmacology, 2020, 11, 600372.	3.5	64
1035	The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. International Journal of Molecular Sciences, 2021, 22, 1308.	4.1	83
1037	Inactivation of SARSâ€CoVâ€2 and HCoVâ€229E <i>in vitro</i> by ColdZyme® a medical device mouth spray against the common cold. Journal of Medical Virology, 2021, 93, 1792-1795.	5.0	18
1038	Dysregulation of the mevalonate pathway during SARS oVâ€2 infection: An in silico study. Journal of Medical Virology, 2021, 93, 2396-2405.	5.0	12
1039	Botanical drugs and supplements affecting the immune response in the time of <scp>COVID</scp> â€19: Implications for research and clinical practice. Phytotherapy Research, 2021, 35, 3013-3031.	5.8	81
1040	Classical and alternative receptors for SARSâ€CoVâ€2 therapeutic strategy. Reviews in Medical Virology, 2021, 31, 1-9.	8.3	45
1041	Virusâ€Free and Live ell Visualizing SARS oVâ€2 Cell Entry for Studies of Neutralizing Antibodies and Compound Inhibitors. Small Methods, 2021, 5, 2001031.	8.6	25
1042	Computational Intelligence in Drug Repurposing for COVID-19. Studies in Computational Intelligence, 2021, , 273-294.	0.9	6
1044	An Overview of the Crystallized Structures of the SARS-CoV-2. Protein Journal, 2020, 39, 600-618.	1.6	32
1045	Rationally Designed ACE2-Derived Peptides Inhibit SARS-CoV-2. Bioconjugate Chemistry, 2021, 32, 215-223.	3.6	70
1046	Targeted Disassembling of SARS-CoV-2 as It Gets Ready for Cell Penetration. ACS Medicinal Chemistry Letters, 2020, 11, 2055-2057.	2.8	3
1047	<i>In silico</i> analysis of phytochemicals as potential inhibitors of proteases involved in SARS-CoV-2 infection. Journal of Biomolecular Structure and Dynamics, 2022, 40, 5053-5059.	3.5	14
1048	MicroRNAs and SARS-CoV-2 life cycle, pathogenesis, and mutations: biomarkers or therapeutic agents?. Cell Cycle, 2021, 20, 143-153.	2.6	33
1049	Double lock of a potent human therapeutic monoclonal antibody against SARS-CoV-2. National Science Review, 2021, 8, nwaa297.	9.5	24
1050	Innate immunology in COVID-19—a living review. Part I: viral entry, sensing and evasion. Oxford Open Immunology, 2020, 1, iqaa004.	2.8	7
1051	Angiotensin-converting enzyme 2: from a vasoactive peptide to the gatekeeper of a global pandemic. Current Opinion in Nephrology and Hypertension, 2021, 30, 252-263.	2.0	7
1052	SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients. Journal of General Virology, 2020, 101, 1156-1169.	2.9	131

#	ARTICLE Innate immunity during SARS-CoV-2: evasion strategies and activation trigger hypoxia and vascular	IF	CITATIONS
1165	damage. Clinical and Experimental Immunology, 2020, 202, 193-209. Free SARS-CoV-2 Spike Protein S1 Particles May Play a Role in the Pathogenesis of COVID-19 Infection.	2.6	83
1166	Biochemistry (Moscow), 2021, 86, 257-261.	1.5	39
1167	Sex, age, and hospitalization drive antibody responses in a COVID-19 convalescent plasma donor population. Journal of Clinical Investigation, 2020, 130, 6141-6150.	8.2	375
1168	ACE2: the molecular doorway to SARS-CoV-2. Cell and Bioscience, 2020, 10, 148.	4.8	82
1169	Molecular-Level Anatomy of SARS-CoV-2 for the Battle against the COVID-19 Pandemic. Bulletin of the Chemical Society of Japan, 2021, 94, 1478-1490.	3.2	24
1170	Kidney ACE2 expression: Implications for chronic kidney disease. PLoS ONE, 2020, 15, e0241534.	2.5	26
1171	Clinical and molecular characterization of COVID-19 hospitalized patients. PLoS ONE, 2020, 15, e0242534.	2.5	25
1172	Might proton pump or sodiumâ€hydrogen exchanger inhibitors be of value to ameliorate SARsâ€CoVâ€2 pathophysiology?. Physiological Reports, 2021, 8, e14649.	1.7	9
1173	Mucin signature as a potential tool to predict susceptibility to COVIDâ€19. Physiological Reports, 2021, 9, e14701.	1.7	24
1174	Do genetic polymorphisms in angiotensin converting enzyme 2 (<i>ACE2</i>) gene play a role in coronavirus disease 2019 (COVID-19)?. Clinical Chemistry and Laboratory Medicine, 2020, 58, 1415-1422.	2.3	55
1175	Opposing activities of IFITM proteins in SARS oVâ€2 infection. EMBO Journal, 2021, 40, e106501.	7.8	172
1180	Drug Repurposing Screens Reveal FDA Approved Drugs Active Against SARS-CoV-2. SSRN Electronic Journal, 0, , .	0.4	7
1181	From Cold to Killer: How SARS-CoV-2 Evolved without Hemagglutinin Esterase to Agglutinate, Then Clot Blood Cells in Pulmonary and Systemic Microvasculature. SSRN Electronic Journal, 0, , .	0.4	4
1182	Avoiding Diagnostic Lens Fogging During the COVID-19 Era. Clinical Ophthalmology, 2020, Volume 14, 4507-4509.	1.8	6
1183	Progress in Studies on Structural and Remedial Aspects of Newly Born Coronavirus, SARS-CoV-2. Current Topics in Medicinal Chemistry, 2020, 20, 2362-2378.	2.1	6
1184	Parallels in the pathogenesis of SARS-CoV-2 and <i>M. tuberculosis</i> : aÂsynergistic or antagonistic alliance?. Future Microbiology, 2020, 15, 1691-1695.	2.0	15
1185	Vaccines against Coronavirus Disease: Target Proteins, Immune Responses, and Status of Ongoing Clinical Trials. Journal of Pure and Applied Microbiology, 2020, 14, 2253-2263.	0.9	3
1186	Pharmacological treatment of COVID-19: an update. Journal of Global Health Reports, 0, , .	1.0	2

#	Article	IF	CITATIONS
1187	Identification of Putative Cell-entry-inhibitory Peptides against SARS-CoV-2 from Edible Insects: An in silico Study. EFood, 2020, 1, 357.	3.1	12
1188	SARS-CoV-2 and COVID-19: A Brief Review for Family Physicians. Osteopathic Family Physician, 2020, 12, 20-27.	0.1	1
1189	Hydroxychloroquine as a Chemoprophylactic Agent for COVID-19: A Clinico-Pharmacological Review. Frontiers in Pharmacology, 2020, 11, 593099.	3.5	7
1190	The Physiological Mechanisms of the Sex-Based Difference in Outcomes of COVID19 Infection. Frontiers in Physiology, 2021, 12, 627260.	2.8	32
1191	Impact of Comorbidities on SARS-CoV-2 Viral Entry-Related Genes. Journal of Personalized Medicine, 2020, 10, 146.	2.5	17
1192	Potential Anti-SARS-CoV-2 Therapeutics That Target the Post-Entry Stages of the Viral Life Cycle: A Comprehensive Review. Viruses, 2020, 12, 1092.	3.3	34
1193	Endothelium Infection and Dysregulation by SARS-CoV-2: Evidence and Caveats in COVID-19. Viruses, 2021, 13, 29.	3.3	118
1194	Lead SARS-CoV-2 Candidate Vaccines: Expectations from Phase III Trials and Recommendations Post-Vaccine Approval. Viruses, 2021, 13, 54.	3.3	61
1195	Platforms Exploited for SARS-CoV-2 Vaccine Development. Vaccines, 2021, 9, 11.	4.4	17
1196	Challenges and Opportunities to Develop Diagnostics and Therapeutic Interventions for Severe Acute Respiratory Syndrome- Corona Virus 2 (SARS-COV-2). , 2020, 6, 219-232.		1
1197	PHARMACOTHERAPY of COVID-19. Veteriner Farmakoloji Ve Toksikoloji Derneği Bülteni, 2020, 11, 80-114.	0.1	4
1198	Immune-checkpoint inhibitors from cancer to COVID‑19: A promising avenue for the treatment of patients with COVID‑19 (Review). International Journal of Oncology, 2020, 58, 145-157.	3.3	55
1199	Neuropilin‑1 as a new potential SARS‑CoV‑2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID‑19. Molecular Medicine Reports, 2020, 22, 4221-4226.	2.4	102
1200	Empirical Treatment and Prevention of COVID-19. Infection and Chemotherapy, 2020, 52, 142.	2.3	18
1201	Potential pharmacological approach in the regulation of angiotensin-II conversion enzyme and dipeptidyl-peptidase 4 in diabetic COVID-19 patients. Italian Journal of Medicine, 2021, 15, .	0.3	16
1202	The Progression of SARS Coronavirus 2 (SARS-CoV2): Mutation in the Receptor Binding Domain of Spike Gene. Immune Network, 2020, 20, e41.	3.6	26
1205	Inhibition of SARS-CoV-2 viral entry upon blocking N- and O-glycan elaboration. ELife, 2020, 9, .	6.0	165
1206	Genomic diversity and evolution, diagnosis, prevention, and therapeutics of the pandemic COVID-19 disease. PeerJ, 2020, 8, e9689.	2.0	34

#	Article	IF	CITATIONS
1207	Mechanisms and management of prothrombotic state in COVID-19 disease. Therapeutic Advances in Cardiovascular Disease, 2021, 15, 175394472110534.	2.1	15
1208	Microscopic interactions between ivermectin and key human and viral proteins involved in SARS-CoV-2 infection. Physical Chemistry Chemical Physics, 2021, 23, 22957-22971.	2.8	11
1209	Development of an mRNA vaccine against COVID-19. Translational and Regulatory Sciences, 2021, 3, 118-119.	0.2	0
1210	COVID-19 disease and malignant cancers: The impact for the <i> furin</i> gene expression in susceptibility to SARS-CoV-2. International Journal of Biological Sciences, 2021, 17, 3954-3967.	6.4	24
1211	SARS-CoV-2: Pathogenic Mechanisms and Host Immune Response. Advances in Experimental Medicine and Biology, 2021, 1313, 99-134.	1.6	6
1212	SARS-CoV-2 mechanisms of action and impact on human organism, risk factors and potential treatments. An exhaustive survey. International Journal of Transgender Health, 2021, 14, 894-947.	2.3	0
1213	Pathological and biochemical alteration in COVID-19. Assam Journal of Internal Medicine, 2021, 11, 42.	0.0	0
1214	The Recent Updates on Approaches and Clinical Trials Status of Covid-19 Vaccines Developed Globally. Biomedical and Pharmacology Journal, 2021, 14, 1109-1124.	0.5	9
1215	Defining the Innate Immune Responses for SARS-CoV-2-Human Macrophage Interactions. Frontiers in Immunology, 2021, 12, 741502.	4.8	28
1216	Broad‣pectrum Antiviral Peptides and Polymers. Advanced Healthcare Materials, 2021, 10, e2101113.	7.6	22
1218	ORF3a of SARS-CoV-2 promotes lysosomal exocytosis-mediated viral egress. Developmental Cell, 2021, 56, 3250-3263.e5.	7.0	108
1219	Pulmonary fibrosis from molecular mechanisms to therapeutic interventions: lessons from post-COVID-19 patients. Biochemical Pharmacology, 2021, 193, 114812.	4.4	40
1220	Modification of the Peripheral Olfactory System by Electronic Cigarettes. , 2021, 11, 2621-2644.		2
1221	Clostridial Neurotoxins: Structure, Function and Implications to Other Bacterial Toxins. Microorganisms, 2021, 9, 2206.	3.6	9
1222	Recent Advances of COVID-19 Modeling Based on Regenerative Medicine. Frontiers in Cell and Developmental Biology, 2021, 9, 683619.	3.7	8
1223	SARS oVâ€⊋ spike protein harnesses SNX27â€mediated endocytic recycling pathway. MedComm, 2021, 2, 798-809.	7.2	13
1224	Epigenetic targeting of the ACE2 and NRP1 viral receptors limits SARS-CoV-2 infectivity. Clinical Epigenetics, 2021, 13, 187.	4.1	22
1225	Expression and characterization of SARS-CoV-2 spike proteins. Nature Protocols, 2021, 16, 5339-5356.	12.0	31

#	Article	IF	CITATIONS
1227	Variation of Serum PSA Levels in COVID-19 Infected Male Patients with Benign Prostatic Hyperplasia (BPH): A Prospective Cohort Studys. Urology, 2022, 159, 16-21.	1.0	11
1228	InÂvivo characterization of emerging SARS-CoV-2 variant infectivity and human antibody escape potential. Cell Reports, 2021, 37, 109838.	6.4	8
1229	Targeting SARS oVâ€2 with Chaga mushroom: An in silico study toward developing a natural antiviral compound. Food Science and Nutrition, 2021, 9, 6513-6523.	3.4	8
1231	Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology, 2022, 23, 3-20.	37.0	1,532
1232	Diabetes, Heart Failure, and COVID-19: An Update. Frontiers in Physiology, 2021, 12, 706185.	2.8	7
1233	An airway organoid-based screen identifies a role for the HIF1α-glycolysis axis in SARS-CoV-2 infection. Cell Reports, 2021, 37, 109920.	6.4	36
1234	Microvascular Skin Manifestations Caused by COVID-19. Hamostaseologie, 2021, 41, 387-396.	1.9	6
1235	Current Understanding of the Innate Control of Toll-like Receptors in Response to SARS-CoV-2 Infection. Viruses, 2021, 13, 2132.	3.3	29
1237	Uncovering a conserved vulnerability site in SARS oVâ€2 by a human antibody. EMBO Molecular Medicine, 2021, 13, e14544.	6.9	17
1238	A perspective on the use of polyphenols nano-formulation as a nutritional strategy to manage the symptoms of the infected patient with COVID-19. Research, Society and Development, 2021, 10, e400101321471.	0.1	2
1239	The Value of Thromboelastography (TEG) in COVID-19 Critical Illness as Illustrated by a Case Series. Journal of Cardiothoracic and Vascular Anesthesia, 2022, 36, 2536-2543.	1.3	4
1240	Key Substitutions in the Spike Protein of SARS-CoV-2 Variants Can Predict Resistance to Monoclonal Antibodies, but Other Substitutions Can Modify the Effects. Journal of Virology, 2022, 96, JVI0111021.	3.4	29
1241	Distant residues modulate conformational opening in SARS-CoV-2 spike protein. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	69
1242	Two-Component Nanoparticle Vaccine Displaying Glycosylated Spike S1 Domain Induces Neutralizing Antibody Response against SARS-CoV-2 Variants. MBio, 2021, 12, e0181321.	4.1	28
1243	Novel Systemic Inflammation Markers to Predict COVID-19 Prognosis. Frontiers in Immunology, 2021, 12, 741061.	4.8	62
1244	SARS–CoV–2 Spike Impairs DNA Damage Repair and Inhibits V(D)J Recombination In Vitro. Viruses, 2021, 13, 2056.	3.3	25
1245	A Pair of "ACEs― Journal of Dental Research, 2021, , 002203452110475.	5.2	10
1246	Platelets and COVID-19. Hamostaseologie, 2021, 41, 379-385.	1.9	47

#	Article	IF	CITATIONS
1247	Endoplasmic Reticulum Chaperones in Viral Infection: Therapeutic Perspectives. Microbiology and Molecular Biology Reviews, 2021, 85, e0003521.	6.6	25
1248	Impact of COVID-19 on Patients with Inflammatory Bowel Disease. Journal of Exploratory Research in Pharmacology, 2022, 7, 37-44.	0.4	4
1249	Host genetic factors determining COVID-19 susceptibility and severity. EBioMedicine, 2021, 72, 103629.	6.1	126
1251	Molecular Insights on the Possible Role of Annexin A2 in COVID-19 Pathogenesis and Post-Infection Complications. International Journal of Molecular Sciences, 2021, 22, 11028.	4.1	7
1252	Cathepsin L, transmembrane peptidase/serine subfamily member 2/4, and other host proteases in COVID-19 pathogenesis – with impact on gastrointestinal tract. World Journal of Gastroenterology, 2021, 27, 6590-6600.	3.3	11
1253	Drug Repurposing to Identify Nilotinib as a Potential SARS-CoV-2 Main Protease Inhibitor: Insights from a Computational and <i>In Vitro</i> Study. Journal of Chemical Information and Modeling, 2021, 61, 5469-5483.	5.4	26
1254	Development of an Enzyme-Linked Immunosorbent Assay (ELISA) for Accurate and Prompt Coronavirus Disease 2019 (COVID-19) Diagnosis Using the Rational Selection of Serological Biomarkers. Diagnostics, 2021, 11, 1970.	2.6	8
1256	Natural compounds as heme oxygenase-1 inducers to reduce the deleterious consequences following SARS-CoV-2 infection. Current Chemical Biology, 2021, 15, .	0.5	0
1257	Identification of Hotspot Residues in Binding of SARS-CoV-2 Spike and Human ACE2 Proteins. Journal of Computational Biophysics and Chemistry, 2021, 20, 729-739.	1.7	2
1258	Mechanisms of Lung Injury Induced by SARS-CoV-2 Infection. Physiology, 2022, 37, 88-100.	3.1	18
1259	SARS-CoV-2 S1 Protein Induces Endolysosome Dysfunction and Neuritic Dystrophy. Frontiers in Cellular Neuroscience, 2021, 15, 777738.	3.7	7
1260	Neurotropism of SARS-CoV-2 and neurological diseases of the central nervous system in COVID-19 patients. Experimental Brain Research, 2022, 240, 9-25.	1.5	38
1261	Viral Glycoproteins Induce NLRP3 Inflammasome Activation and Pyroptosis in Macrophages. Viruses, 2021, 13, 2076.	3.3	22
1262	Computational and in vitro experimental analyses of the anti-COVID-19 potential of Mortaparib and MortaparibPlus. Bioscience Reports, 2021, 41, .	2.4	1
1263	COVID-19: A review of newly formed viral clades, pathophysiology, therapeutic strategies and current vaccination tasks. International Journal of Biological Macromolecules, 2021, , .	7.5	14
1264	Hamster organotypic modeling of SARS-CoV-2 lung and brainstem infection. Nature Communications, 2021, 12, 5809.	12.8	37
1266	Genomic Variations in the Structural Proteins of SARS-CoV-2 and Their Deleterious Impact on Pathogenesis: A Comparative Genomics Approach. Frontiers in Cellular and Infection Microbiology, 2021, 11, 765039.	3.9	43
1267	COVID-19, circadian rhythms and sleep: from virology to chronobiology. Interface Focus, 2021, 11, 20210043.	3.0	12

#	Article	IF	CITATIONS
1268	Optical Detection of SARS-CoV-2 Utilizing Antigen-Antibody Binding Interactions. Sensors, 2021, 21, 6596.	3.8	5
1269	Protective effects elicited by cow milk fermented with L. Paracasei CBAL74 against SARS-CoV-2 infection in human enterocytes. Journal of Functional Foods, 2021, 87, 104787.	3.4	9
1270	Renin angiotensin aldosterone system in pulmonary fibrosis: Pathogenesis to therapeutic possibilities. Pharmacological Research, 2021, 174, 105924.	7.1	19
1271	The role of TNFR2+ Tregs in COVID-19: An overview and a potential therapeutic strategy. Life Sciences, 2021, 286, 120063.	4.3	8
1272	SARS-CoV-2: Current trends in emerging variants, pathogenesis, immune responses, potential therapeutic, and vaccine development strategies. International Immunopharmacology, 2021, 101, 108232.	3.8	14
1273	Beyond Acute Respiratory Distress: Multiple Organ Effects and Early Rehabilitation in COVID-19. Connect the World of Critical Care Nursing, 2019, 13, 155-161.	0.2	0
1274	SARS-COV-2 AND BETACORONAVIRUS: WHAT HAVE WE LEARNED IN 8 MONTHS?. Postepy Mikrobiologii, 2020, 59, 197-206.	0.1	0
1282	PROPERTIES AND PATHOGENESIS OF CORONAVIRUSES. Cosmos: Problems of Biological Sciences, 2020, 69, 277-285.	0.1	0
1285	Organoids: a new research model for SARS-CoV-2infection and treatment. Scientia Sinica Vitae, 2023, 53, 238-249.	0.3	1
1286	Correlation of SARS-CoV-2 Infection with Hepatitis and Liver Disorders. Journal of Medical Microbiology and Infectious Diseases, 2021, 9, 122-132.	0.1	0
1287	A Review of Human Coronaviruses' Receptors: The Host-Cell Targets for the Crown Bearing Viruses. Molecules, 2021, 26, 6455.	3.8	36
1288	Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant. Science, 2021, 374, 1353-1360.	12.6	246
1290	Impacts of p97 on Proteome Changes in Human Cells during Coronaviral Replication. Cells, 2021, 10, 2953.	4.1	5
1291	Development of recombinant COVID-19 vaccine based on CHO-produced, prefusion spike trimer and alum/CpG adjuvants. Vaccine, 2021, 39, 7001-7011.	3.8	20
1292	Gold-Nanostar-Chitosan-Mediated Delivery of SARS-CoV-2 DNA Vaccine for Respiratory Mucosal Immunization: Development and Proof-of-Principle. ACS Nano, 2021, 15, 17582-17601.	14.6	55
1293	Therapeutic mTOR blockade in systemic autoimmunity: Implications for antiviral immunity and extension of lifespan. Autoimmunity Reviews, 2021, 20, 102984.	5.8	16
1294	Structural and Biochemical Analysis of the Dual Inhibition of MG-132 against SARS-CoV-2 Main Protease (Mpro/3CLpro) and Human Cathepsin-L. International Journal of Molecular Sciences, 2021, 22, 11779.	4.1	47
1295	The severity of SARS-CoV-2 infection is dictated by host factors? Epigenetic perspectives. Current Research in Microbial Sciences, 2021, 2, 100079.	2.3	2

#	Article	IF	CITATIONS
1297	Severe Acute Respiratory Syndrome Coronavirus 2. Journal of Biotechnology and Bioindustry, 2020, 8, 6-10.	0.1	0
1299	COVID-19 and obesity: the meeting of two pandemics. Archives of Endocrinology and Metabolism, 2020, 65, 3-13.	0.6	10
1300	Strategies for search of pharmacological drugs against SARS-CoV-2 on the base of studying the structural-genetic features of coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2. Reviews on Clinical Pharmacology and Drug Therapy, 2020, 18, 269-296.	0.6	2
1302	Clinical Characteristics and Risk Factors for COVID-19 Infection and Disease Severity: A Nationwide Observational Study in Estonia. SSRN Electronic Journal, 0, , .	0.4	0
1303	Unusual Features of the SARS-CoV-2 Genome Suggesting Sophisticated Laboratory Modification as a Biological Robot. Advances in Public Policy and Administration, 2022, , 73-113.	0.1	1
1304	Bioactivity characterization of herbal molecules. , 2022, , 145-183.		3
1305	Introduction to submicron aerosols and nanoaerosols. , 2022, , 1-44.		2
1306	Natural vaccines accumulated in face masks during COVID-19: Underappreciated role of facial masking. Journal of Oral Biology and Craniofacial Research, 2022, 12, 42-44.	1.9	0
1307	The underlying mechanisms for severe COVID-19 progression in people with diabetes mellitus: a critical review. AIMS Public Health, 2021, 8, 720-742.	2.6	6
1308	Natural Transmission and Experimental Models of SARS‑CoV‑2 Infection in Animals. Comparative Medicine, 2021, 71, 369-382.	1.0	2
1312	Interspecies Jumping of Bat Coronaviruses. Viruses, 2021, 13, 2188.	3.3	16
1313	Comparison of SARS-CoV-2 Receptors Expression in Primary Endothelial Cells and Retinoic Acid-Differentiated Human Neuronal Cells. Viruses, 2021, 13, 2193.	3.3	10
1314	Evolutionary Perspective and Theories on the Possible Origin of SARS-CoV-2. Cureus, 2021, 13, e18981.	0.5	1
1315	Coronavirus antigens as targets of antibody responses. Clinics in Laboratory Medicine, 2021, 42, 97-109.	1.4	1
1316	A spatial multi-scale fluorescence microscopy toolbox discloses entry checkpoints of SARS-CoV-2 variants in Vero E6 cells. Computational and Structural Biotechnology Journal, 2021, 19, 6140-6156.	4.1	10
1317	Variant SARS-CoV-2 mRNA vaccines confer broad neutralization as primary or booster series in mice. Vaccine, 2021, 39, 7394-7400.	3.8	63
1318	When Pandemics Collide: the Interplay of Obesity and COVID-19. Current Gastroenterology Reports, 2021, 23, 26.	2.5	5
1319	<scp>COVID</scp> â€19 hospitalizations: Another adverse impact of ambient air pollution?. Respirology, 2021, 26, 1101-1102.	2.3	0

#	Article	IF	Citations
1320	Furin cleavage of the SARS-CoV-2 spike is modulated by <i>O</i> -glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	94
1321	A Novel Double Mosaic Virus-like Particle-Based Vaccine against SARS-CoV-2 Incorporates Both Receptor Binding Motif (RBM) and Fusion Domain. Vaccines, 2021, 9, 1287.	4.4	10
1322	Phylogenetic and Ancestral Sequence Reconstruction of SARS-CoV-2 Reveals Latent Capacity to Bind Human ACE2 Receptor. Journal of Molecular Evolution, 2021, 89, 656-664.	1.8	5
1324	Current Potential Therapeutic Approaches against SARS-CoV-2: A Review. Biomedicines, 2021, 9, 1620.	3.2	7
1325	Biological Disasters: An Overview of the Covid-19 Pandemic in the First Quarter of 2021. Afet Ve Risk Dergisi, 2021, 4, 163-182.	1.3	6
1326	Potent Anti-SARS-CoV-2 Activity by the Natural Product Gallinamide A and Analogues via Inhibition of Cathepsin L. Journal of Medicinal Chemistry, 2022, 65, 2956-2970.	6.4	46
1329	Expression profile of SARS oVâ€2 cellular entry proteins in normal oral mucosa and oral squamous cell carcinoma. Clinical and Experimental Dental Research, 2021, , .	1.9	6
1330	A non-ACE2 competing human single-domain antibody confers broad neutralization against SARS-CoV-2 and circulating variants. Signal Transduction and Targeted Therapy, 2021, 6, 378.	17.1	26
1334	COVID-19: the androgen hypothesis. African Journal of Urology, 2020, 26, 55.	0.4	0
1348	SARS CoV-2 SPIKE GLYCOPROTEIN MUTATIONS AND CHANGES IN PROTEIN STRUCTURE. Trakya University Journal of Natural Sciences, 0, , .	0.4	0
1349	COVID-19 pandemic: potential phase III vaccines in development. The Applied Biology & Chemistry Journal, 0, , 21-33.	0.0	8
1350	Biophysical Aspects of Interactions at the Bionanointerface between Viruses and Metal and Metal Oxide Nanomaterials. Journal of Biomedical Research & Environmental Sciences, 2020, 1, 175-185.	0.2	0
1352	Urinary Retention and Severe Hyponatremia: An Unusual Presentation of COVID-19. European Journal of Case Reports in Internal Medicine, 2020, 7, 001905.	0.4	2
1353	Update on Immunology of COVID-19 Disease and Potential Strategy for Controlling. Tanaffos, 2020, 19, 274-290.	0.5	5
1354	Prediction of potential small interfering RNA molecules for silencing of the spike gene of SARS-CoV-2. Indian Journal of Medical Research, 2021, 153, 182-189.	1.0	4
1355	Inflammation in COVID-19: from pathogenesis to treatment. International Journal of Clinical and Experimental Pathology, 2021, 14, 831-844.	0.5	6
1356	Investigation of Interaction between the Spike Protein of SARS-CoV-2 and ACE2-Expressing Cells Using an In Vitro Cell Capturing System. Biological Procedures Online, 2021, 23, 16.	2.9	1
1357	Diagnostically fighting the coronavirus disease 2019 pandemic: A general perspective. International Journal of Health & Allied Sciences, 2021, 10, 108.	0.1	0

#	ARTICLE

CITATIONS

IF

1358	Treatment and therapeutic agents. , 2022, , 121-176.		0
1359	SARS-CoV-2 viral structure and genetics. , 2022, , 59-70.		0
1360	Immunosuppressants in Liver Transplant Recipients With Coronavirus Disease 2019: Capability or Catastrophe?—A Systematic Review and Meta-Analysis. Frontiers in Medicine, 2021, 8, 756922.	2.6	7
1361	Alterations in the Composition of Intestinal DNA Virome in Patients With COVID-19. Frontiers in Cellular and Infection Microbiology, 2021, 11, 790422.	3.9	14
1362	Boosting the analysis of protein interfaces with multiple interface string alignments: Illustration on the spikes of coronaviruses. Proteins: Structure, Function and Bioinformatics, 2022, 90, 848-857.	2.6	1
1363	Immunological Biomarkers in Blood to Monitor the Course and Therapeutic Outcomes of COVID-19. Therapeutic Drug Monitoring, 2021, Publish Ahead of Print, .	2.0	1
1364	Site-Specific Glycosylation Patterns of the SARS-CoV-2 Spike Protein Derived From Recombinant Protein and Viral WA1 and D614G Strains. Frontiers in Chemistry, 2021, 9, 767448.	3.6	20
1365	Perspectives on SARS-CoV-2 Main Protease Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 16922-16955.	6.4	63
1366	Roles of host mitochondria in the development of COVID-19 pathology: Could mitochondria be a potential therapeutic target?. Molecular Biomedicine, 2021, 2, 38.	4.4	19
1367	The Global Epidemic of the SARS-CoV-2 Delta Variant, Key Spike Mutations and Immune Escape. Frontiers in Immunology, 2021, 12, 751778.	4.8	142
1368	Impact of the Double Mutants on Spike Protein of SARS-CoV-2 B.1.617 Lineage on the Human ACE2 Receptor Binding: A Structural Insight. Viruses, 2021, 13, 2295.	3.3	13
1369	Beneficial Properties of Bromelain. Nutrients, 2021, 13, 4313.	4.1	33
1370	The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduction and Targeted Therapy, 2021, 6, 396.	17.1	111
1371	Cross-validation of SARS-CoV-2 responses in kidney organoids and clinical populations. JCI Insight, 2021, 6, .	5.0	21
1373	A Systematic Review on COVID-19 Vaccine Strategies, Their Effectiveness, and Issues. Vaccines, 2021, 9, 1387.	4.4	51
1374	Pulmonary surfactant as a versatile biomaterial to fight COVID-19. Journal of Controlled Release, 2022, 342, 170-188.	9.9	20
1375	TMPRSS2 As an Influential Human Gene for COVID-19. Journal of Human Genetics and Genomics, 2021, 4, .	0.0	0
1376	Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design. Nature Reviews Molecular Cell Biology, 2022, 23, 21-39.	37.0	221

		CITATION REPORT		
#	Article		IF	CITATIONS
1377	Phosphatidylserine receptors enhance SARS-CoV-2 infection. PLoS Pathogens, 2021, 17	,e1009743.	4.7	55
1378	TMPRSS2 promotes SARS-CoV-2 evasion from NCOA7-mediated restriction. PLoS Patho e1009820.	gens, 2021, 17,	4.7	13
1379	Structure-Based Epitope Design: Toward a Greater Antibody–SARS-CoV-2 RBD Affinity 6, 31469-31476.	л. ACS Omega, 2021,	3.5	3
1381	MG1141A as a Highly Potent Monoclonal Neutralizing Antibody Against SARS-CoV-2 Va in Immunology, 2021, 12, 778829.	riants. Frontiers	4.8	2
1382	The effect of allergy and asthma as a comorbidity on the susceptibility and outcomes of International Immunology, 2022, 34, 177-188.	COVID-19.	4.0	27
1383	Molecular Mechanisms of Possible Action of Phenolic Compounds in COVID-19 Protecti Prevention. International Journal of Molecular Sciences, 2021, 22, 12385.	on and	4.1	14
1384	Common Inflammatory Mechanisms in COVID-19 and Parkinson's Diseases: The Rol Pharmabiotics and Postbiotics in Their Prevention. Journal of Inflammation Research, 20 6349-6381.		3.5	28
1385	Clinical Antiviral Drug Arbidol Inhibits Infection by SARS-CoV-2 and Variants through Director to the Spike Protein. ACS Chemical Biology, 2021, 16, 2845-2851.	ect Binding	3.4	16
1387	Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature 300-306.	, 2022, 602,	27.8	428
1389	Nanodispersions of Polyelectrolytes Based on Humic Substances: Isolation, Physico-Che Characterization and Evaluation of Biological Activity. Pharmaceutics, 2021, 13, 1954.	mical	4.5	6
1390	Common cardiac medications potently inhibit ACE2 binding to the SARS-CoV-2 Spike, a penetration and infectivity in human lung cells. Scientific Reports, 2021, 11, 22195.	nd block virus	3.3	12
1391	A rapid simple point-of-care assay for the detection of SARS-CoV-2 neutralizing antibodi Communications Medicine, 2021, 1, .	es.	4.2	23
1392	A multitask transfer learning framework for the prediction of virus-human protein–pro interactions. BMC Bioinformatics, 2021, 22, 572.	otein	2.6	16
1393	A second functional furin site in the SARS-CoV-2 spike protein. Emerging Microbes and I 11, 182-194.	nfections, 2022,	6.5	19
1394	Nature of the Interplay Between Periodontal Diseases and COVID-19. Frontiers in Denta 2, .	l Medicine, 2021,	1.4	7
1395	Denaturation of the SARS-CoV-2 spike protein under non-thermal microwave radiation. Reports, 2021, 11, 23373.	Scientific	3.3	7
1396	Tracking the amino acid changes of spike proteins across diverse host species of severe respiratory syndrome coronavirus 2. IScience, 2022, 25, 103560.	acute	4.1	5
1397	Pannexin-1 channel opening is critical for COVID-19 pathogenesis. IScience, 2021, 24, 1	03478.	4.1	28

#	Article	IF	CITATIONS
1398	Roles of antiviral sensing and type I interferon signaling in the restriction of SARS-CoV-2 replication. IScience, 2021, , 103553.	4.1	5
1399	Immunomodulation of COVIDâ€19 severity by helminth coâ€infection: Implications for COVIDâ€19 vaccine efficacy. Immunity, Inflammation and Disease, 2021, , .	2.7	10
1400	Immune mechanisms in cancer patients that lead to poor outcomes of SARS-CoV-2 infection. Translational Research, 2022, 241, 83-95.	5.0	12
1401	Discovery of Di- and Trihaloacetamides as Covalent SARS-CoV-2 Main Protease Inhibitors with High Target Specificity. Journal of the American Chemical Society, 2021, 143, 20697-20709.	13.7	87
1402	Reduced neutralization of SARS-CoV-2 B.1.617 variant by convalescent and vaccinated sera. Genes and Diseases, 2022, 9, 1290-1300.	3.4	13
1403	Unique Peptide Signatures of SARS-CoV-2 Virus Against Human Proteome Reveal Variants' Immune Escape and Infectiveness― SSRN Electronic Journal, 0, , .	0.4	1
1404	The adaptation of SARS-CoV-2 to humans. Memorias Do Instituto Oswaldo Cruz, 2022, 116, e210127.	1.6	4
1405	Prediction of potential small interfering RNA molecules for silencing of the spike gene of SARS-CoV-2. Indian Journal of Medical Research, 2021, 153, 182.	1.0	7
1406	Recent advances in nanotechnology-based COVID-19 vaccines and therapeutic antibodies. Nanoscale, 2022, 14, 1054-1074.	5.6	22
1407	Antiviral properties of whey proteins and their activity against SARS-CoV-2 infection. Journal of Functional Foods, 2022, 89, 104932.	3.4	19
1408	SARS-CoV-2 Omicron spike glycoprotein receptor binding domain exhibits super-binder ability with ACE2 but not convalescent monoclonal antibody. Computers in Biology and Medicine, 2022, 142, 105226.	7.0	26
1409	Editorial: From Pathogenic Infections to Inflammation and Disease - the Tumultuous Road of the â€~Cytokine Storm'. Frontiers in Cellular and Infection Microbiology, 2021, 11, 827151.	3.9	0
1410	Current Trends and Applications of Food-derived Antihypertensive Peptides for the Management of Cardiovascular Disease. Protein and Peptide Letters, 2022, 29, 408-428.	0.9	3
1411	Fruit Bromelain-Derived Peptide Potentially Restrains the Attachment of SARS-CoV-2 Variants to hACE2: A Pharmacoinformatics Approach. Molecules, 2022, 27, 260.	3.8	21
1413	Compound screen identifies the small molecule Q34 as an inhibitor of SARS-CoV-2 infection. IScience, 2022, 25, 103684.	4.1	3
1414	A novel antibody against the furin cleavage site of SARS-CoV-2 spike protein: Effects on proteolytic cleavage and ACE2 binding. Immunology Letters, 2022, 242, 1-7.	2.5	4
1415	What is the impact of microvascular complications of diabetes on severe COVID-19?. Microvascular Research, 2022, 140, 104310.	2.5	6
1416	Urinary Retention and Severe Hyponatremia: An Unusual Presentation of COVID-19. European Journal of Case Reports in Internal Medicine, 2019, 7, 001905.	0.4	4

#	Article	IF	CITATIONS
1417	Metabolomics Signatures of SARS-CoV-2 Infection. Advances in Experimental Medicine and Biology, 2021, , 45-59.	1.6	4
1418	Investigation of Interaction between the Spike Protein of SARS-CoV-2 and ACE2-Expressing Cells Using an In Vitro Cell Capturing System. Biological Procedures Online, 2021, 23, 16.	2.9	4
1419	Basic Research Reveals the Unique Virologic Features of SARS-CoV-2. Trends in the Sciences, 2021, 26, 9_79-9_86.	0.0	0
1420	COVID-19 Tedavisinde Mezenkimal Kök Hücrelerin Potansiyel Kullanımı Üzerine Kapsamlı Bir İnceler 2021, 4, 31-65.	ne.,	0
1421	Single-cell transcriptomics of lung organoids. Organoid, 0, 1, e9.	0.0	0
1423	Evaluation of SARS-CoV-2 entry, inflammation and new therapeutics in human lung tissue cells. PLoS Pathogens, 2022, 18, e1010171.	4.7	18
1424	The Transmembrane Protease TMPRSS2 as a Therapeutic Target for COVID-19 Treatment. International Journal of Molecular Sciences, 2022, 23, 1351.	4.1	32
1425	Comprehensive and Integrative Analysis of Two Novel SARS-CoV-2 Entry Associated Proteases CTSB and CTSL in Healthy Individuals and Cancer Patients. Frontiers in Bioengineering and Biotechnology, 2022, 10, 780751.	4.1	2
1426	Vitamin D Inhibits IL-6 Pro-Atherothrombotic Effects in Human Endothelial Cells: A Potential Mechanism for Protection against COVID-19 Infection?. Journal of Cardiovascular Development and Disease, 2022, 9, 27.	1.6	14
1427	Low Selectivity Indices of Ivermectin and Macrocyclic Lactones on SARS-CoV-2 Replication In Vitro. Covid, 2022, 2, 60-75.	1.5	10
1428	A new screening system for entry inhibitors based on cell-to-cell transmitted syncytia formation mediated by self-propagating hybrid VEEV-SARS-CoV-2 replicon. Emerging Microbes and Infections, 2022, 11, 465-476.	6.5	4
1429	Computational screening of potential drugs against COVID-19 disease: the Neuropilin-1 receptor as molecular target. VirusDisease, 2022, 33, 23-31.	2.0	12
1430	Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome?. Molecular Neurobiology, 2022, 59, 1850-1861.	4.0	76
1431	SARS-CoV-2 Virology. Infectious Disease Clinics of North America, 2022, 36, 251-265.	5.1	7
1432	An insight into SARS-CoV-2 structure, pathogenesis, target hunting for drug development and vaccine initiatives. RSC Medicinal Chemistry, 2022, 13, 647-675.	3.9	3
1433	Insights Into the Changing Landscape of Coronavirus Disease 2019. Frontiers in Cellular and Infection Microbiology, 2021, 11, 761521.	3.9	11
1434	Photodynamic Inactivation of Human Coronaviruses. Viruses, 2022, 14, 110.	3.3	18
1435	An Updated Review on the Role of Single Nucleotide Polymorphisms in COVID-19 Disease Severity: A Global Aspect. Current Pharmaceutical Biotechnology, 2022, 23, 1596-1611.	1.6	2

#	Article	IF	Citations
1437	Metainflammation in COVID-19. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2022, 22, 1154-1166.	1.2	7
1438	Loss of Spike N370 glycosylation as an important evolutionary event for the enhanced infectivity of SARS-CoV-2. Cell Research, 2022, 32, 315-318.	12.0	24
1439	Before the "cytokine storm†Boosting efferocytosis as an effective strategy against SARS-CoV-2 infection and associated complications. Cytokine and Growth Factor Reviews, 2022, 63, 108-118.	7.2	8
1441	Natural Immunity Boosters as Therapeutic Interventions in the Era of the COVID-19 Pandemic. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2022, 22, 842-851.	1.2	5
1442	Antiviral Drugs and Their Roles in the Treatment of Coronavirus Infection. , 0, , .		2
1444	Vertical Transmission and Neonatal Outcomes Following Maternal SARS-CoV-2 Infection During Pregnancy. Clinical Obstetrics and Gynecology, 2022, 65, 195-202.	1.1	17
1445	The "LLQY" motif on SARS-CoV-2 spike protein affects S incorporation into virus particles. Journal of Virology, 2022, , jvi0189721.	3.4	1
1446	Novel antiviral effects of chloroquine, hydroxychloroquine, and green tea catechins against SARS CoV-2 main protease (Mpro) and 3C-like protease for COVID-19 treatment. Clinical Nutrition Open Science, 2022, 42, 62-72.	1.3	10
1447	A Fc-enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb to protect mice from lethal SARS-CoV-2 infection. Cell Reports, 2022, 38, 110368.	6.4	82
1448	Engineered ACE2 decoy mitigates lung injury and death induced by SARS-CoV-2 variants. Nature Chemical Biology, 2022, 18, 342-351.	8.0	63
1450	Trypsin enhances SARS-CoV-2 infection by facilitating viral entry. Archives of Virology, 2022, 167, 441-458.	2.1	23
1451	Cytokine storm in COVID-19: from viral infection to immune responses, diagnosis and therapy. International Journal of Biological Sciences, 2022, 18, 459-472.	6.4	65
1452	Attenuation of SARS-CoV-2 infection by losartan in human kidney organoids. IScience, 2022, 25, 103818.	4.1	15
1453	Computational Analysis Reveals Monomethylated Triazolopyrimidine as a Novel Inhibitor of SARS-CoV-2 RNA-Dependent RNA Polymerase (RdRp). Molecules, 2022, 27, 801.	3.8	5
1454	An Outline of Contributing Vaccine Technologies for SARS CoV2 Advancing in Clinical and Preclinical Phase-Trials. Recent Patents on Biotechnology, 2022, 16, 122-143.	0.8	6
1455	The discovery of herbal drugs and natural compounds as inhibitors of SARS-CoV-2 infection in vitro. Journal of Natural Medicines, 2022, 76, 402-409.	2.3	14
1456	The Trend of CRISPR-Based Technologies in COVID-19 Disease: Beyond Genome Editing. Molecular Biotechnology, 2022, , 1.	2.4	2
1458	SARS-CoV-2 and the Host Cell: A Tale of Interactions. Frontiers in Virology, 2022, 1, .	1.4	37

#	Article	IF	Citations
1459	Calcium Signaling Pathway Is Involved in the Shedding of ACE2 Catalytic Ectodomain: New Insights for Clinical and Therapeutic Applications of ACE2 for COVID-19. Biomolecules, 2022, 12, 76.	4.0	21
1460	Comparative Immunogenicity of the Recombinant Receptor-Binding Domain of Protein S SARS-CoV-2 Obtained in Prokaryotic and Mammalian Expression Systems. Vaccines, 2022, 10, 96.	4.4	23
1461	Designer DNA nanostructures for viral inhibition. Nature Protocols, 2022, 17, 282-326.	12.0	14
1462	Binding behavior of spike protein and receptor binding domain of the SARS-CoV-2 virus at different environmental conditions. Scientific Reports, 2022, 12, 789.	3.3	5
1463	Alpha-Soluble NSF Attachment Protein Prevents the Cleavage of the SARS-CoV-2 Spike Protein by Functioning as an Interferon-Upregulated Furin Inhibitor. MBio, 2022, 13, e0244321.	4.1	8
1464	Structural insights in cell-type specific evolution of intra-host diversity by SARS-CoV-2. Nature Communications, 2022, 13, 222.	12.8	23
1465	SARS-COV-2 Variants: Differences and Potential of Immune Evasion. Frontiers in Cellular and Infection Microbiology, 2021, 11, 781429.	3.9	154
1466	Phytoconstituents from <i>Moringa oleifera</i> fruits target ACE2 and open spike glycoprotein to combat SARSâ€CoVâ€2: An integrative phytochemical and computational approach. Journal of Food Biochemistry, 2022, 46, e14062.	2.9	9
1467	Obstetric Outpatient Management During the COVID-19 Pandemic: Prevention, Treatment of Mild Disease, and Vaccination. Clinical Obstetrics and Gynecology, 2022, 65, 161-178.	1.1	2
1468	Site Density Functional Theory and Structural Bioinformatics Analysis of the SARS-CoV Spike Protein and hACE2 Complex. Molecules, 2022, 27, 799.	3.8	5
1469	Nutraceuticals in HIV and COVID-19-Related Neurological Complications: Opportunity to Use Extracellular Vesicles as Drug Delivery Modality. Biology, 2022, 11, 177.	2.8	5
1470	Computational screening of camostat and related compounds against human TMPRSS2: A potential treatment of COVID-19. Saudi Pharmaceutical Journal, 2022, 30, 217-224.	2.7	7
1471	Mutational landscape and in silico structure models of SARS-CoV-2 spike receptor binding domain reveal key molecular determinants for virus-host interaction. BMC Molecular and Cell Biology, 2022, 23, 2.	2.0	10
1472	Two years of SARS-CoV-2 infection (2019–2021): structural biology, vaccination, and current global situation. The Egyptian Journal of Internal Medicine, 2022, 34, 5.	0.9	4
1474	Direct comparison of different therapeutic cell types susceptibility to inflammatory cytokines associated with COVID-19 acute lung injury. Stem Cell Research and Therapy, 2022, 13, 20.	5.5	7
1475	Viral and Host Genetic and Epigenetic Biomarkers Related to SARS-CoV-2 Cell Entry, Infection Rate, and Disease Severity. Biology, 2022, 11, 178.	2.8	5
1476	Matrix metalloproteinases and tissue inhibitors of metalloproteinases in murine β-coronavirus-induced neuroinflammation. Virology, 2022, 566, 122-135.	2.4	6
1477	Gender and Ethnic Disparities of Acute Kidney Injury in COVID-19 Infected Patients: A Literature Review. Frontiers in Cellular and Infection Microbiology, 2021, 11, 778636.	3.9	13

#	Article	IF	CITATIONS
1478	Dynamical demeanour of SARS-CoV-2 virus undergoing immune response mechanism in COVID-19 pandemic. European Physical Journal: Special Topics, 2022, 231, 3357-3370.	2.6	21
1479	Interferon Control of Human Coronavirus Infection and Viral Evasion: Mechanistic Insights and Implications for Antiviral Drug and Vaccine Development. Journal of Molecular Biology, 2022, 434, 167438.	4.2	7
1480	Nanoparticle and virus-like particle vaccine approaches against SARS-CoV-2. Journal of Microbiology, 2022, 60, 335-346.	2.8	18
1481	Aptamers—Diagnostic and Therapeutic Solution in SARS-CoV-2. International Journal of Molecular Sciences, 2022, 23, 1412.	4.1	18
1483	Fine-tuning the spike: role of the nature and topology of the glycan shield in the structure and dynamics of the SARS-CoV-2 S. Chemical Science, 2022, 13, 386-395.	7.4	58
1484	Potential effects of propolis and honey in COVID-19 prevention and treatment: A systematic review of in silico and clinical studies. Journal of Integrative Medicine, 2022, 20, 114-125.	3.1	17
1487	Advances in the development of therapeutic strategies against COVID-19 and perspectives in the drug design for emerging SARS-CoV-2 variants. Computational and Structural Biotechnology Journal, 2022, 20, 824-837.	4.1	49
1488	Montelukast is a dual-purpose inhibitor of SARS-CoV-2 infection and virus-induced IL-6 expression identified by structure-based drug repurposing. Computational and Structural Biotechnology Journal, 2022, 20, 799-811.	4.1	10
1489	A Multi-Disulfide Receptor-Binding Domain (RBD) of the SARS-CoV-2 Spike Protein Expressed in E. coli Using a SEP-Tag Produces Antisera Interacting with the Mammalian Cell Expressed Spike (S1) Protein. International Journal of Molecular Sciences, 2022, 23, 1703.	4.1	15
1490	How tetraspanin-mediated cell entry of SARS-CoV-2 can dysregulate the shedding of the ACE2 receptor by ADAM17. Biochemical and Biophysical Research Communications, 2022, 593, 52-56.	2.1	6
1491	Targeting SARS-CoV-2 Proteases for COVID-19 Antiviral Development. Frontiers in Chemistry, 2021, 9, 819165.	3.6	51
1492	An exploratory study on the propagation of SARSâ€CoVâ€2 variants: Omicron is the most predominant variant. Journal of Medical Virology, 2022, 94, 2414-2421.	5.0	16
1493	Strategies for fighting pandemic virus infections: Integration of virology and drug delivery. Journal of Controlled Release, 2022, 343, 361-378.	9.9	11
1495	Systems analysis shows that thermodynamic physiological and pharmacological fundamentals drive COVIDâ€19 and response to treatment. Pharmacology Research and Perspectives, 2022, 10, e00922.	2.4	20
1496	Antiviral effect of mouthwashes against SARS-COV-2: A systematic review. Saudi Dental Journal, 2022, 34, 167-193.	1.6	19
1497	Brilacidin, a COVIDâ€19 drug candidate, demonstrates broadâ€spectrum antiviral activity against human coronaviruses OC43, 229E, and NL63 through targeting both the virus and the host cell. Journal of Medical Virology, 2022, 94, 2188-2200.	5.0	20
1498	SARS-CoV-2 Infection and Lung Regeneration. Clinical Microbiology Reviews, 2022, 35, e0018821.	13.6	24
1499	Mutations in the receptor-binding domain of human SARS CoV-2 spike protein increases its affinity to bind human ACE-2 receptor. Journal of Biomolecular Structure and Dynamics, 2023, 41, 2368-2381.	3.5	7

ARTICLE IF CITATIONS The interacting physiology of COVIDâ€19 and the reninâ€angiotensinâ€aldosterone system: Key agents for 1500 2.4 25 treatment. Pharmacology Research and Perspectives, 2022, 10, e00917. Comparative study of SARS-CoV-2 infection in different cell types: Biophysical-computational approach to the role of potential receptors. Computers in Biology and Medicine, 2022, 142, 105245. Highlight of potential impact of new viral genotypes of SARS-CoV-2 on vaccines and anti-viral 1502 0.8 3 therapeutics. Gene Reports, 2022, 26, 101537. Oxidative stress and inflammatory markers in patients with COVID-19: Potential role of RAGE, HMGB1, GFAP and COX-2 in disease severity. International Immunopharmacology, 2022, 104, 108502. The Omicron (B.1.1.529) variant of SARS-CoV-2 binds to the hACE2 receptor more strongly and escapes 1504 the antibody response: Insights from structural and simulation data. International Journal of 7.5 64 Biological Macromolecules, 2022, 200, 438-448. Investigation of mouse hepatitis virus strain A59 inactivation under both ambient and cold environments reveals the mechanisms of infectivity reduction following UVC exposure. Journal of Environmental Chemical Engineering, 2022, 10, 107206. 6.7 Neuroinflammation in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection: 1506 3.5 8 Pathogenesis and clinical manifestations. Current Opinion in Pharmacology, 2022, 63, 102181. A common TMPRSS2 variant has a protective effect against severe COVID-19. Current Research in 1.8 30 Translational Medicine, 2022, 70, 103333. A Qualitative RT-PCR Assay for the Specific Identification of the SARS-CoV-2 B.1.1.529 (Omicron) Variant 1508 0.4 1 of Concern. SSRN Electronic Journal, 0, , . Revealing protein binding affinity on metal surfaces: an electrochemical approach. Chemical 1509 4.1 Communications, 2022, 58, 3537-3540. Accelerating the discovery of the beyond rule of five compounds that have high affinities toward 1510 3.5 1 SARS-CoV-2 spike RBD. Journal of Biomolecular Structure and Dynamics, 2023, 41, 2518-2527. Unraveling Muscle Impairment Associated With COVID-19 and the Role of 3D Culture in Its 3.7 Investigation. Frontiers in Nutrition, 2022, 9, 825629. Computational prediction of the effect of mutations in the receptor-binding domain on the 1513 3.9 17 interaction between SARS-CoV-2 and human ACE2. Molecular Diversity, 2022, 26, 3309-3324. Gastrointestinal Microbiota Dysbiosis Associated with SARS-CoV-2 Infection in Colorectal Cancer: The 1514 1.2 Implication of Probiotics. Gastroenterology Insights, 2022, 13, 35-59. Evolutionary history of type II transmembrane serine proteases involved in viral priming. Human 1515 3.8 6 Genetics, 2022, 141, 1705-1722. A computational comparative analysis of the binding mechanism of molnupiravir's active metabolite to RNAâ€dependent RNA polymerase of wildâ€type and Delta subvariant AY.4 of SARSâ€CoVâ€2. Journal of Cellular 2.6 24 Biochemistry, 2022, 123, 807-818. Evaluation of Interactions between SARS-CoV-2 RBD and Full-Length ACE2 with Coarse-Grained 1517 5.4 9 Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2022, 62, 936-944. Association Between Baseline Use of Angiotensinâ€Converting Enzyme Inhibitors and AngiotensinÂReceptor Blockers and Death Among Patients Tested for COVIDâ€19. Journal of Clinical Pharmacology, 2021, , .

#	Article	IF	CITATIONS
1519	Alternatives to animal models and their application in the discovery of species susceptibility to SARS-CoV-2 and other respiratory infectious pathogens: A review. Veterinary Pathology, 2022, , 030098582110736.	1.7	11
1520	Advanced Materials for SARSâ \in CoVâ \in 2 Vaccines. Advanced Materials, 2022, 34, e2107781.	21.0	25
1521	Known Cellular and Receptor Interactions of Animal and Human Coronaviruses: A Review. Viruses, 2022, 14, 351.	3.3	11
1522	Cryo-EM structure of the SARS-CoV-2 Omicron spike. Cell Reports, 2022, 38, 110428.	6.4	82
1523	Zinc Intakes and Health Outcomes: An Umbrella Review. Frontiers in Nutrition, 2022, 9, 798078.	3.7	26
1524	Neurological complications associated with Covidâ€19; molecular mechanisms and therapeutic approaches. Reviews in Medical Virology, 2022, 32, e2334.	8.3	24
1525	The spike protein of SARS-CoV-2 induces endothelial inflammation through integrin α5β1 and NF-κB signaling. Journal of Biological Chemistry, 2022, 298, 101695.	3.4	74
1527	Role of Q675H Mutation in Improving SARS-CoV-2 Spike Interaction with the Furin Binding Pocket. Viruses, 2021, 13, 2511.	3.3	12
1528	Modeling SARS-CoV-2 Infection in Mice Using Lentiviral hACE2 Vectors Infers Two Modes of Immune Responses to SARS-CoV-2 Infection. Viruses, 2022, 14, 11.	3.3	0
1529	Roles of the polybasic furin cleavage site of spike protein in SARSâ€CoVâ€2 replication, pathogenesis, and host immune responses and vaccination. Journal of Medical Virology, 2022, 94, 1815-1820.	5.0	36
1530	In-Silico Design of a Novel Tridecapeptide Targeting Spike Protein of SARS-CoV-2 Variants of Concern. International Journal of Peptide Research and Therapeutics, 2022, 28, 28.	1.9	12
1531	Structural analysis of receptor binding domain mutations in SARS-CoV-2 variants of concern that modulate ACE2 and antibody binding. Cell Reports, 2021, 37, 110156.	6.4	67
1532	SARS-CoV-2 spreads through cell-to-cell transmission. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	145
1534	Interactions of Renin-Angiotensin System and COVID-19: The Importance of Daily Rhythms in ACE2, ADAM17 and TMPRSS2 Expression. Physiological Research, 2021, 70, S177-S194.	0.9	14
1535	Nanotechnology-Based Strategies for Effective and Rapid Detection of SARS-CoV-2. Materials, 2021, 14, 7851.	2.9	12
1536	SARS-CoV-2 Delta Variant Displays Moderate Resistance to Neutralizing Antibodies and Spike Protein Properties of Higher Soluble ACE2 Sensitivity, Enhanced Cleavage and Fusogenic Activity. Viruses, 2021, 13, 2485.	3.3	23
1537	Host cell entry mediators implicated in the cellular tropism of SARS‑CoV‑2, the pathophysiology of COVID‑19 and the identification of microRNAs that can modulate the expression of these mediators (Review). International Journal of Molecular Medicine, 2021, 49, .	4.0	14
1538	The pancreas and COVID-19: a clinical conundrum. American Journal of Translational Research (discontinued), 2021, 13, 11004-11013.	0.0	0

	CITATION R	EPORT	
#	Article	IF	CITATIONS
1539	Toll-Like Receptors (TLRs) as Therapeutic Targets for Treating SARS-CoV-2: An Immunobiological Perspective. Advances in Experimental Medicine and Biology, 2021, 1352, 87-109.	1.6	11
1540	COVID-19 AND CANCER COMORBIDITY: THERAPEUTIC OPPORTUNITIES AND CHALLENGES (RUSSIAN) TJ ETQq1	1 0,78431 0.2	4 rgBT /Ove
1541	GPCRs of Diverse Physiologic and Pathologic Effects with Fingerprints in COVID-19. , 2021, 7, .		0
1542	Association of alcohol intake and female gender with high expression of TMPRSS2 in tongue as potential risk for SARS-CoV-2 infection. Journal of Clinical Biochemistry and Nutrition, 2022, 71, 129-135.	1.4	3
1543	Antiviral cyclic peptides targeting the main protease of SARS-CoV-2. Chemical Science, 2022, 13, 3826-3836.	7.4	29
1544	Biological Activities of Some Natural Compounds and Their Cytotoxicity Studies against Breast and Prostate Cancer Cell Lines and Anti-COVID19 Studies. Journal of Oleo Science, 2022, 71, 587-597.	1.4	1
1546	Causes of Hypoxemia in COVID-19. Journal of Evolutionary Biochemistry and Physiology, 2022, 58, 73-80.	0.6	9
1548	Discovery of diminazene as a dual inhibitor of SARS-CoV-2 human host proteases TMPRSS2 and furin using cell-based assays. Current Research in Chemical Biology, 2022, 2, 100023.	2.9	5
1549	Molecular Study for Mutation of N-gene and S-gene COVID-19 Virus. International Journal for Research in Applied Sciences and Biotechnology, 2022, 9, 34-44.	0.3	1
1550	Shifting Life Attitudes during the First Lockdown due to COVID-19 Pandemics. A Naturalistic Comparative Study. Psychology, 2022, 13, 233-253.	0.5	0
1551	Efficacy of defensins as neutralizing agents against the deadly SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 2023, 41, 2911-2925.	3.5	0
1552	High diversity in Delta variant across countries revealed by genomeâ€wide analysis of SARSâ€CoVâ€2 beyond the Spike protein. Molecular Systems Biology, 2022, 18, e10673.	7.2	18
1553	In Silico Analysis and Synthesis of Nafamostat Derivatives and Evaluation of Their Anti-SARS-CoV-2 Activity. Viruses, 2022, 14, 389.	3.3	2
1555	Effects of COVID-19 on Multiple Sclerosis Relapse: A Comprehensive Review. International Journal of Medical Students, 0, , .	0.5	1
1556	Correlation of SARS‑CoV‑2 to cancer: Carcinogenic or anticancer? (Review). International Journal of Oncology, 2022, 60, .	3.3	14
1557	Multiplex, Real-Time, Point-of-care RT-LAMP for SARS-CoV-2 Detection Using the HFman Probe. ACS Sensors, 2022, 7, 730-739.	7.8	40
1558	A highly selective, cell-permeable furin inhibitor BOS-318 rescues key features of cystic fibrosis airway disease. Cell Chemical Biology, 2022, 29, 947-957.e8.	5.2	11
1559	SARS-CoV-2 Variants Increase Kinetic Stability of Open Spike Conformations as an Evolutionary Strategy. MBio, 2022, 13, e0322721.	4.1	48

#	Article	IF	CITATIONS
1560	The role of circadian clock pathways in viral replication. Seminars in Immunopathology, 2022, 44, 175-182.	6.1	7
1561	Targeting the Ubiquitylation and ISGylation Machinery for the Treatment of COVID-19. Biomolecules, 2022, 12, 300.	4.0	11
1562	A Deadly Embrace: Hemagglutination Mediated by SARS-CoV-2 Spike Protein at Its 22 N-Glycosylation Sites, Red Blood Cell Surface Sialoglycoproteins, and Antibody. International Journal of Molecular Sciences, 2022, 23, 2558.	4.1	14
1563	Prediction of SARS-CoV-2 Omicron Variant Immunogenicity, Immune Escape and Pathogenicity, through the Analysis of Spike Protein-Specific Core Unique Peptides. Vaccines, 2022, 10, 357.	4.4	7
1564	Polycystic ovary syndrome and risks for COVID-19 infection: A comprehensive review. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 251-264.	5.7	9
1565	SARS-CoV-2 Spike Protein Unlikely to Bind to Integrins via the Arg-Gly-Asp (RGD) Motif of the Receptor Binding Domain: Evidence From Structural Analysis and Microscale Accelerated Molecular Dynamics. Frontiers in Molecular Biosciences, 2022, 9, 834857.	3.5	13
1567	Agathis robusta Bark Essential Oil Effectiveness against COVID-19: Chemical Composition, In Silico and In Vitro Approaches. Plants, 2022, 11, 663.	3.5	17
1568	Developing an Effective Peptide-Based Vaccine for COVID-19: Preliminary Studies in Mice Models. Viruses, 2022, 14, 449.	3.3	5
1569	Capturing a Crucial â€~Disorder-to-Order Transition' at the Heart of the Coronavirus Molecular Pathology—Triggered by Highly Persistent, Interchangeable Salt-Bridges. Vaccines, 2022, 10, 301.	4.4	5
1570	Immunogenic and reactogenic efficacy of Covaxin and Covishield: a comparative review. Immunologic Research, 2022, 70, 289-315.	2.9	34
1571	Cooperative multivalent receptor binding promotes exposure of the SARS-CoV-2 fusion machinery core. Nature Communications, 2022, 13, 1002.	12.8	30
1573	Whole genome sequence analysis showing unique SARS-CoV-2 lineages of B.1.524 and AU.2 in Malaysia. PLoS ONE, 2022, 17, e0263678.	2.5	8
1574	Molecular Insights of SARS-CoV-2 Antivirals Administration: A Balance between Safety Profiles and Impact on Cardiovascular Phenotypes. Biomedicines, 2022, 10, 437.	3.2	5
1575	The pH Effects on SARS-CoV and SARS-CoV-2 Spike Proteins in the Process of Binding to hACE2. Pathogens, 2022, 11, 238.	2.8	20
1576	Mass Screening of SARS-CoV-2 Variants using Sanger Sequencing Strategy in Hiroshima, Japan. Scientific Reports, 2022, 12, 2419.	3.3	13
1577	Treatment Outcomes of Tocilizumab in Critically-Ill COVID-19 Patients, Single-Centre Retrospective Study. Antibiotics, 2022, 11, 241.	3.7	4
1578	Cryo-EM structure of a SARS-CoV-2 omicron spike protein ectodomain. Nature Communications, 2022, 13, 1214.	12.8	93
1579	Rapid, Point-of-Care scFv-SERS Assay for Femtogram Level Detection of SARS-CoV-2. ACS Sensors, 2022, 7, 866-873.	7.8	37

#	Article	IF	CITATIONS
1580	Angiotensin II Type I Receptor (AT1R): The Gate towards COVID-19-Associated Diseases. Molecules, 2022, 27, 2048.	3.8	38
1581	Computational Investigations for Identification of Bioactive Molecules from <i>Baccaurea ramiflora</i> and <i>Bergenia ciliata</i> as Inhibitors of SARS-CoV-2 M ^{pro} . Polycyclic Aromatic Compounds, 2023, 43, 2459-2487.	2.6	25
1582	In silico analysis of SARS-CoV-2 proteins as targets for clinically available drugs. Scientific Reports, 2022, 12, 5320.	3.3	15
1583	SNPs of ACE1 (rs4343) and ACE2 (rs2285666) genes are linked to SARS-CoV-2 infection but not with the severity of disease. Virology Journal, 2022, 19, 48.	3.4	29
1584	Thrombotic aspects of SARS-CoV-2 infection: indications for treatment. Italian Journal of Emergency Medicine, 2022, 11, .	0.1	1
1585	Risk Stratification of SARS-CoV-2 Breakthrough Infections Based on an Outbreak at a Student Festive Event. Vaccines, 2022, 10, 432.	4.4	0
1586	An Upgrade on the Surveillance System of SARS-CoV-2: Deployment of New Methods for Genetic Inspection. International Journal of Molecular Sciences, 2022, 23, 3143.	4.1	2
1587	Cardiovascular Dysfunction in COVID-19: Association Between Endothelial Cell Injury and Lactate. Frontiers in Immunology, 2022, 13, 868679.	4.8	7
1588	COVID-19 Cardiovascular Connection: A Review of Cardiac Manifestations in COVID-19 Infection and Treatment Modalities. Current Problems in Cardiology, 2022, , 101186.	2.4	7
1590	Association between COVID-19 Diagnosis and Coronary Artery Thrombosis: A Narrative Review. Biomedicines, 2022, 10, 702.	3.2	15
1591	The Path to Therapeutic Furin Inhibitors: From Yeast Pheromones to SARS-CoV-2. International Journal of Molecular Sciences, 2022, 23, 3435.	4.1	6
1592	A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature, 2022, 605, 340-348.	27.8	108
1593	Fractionation of sulfated galactan from the red alga Botryocladia occidentalis separates its anticoagulant and anti-SARS-CoV-2 properties. Journal of Biological Chemistry, 2022, 298, 101856.	3.4	13
1594	The impact of COVID-19 on the male genital tract: A qualitative literature review of sexual transmission and fertility implications. Clinical and Experimental Reproductive Medicine, 2022, 49, 9-15.	1.5	5
1595	Targeting the Interaction Between Spike Protein and Nucleocapsid Protein for Suppression and Detection of Human Coronavirus OC43. Frontiers in Immunology, 2022, 13, 835333.	4.8	7
1596	Geographical prevalence of SARS-CoV-2 variants, August 2020 to July 2021. Scientific Reports, 2022, 12, 4704.	3.3	9
1597	COVID-19: impact on Public Health and hypothesis-driven investigations on genetic susceptibility and severity. Immunogenetics, 2022, 74, 381-407.	2.4	5
1598	Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617. Nature Communications, 2022, 13, 1638.	12.8	11

		CITATION RE	PORT	
#	Article		IF	Citations
1599	RNA G-quadruplex in TMPRSS2 reduces SARS-CoV-2 infection. Nature Communications,	2022, 13, 1444.	12.8	37
1600	Ultrastructural insight into SARS-CoV-2 entry and budding in human airway epithelium. I Communications, 2022, 13, 1609.	lature	12.8	24
1601	SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and Complement S to Platelet Aggregation. Frontiers in Immunology, 2022, 13, 827146.	System Leading	4.8	45
1602	Antimicrobial peptides: A plausible approach for COVID-19 treatment. Expert Opinion or Discovery, 2022, 17, 473-487.	Drug	5.0	10
1603	miRNAs in SARS-CoV-2 Infection: An Update. Current Drug Metabolism, 2022, 23, .		1.2	2
1604	A highly immunogenic live-attenuated vaccine candidate prevents SARS-CoV-2 infection transmission in hamsters. Innovation(China), 2022, 3, 100221.	and	9.1	5
1606	Detection, prevention and treatment of COVIDâ ${\in} 19$ and opportunities for nanobiotechr 2022, 3, .	ology. View,	5.3	8
1607	Airway models in a pandemic: Suitability of models in modeling SARS-CoV-2. PLoS Patho e1010432.	gens, 2022, 18,	4.7	1
1609	A large-scale systematic survey reveals recurring molecular features of public antibody re SARS-CoV-2. Immunity, 2022, 55, 1105-1117.e4.	sponses to	14.3	44
1611	Functional analysis of polymorphisms at the S1/S2 site of SARS-CoV-2 spike protein. PLc e0265453.	S ONE, 2022, 17,	2.5	8
1612	Importance of Efferocytosis in COVID-19 Mortality. Infection and Drug Resistance, 2022 995-1007.	, Volume 15,	2.7	1
1613	SARS‑CoV‑2 infection and children: Insights from the 6th Workshop on Paediatric V World Academy of Sciences Journal, 2022, 4, .	irology (Review).	0.6	1
1614	The inherent flexibility of receptor binding domains in SARS-CoV-2 spike protein. ELife, 2	022, 11, .	6.0	40
1615	Type 2 Diabetes Contributes to Altered Adaptive Immune Responses and Vascular Inflam Patients With SARS-CoV-2 Infection. Frontiers in Immunology, 2022, 13, 833355.	mation in	4.8	8
1616	In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compo Computation, 2022, 10, 51.	unds.	2.0	9
1618	Targeting Arginine in COVID-19-Induced Immunopathology and Vasculopathy. Metabolit	es, 2022, 12, 240.	2.9	16
1619	Waning anti-SARS-CoV-2 neutralizing antibody in CoronaVac-vaccinated individuals in In F1000Research, 0, 11, 300.	donesia.	1.6	1
1620	The Traditional Chinese Medicine Formula Jing Guan Fang for Preventing SARS-CoV-2 Inf Clinical Observation to Basic Research. Frontiers in Pharmacology, 2022, 13, 744439.	ection: From	3.5	12

#	Article	IF	CITATIONS
1621	Distinctive Roles of Furin and TMPRSS2 in SARS-CoV-2 Infectivity. Journal of Virology, 2022, 96, e0012822.	3.4	64
1622	COVID-19 pandemic: the delta variant, T-cell responses, and the efficacy of developing vaccines. Inflammation Research, 2022, 71, 377-396.	4.0	11
1624	Unbinding of hACE2 and inhibitors from the receptor binding domain of SARS-CoV-2 spike protein. Journal of Biomolecular Structure and Dynamics, 2023, 41, 3245-3264.	3.5	2
1625	Molecular Virology of SARS-CoV-2 and Related Coronaviruses. Microbiology and Molecular Biology Reviews, 2022, 86, e0002621.	6.6	22
1626	ls Having Inflammatory Bowel Disease a Risk Factor for Severe Acute Respiratory Syndrome Coronavirus 2?. , 2022, 33, 196-204.		0
1627	The importance of neopterin in COVID-19: The prognostic value and relation with the disease severity. Clinical Biochemistry, 2022, , .	1.9	6
1628	<i>FURIN</i> gene variants (rs6224/rs4702) as potential markers of death and cardiovascular traits in severe COVIDâ€19. Journal of Medical Virology, 2022, 94, 3589-3595.	5.0	4
1629	Conservation and Enhanced Binding of SARS-CoV-2 Omicron Spike Protein to Coreceptor Neuropilin-1 Predicted by Docking Analysis. Infectious Disease Reports, 2022, 14, 243-249.	3.1	17
1630	A review of the main placenta histopathological findings reported in coronavirus disease 2019. Journal of Taibah University Medical Sciences, 2022, 17, 165-173.	0.9	2
1631	<i>In silico</i> design of ACE2 mutants for competitive binding of SARS-CoV-2 receptor binding domain with hACE2. ChemistrySelect, 2022, .	1.5	0
1632	Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell, 2022, 185, 1728-1744.e16.	28.9	211
1633	Cross-reactive cellular, but not humoral, immunity is detected between OC43 and SARS-CoV-2 NPs in people not infected with SARS-CoV-2: Possible role of cTFH cells. Journal of Leukocyte Biology, 2022, 112, 339-346.	3.3	7
1634	Genetic Landscape of the ACE2 Coronavirus Receptor. Circulation, 2022, 145, 1398-1411.	1.6	20
1635	SARS-CoV-2 Infection Induces Ferroptosis of Sinoatrial Node Pacemaker Cells. Circulation Research, 2022, 130, 963-977.	4.5	49
1636	Prefusion spike protein conformational changes are slower in SARS-CoV-2 than in SARS-CoV-1. Journal of Biological Chemistry, 2022, 298, 101814.	3.4	17
1637	Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19. Nature Communications, 2022, 13, 1891.	12.8	45
1638	A novel plant lectin, NTL-125, interferes with SARS-CoV-2 interaction with hACE2. Virus Research, 2022, 315, 198768.	2.2	5
1639	Identification of Entry Inhibitors against Delta and Omicron Variants of SARS-CoV-2. International Journal of Molecular Sciences, 2022, 23, 4050.	4.1	17

#	Article	IF	CITATIONS
1641	Impairment of SARS-CoV-2 spike glycoprotein maturation and fusion activity by nitazoxanide: an effect independent of spike variants emergence. Cellular and Molecular Life Sciences, 2022, 79, 227.	5.4	20
1643	Azadirachta indica A. Juss bark extract and its Nimbin isomers restrict β-coronaviral infection and replication. Virology, 2022, 569, 13-28.	2.4	15
1644	Analysis of Viral Spike Protein N-Glycosylation Using Ultraviolet Photodissociation Mass Spectrometry. Analytical Chemistry, 2022, 94, 5776-5784.	6.5	10
1645	Analysis of SARS-CoV-2 variants B.1.617: host tropism, proteolytic activation, cell–cell fusion, and neutralization sensitivity. Emerging Microbes and Infections, 2022, 11, 1024-1036.	6.5	5
1646	Landscape-Based Protein Stability Analysis and Network Modeling of Multiple Conformational States of the SARS-CoV-2 Spike D614G Mutant: Conformational Plasticity and Frustration-Induced Allostery as Energetic Drivers of Highly Transmissible Spike Variants. Journal of Chemical Information and Modeling, 2022, 62, 1956-1978.	5.4	5
1647	In Vitro SARS-CoV-2 Infection of Microvascular Endothelial Cells: Effect on Pro-Inflammatory Cytokine and Chemokine Release. International Journal of Molecular Sciences, 2022, 23, 4063.	4.1	7
1648	Unique peptide signatures of SARS-CοV-2 virus against human proteome reveal variants' immune escape and infectiveness. Heliyon, 2022, 8, e09222.	3.2	2
1649	Plantâ€based expression and characterization of SARSâ€CoVâ€2 virusâ€like particles presenting a native spike protein. Plant Biotechnology Journal, 2022, 20, 1363-1372.	8.3	23
1650	Modeling insights into SARS-CoV-2 respiratory tract infections prior to immune protection. Biophysical Journal, 2022, 121, 1619-1631.	0.5	17
1651	The SARS-CoV-2 spike residues 616/644 and 1138/1169 delineate two antibody epitopes in COVID-19 mRNA COMIRNATY vaccine (Pfizer/BioNTech). Scientific Reports, 2022, 12, 5999.	3.3	3
1652	Role of genomics in combating COVID-19 pandemic. Gene, 2022, 823, 146387.	2.2	20
1653	The role of antigen-presenting cells in the pathogenesis of COVID-19. Pathology Research and Practice, 2022, 233, 153848.	2.3	17
1654	COVID-19 and neurological sequelae: Vitamin D as a possible neuroprotective and/or neuroreparative agent. Life Sciences, 2022, 297, 120464.	4.3	14
1655	The accessible promoter-mediated supplementary effect of host factors provides new insight into the tropism of SARS-CoV-2. Molecular Therapy - Nucleic Acids, 2022, 28, 249-258.	5.1	2
1656	FRET-based hACE2 receptor mimic peptide conjugated nanoprobe for simple detection of SARS-CoV-2. Chemical Engineering Journal, 2022, 442, 136143.	12.7	12
1657	S-D614G Mutation Reveals the Euro-America and East-Asia Origin SARS-CoV-2 Virus Spread in Indonesia. Jurnal Riset Biologi Dan Aplikasinya, 2021, 3, 45-53.	0.2	0
1658	Coronavirus disease 2019-induced hypercoagulability and its clinical implications. Asian Cardiovascular and Thoracic Annals, 2022, 30, 515-523.	0.5	1
1659	Functional Trimeric SARS-CoV-2 Envelope Protein Expressed in Stable CHO Cells. Frontiers in Bioengineering and Biotechnology, 2021, 9, 779359.	4.1	4

#	Article	IF	CITATIONS
1661	The pH Dependence of Niclosamide Solubility, Dissolution, and Morphology: Motivation for Potentially Universal Mucin-Penetrating Nasal and Throat Sprays for COVID19, its Variants and other Viral Infections. Pharmaceutical Research, 2022, 39, 115-141.	3.5	11
1662	Pathogenesis of COVIDâ€19 described through the lens of an undersulfated and degraded epithelial and endothelial glycocalyx. FASEB Journal, 2022, 36, e22052.	0.5	22
1663	Loop-Mediated Isothermal Amplification as a Promising Method for Mass COVID-19 Diagnostics. Applied Biochemistry and Microbiology, 2021, 57, 845-850.	0.9	2
1664	SARS-CoV-2 and Implantation Window: Gene Expression Mapping of Human Endometrium and Preimplantation Embryo. Life, 2021, 11, 1378.	2.4	2
1666	Discovery of Highly Potent Fusion Inhibitors with Potential Pan-Coronavirus Activity That Effectively Inhibit Major COVID-19 Variants of Concern (VOCs) in Pseudovirus-Based Assays. Viruses, 2022, 14, 69.	3.3	5
1668	Development of a simple and miniaturized sandwich-like fluorescence polarization assay for rapid screening of SARS-CoV-2 main protease inhibitors. Cell and Bioscience, 2021, 11, 199.	4.8	26
1669	Fundamentals in Covid-19-Associated Thrombosis: Molecular and Cellular Aspects. Frontiers in Cardiovascular Medicine, 2021, 8, 785738.	2.4	20
1670	Channels and Transporters of the Pulmonary Lamellar Body in Health and Disease. Cells, 2022, 11, 45.	4.1	5
1671	Current Status of the Use of Oral and Nasal Antiseptics during the Coronavirus Disease 2019 (COVID-19) Pandemic. Journal of Clinical Otolaryngology, 2021, 32, 170-178.	0.1	0
1672	The atomic portrait of SARSâ€CoVâ€2 as captured by cryoâ€electron microscopy. Journal of Cellular and Molecular Medicine, 2022, 26, 25-34.	3.6	6
1673	Implications of RNA Viruses in the Male Reproductive Tract: An Outlook on SARS-CoV-2. Frontiers in Microbiology, 2021, 12, 783963.	3.5	8
1674	Cell fusion in the pathogenesis of COVID-19. Military Medical Research, 2021, 8, 68.	3.4	14
1675	DNA-Functionalized Ti ₃ C ₂ T <i>_x</i> MXenes for Selective and Rapid Detection of SARS-CoV-2 Nucleocapsid Gene. ACS Applied Nano Materials, 2022, 5, 1902-1910.	5.0	26
1676	A Stabilized, Monomeric, Receptor Binding Domain Elicits High-Titer Neutralizing Antibodies Against All SARS-CoV-2 Variants of Concern. Frontiers in Immunology, 2021, 12, 765211.	4.8	16
1677	Propagation of SARS-CoV-2 in Calu-3 Cells to Eliminate Mutations in the Furin Cleavage Site of Spike. Viruses, 2021, 13, 2434.	3.3	19
1678	Neuropsychiatric symptoms associated with the COVID-19 and its potential nervous system infection mechanism: the role of imaging in the study. Psychoradiology, 2021, 1, 199-211.	2.3	3
1679	Intrauterine Fetal Demise After Uncomplicated COVID-19: What Can We Learn from the Case?. Viruses, 2021, 13, 2545.	3.3	18
1680	Could Small Neurotoxins-Peptides be Expressed during SARS-CoV-2 Infection?. Current Genomics, 2021, 22, 557-563.	1.6	4

#	Article	IF	CITATIONS
1681	The effect of mouthrinses on severe acute respiratory syndrome coronavirus 2 viral load. Journal of the American Dental Association, 2022, 153, 635-648.e16.	1.5	13
1682	Covid-19'a karşı mRNA SARS-CoV2 spesifik ve Çocukluk Dönemi Aşıları. Türk Doğa Ve Fen Der 338-350.	gisi, 2021	, 10,
1683	Highly Sensitive and Specific SARS-CoV-2 Serological Assay Using a Magnetic Modulation Biosensing System. Biosensors, 2022, 12, 7.	4.7	3
1685	Citicoline and COVID-19-Related Cognitive and Other Neurologic Complications. Brain Sciences, 2022, 12, 59.	2.3	11
1686	The Impact of <i>ACE</i> and <i>ACE2</i> Gene Polymorphisms in Pulmonary Diseases Including COVID-19. In Vivo, 2022, 36, 13-29.	1.3	20
1687	Emerging Coronavirus Mutant - The Delta Plus: A Review. , 2021, 3, 35-42.		0
1688	Advances in the design and development of SARS-CoV-2 vaccines. Military Medical Research, 2021, 8, 67.	3.4	26
1690	Targeting genomic SARS-CoV-2 RNA with siRNAs allows efficient inhibition of viral replication and spread. Nucleic Acids Research, 2022, 50, 333-349.	14.5	34
1692	COVID-19 and the liver: A brief and core review. World Journal of Hepatology, 2021, 13, 2013-2023.	2.0	8
1694	Host Manipulation Mechanisms of SARS-CoV-2. Acta Biotheoretica, 2022, 70, 4.	1.5	0
1695	Enoxaparin and Pentosan Polysulfate Bind to the SARS-CoV-2 Spike Protein and Human ACE2 Receptor, Inhibiting Vero Cell Infection. Biomedicines, 2022, 10, 49.	3.2	12
1696	Cardiac manifestation of corona virus disease 2019: a preliminary report. Cardiovascular Journal of Africa, 2021, 32, 11-14.	0.4	1
1697	Enhanced apoptosis as a possible mechanism to self-limit SARS-CoV-2 replication in porcine primary respiratory epithelial cells in contrast to human cells. Cell Death Discovery, 2021, 7, 383.	4.7	11
1699	COVID-19: The question of genetic diversity and therapeutic intervention approaches. Genetics and Molecular Biology, 2021, 44, e20200452.	1.3	1
1700	Rural Medical Care and COVID-19. Journal of the Japanese Association of Rural Medicine, 2022, 70, 594-603.	0.0	0
1701	Coronavirus Entry Inhibitors. Advances in Experimental Medicine and Biology, 2022, 1366, 101-121.	1.6	3
1702	COVID-19, influenza, and other acute respiratory viral infections: etiology, immunopathogenesis, diagnosis, and treatment. Part I. COVID-19 and influenza. Molekuliarnaia Genetika, Mikrobiologiia I Virusologiia, 2022, 40, 3.	0.4	1
1703	SOCIAL ISOLATION AND POST-COVID NEUROPSYCHOLOGICAL DAMAGE. Trakia Journal of Sciences, 2022, 20, 65-73.	0.1	2

#	Article	IF	CITATIONS
1704	Broad-spectrum Respiratory Virus Entry Inhibitors. Advances in Experimental Medicine and Biology, 2022, 1366, 137-153.	1.6	2
1705	Do compromised mitochondria aggravate severity and fatality by SARS-CoV-2?. Current Medical Research and Opinion, 2022, 38, 911-916.	1.9	2
1706	Mitoxantrone modulates a heparan sulfate-spike complex to inhibit SARS-CoV-2 infection. Scientific Reports, 2022, 12, 6294.	3.3	8
1707	Identification of Transcription Factors Regulating SARS-CoV-2 Tropism Factor Expression by Inferring Cell-Type-Specific Transcriptional Regulatory Networks in Human Lungs. Viruses, 2022, 14, 837.	3.3	3
1708	Potential Application of Tea Polyphenols to the Prevention of COVID-19 Infection: Based on the Gut-Lung Axis. Frontiers in Nutrition, 2022, 9, 899842.	3.7	7
1709	Inter-domain communication in SARS-CoV-2 spike proteins controls protease-triggered cell entry. Cell Reports, 2022, 39, 110786.	6.4	37
1710	Heparanase Blockade as a Novel Dual-Targeting Therapy for COVID-19. Journal of Virology, 2022, 96, e0005722.	3.4	14
1711	A Highly Potent SARS-CoV-2 Blocking Lectin Protein. ACS Infectious Diseases, 2022, 8, 1253-1264.	3.8	20
1712	Plasma Membrane-Derived Liposomes Exhibit Robust Antiviral Activity against HSV-1. Viruses, 2022, 14, 799.	3.3	4
1713	The Delta SARS-CoV-2 Variant of Concern Induces Distinct Pathogenic Patterns of Respiratory Disease in K18-hACE2 Transgenic Mice Compared to the Ancestral Strain from Wuhan. MBio, 2022, 13, e0068322.	4.1	17
1714	Variant Analysis and Strategic Clustering to Sub-Lineage of Double Mutant Strain B.1.617 of SARS-CoV-2. Covid, 2022, 2, 513-531.	1.5	1
1715	Unique Mode of Antiviral Action of a Marine Alkaloid against Ebola Virus and SARS-CoV-2. Viruses, 2022, 14, 816.	3.3	3
1717	Quantitation of SARS-CoV-2 neutralizing antibodies with a virus-free, authentic test. , 2022, 1, .		5
1719	Isolation, characterization, and structure-based engineering of a neutralizing nanobody against SARS-CoV-2. International Journal of Biological Macromolecules, 2022, 209, 1379-1388.	7.5	3
1720	SARS-CoV-2 Employ BSG/CD147 and ACE2 Receptors to Directly Infect Human Induced Pluripotent Stem Cell-Derived Kidney Podocytes. Frontiers in Cell and Developmental Biology, 2022, 10, 855340.	3.7	23
1721	COVID-19 Vaccines: Current and Future Perspectives. Vaccines, 2022, 10, 608.	4.4	26
1722	Inflammatory responses in the placenta upon SARS-CoV-2 infection late in pregnancy. IScience, 2022, 25, 104223.	4.1	58
1723	Potent Antiâ€SARSâ€CoVâ€2 Efficacy of COVIDâ€19 Hyperimmune Globulin from Vaccineâ€Immunized Plasma. Advanced Science, 2022, 9, e2104333.	11.2	8

#	Article	IF	CITATIONS
1724	SARS-CoV-2 Spike Protein Expression In Vitro and Hematologic Effects in Mice Vaccinated With AZD1222 (ChAdOx1 nCoV-19). Frontiers in Immunology, 2022, 13, 836492.	4.8	8
1725	Structural and functional impact by SARS-CoV-2 Omicron spike mutations. Cell Reports, 2022, 39, 110729.	6.4	102
1726	Identification of B-Cell Epitopes for Eliciting Neutralizing Antibodies against the SARS-CoV-2 Spike Protein through Bioinformatics and Monoclonal Antibody Targeting. International Journal of Molecular Sciences, 2022, 23, 4341.	4.1	11
1727	Nanomaterials and metal-organic frameworks for biosensing applications of mutations of the emerging viruses. Analytical Biochemistry, 2022, 648, 114680.	2.4	11
1728	A novel structure-based approach for identification of vertebrate susceptibility to SARS-CoV-2: Implications for future surveillance programmes. Environmental Research, 2022, 212, 113303.	7.5	6
1729	SARS-CoV-2 spike protein–induced cell fusion activates the cGAS-STING pathway and the interferon response. Science Signaling, 2022, 15, eabg8744.	3.6	54
1730	An endogenously activated antiviral state restricts SARS-CoV-2 infection in differentiated primary airway epithelial cells. PLoS ONE, 2022, 17, e0266412.	2.5	14
1739	SARS-CoV-2 Infection: Host Response, Immunity, and Therapeutic Targets. Inflammation, 2022, 45, 1430-1449.	3.8	16
1740	Omicron-included mutation-induced changes in epitopes of SARS-CoV-2 spike protein and effectiveness assessments of current antibodies. Molecular Biomedicine, 2022, 3, 12.	4.4	12
1741	Berbamine hydrochloride potently inhibits SARS-CoV-2 infection by blocking S protein-mediated membrane fusion. PLoS Neglected Tropical Diseases, 2022, 16, e0010363.	3.0	14
1742	Clinical Characteristics, Transmissibility, Pathogenicity, Susceptible Populations, and Re-infectivity of Prominent COVID-19 Variants. , 2022, 13, 402.		28
1743	Effect of Clinically Used Microtubule Targeting Drugs on Viral Infection and Transport Function. International Journal of Molecular Sciences, 2022, 23, 3448.	4.1	5
1745	HUMORAL IMMUNITY IN PATIENTS WITH SARS-COV-2 INFECTION: A REVIEW Annals of Ibadan Postgraduate Medicine, 2021, 19, S77-S82.	0.1	0
1746	Infectivity-enhancing antibodies against SARS-CoV-2. Translational and Regulatory Sciences, 2022, 4, 1-4.	0.2	2
1747	A method for the generation of pseudovirus particles bearing SARS coronavirus spike protein in high yields. Cell Structure and Function, 2022, 47, 43-53.	1.1	4
1748	Cholesterol and pathogens. , 2022, , 675-714.		0
1749	SARS-CoV-2 pan-variant inhibitory peptides deter S1-ACE2 interaction and neutralize delta and omicron pseudoviruses. Computational and Structural Biotechnology Journal, 2022, 20, 2042-2056.	4.1	8
1750	COVID-19 and acute myocardial injury: Stem cell driven tissue remodeling in COVID-19 infection. , 2022, , 111-124.		0

ARTICLE IF CITATIONS Applying polypharmacology approach for drug repurposing for SARS-CoV2. Journal of Chemical 1751 10 1.5 Sciences, 2022, 134, 57. Novel Insights Into the Sulfated Glucuronic Acid-Based Anti-SARS-CoV-2 Mechanism of Exopolysaccharides From Halophilic Archaeon Haloarcula hispanica. Frontiers in Chemistry, 2022, 10, 3.6 871509. Histamine Potentiates SARS-CoV-2 Spike Protein Entry Into Endothelial Cells. Frontiers in 1754 3.510 Pharmacology, 2022, 13, 872736. Comparison of Six Serological Immunoassays for the Detection of SARS-CoV-2 Neutralizing Antibody Levels in the Vaccinated Population. Viruses, 2022, 14, 946. Glycopeptide Antibiotic Teicoplanin Inhibits Cell Entry of SARS-CoV-2 by Suppressing the Proteolytic 1756 3.5 8 Activity of Cathepsin L. Frontiers in Microbiology, 2022, 13, 884034. Coronavirus Infection and Cholesterol Metabolism. Frontiers in Immunology, 2022, 13, 791267. 4.8 RHINO– AND RS–VIRUSES IN THE COVID–19 PANDEMIC. Russian Journal of Infection and Immunity, 0, , . 1758 0.7 1 Developing Small-Molecule Inhibitors of Protein-Protein Interactions Involved in Viral Entry as 1759 2.8 Potential Antivirals for COVID-19. Frontiers in Drug Discovery, 2022, 2, . Hypericum perforatum and Its Ingredients Hypericin and Pseudohypericin Demonstrate an Antiviral 1760 22 3.8 Activity against SARS-CoV-2. Pharmaceuticals, 2022, 15, 530. effect of COVID-19 on micro RNA and therefore gene expression. International Journal of Health 1761 0.1 Sciences, 0, , 5056-5062. Comprehensive role of SARSâ€CoVâ€2 spike glycoprotein in regulating host signaling pathway. Journal of 1762 5.05 Medical Virology, 2022, 94, 4071-4087. Susceptibility of Patients with Airway Disease to SARS-CoV-2 Infection. American Journal of 5.6 Respiratory and Critical Care Medicine, 2022, 206, 696-703. Immunouniverse of SARS-CoV-2. Immunological Medicine, 2022, 45, 186-224. 1764 2.6 8 Bioinformatic Screening of Compounds from Iranian Lamiaceae Family Members against SARS-CoV-2 1765 0.7 Spike Protein. Letters in Drug Design and Discovery, 2023, 20, 684-698. Polygoni multiflori radix extracts inhibit SARS-CoV-2 pseudovirus entry in HEK293T cells and zebrafish 1766 5.36 larvae. Phytomedicine, 2022, 102, 154154. Discovery of adapalene and dihydrotachysterol as antiviral agents for the Omicron variant of 1767 3.9 SARS-CoV-2 through computational drug repurposing. Molecular Diversity, 2023, 27, 463-475. Mechanisms of Cardiovascular System Injury Induced by COVID-19 in Elderly Patients With 1768 2.4 1 Cardiovascular History. Frontiers in Cardiovascular Medicine, 2022, 9, . Humoral Immune Response Diversity to Different COVID-19 Vaccines: Implications for the "Green Pass― 1769 4.8 Policy. Frontiers in Immunology, 2022, 13, .

#	Article	IF	CITATIONS
1770	Going viral in the islet: mediators of SARS-CoV-2 entry beyond ACE2. Journal of Molecular Endocrinology, 2022, , .	2.5	13
1772	mRNA expression of toll-like receptors 3, 7, 8, and 9 in the nasopharyngeal epithelial cells of coronavirus disease 2019 patients. BMC Infectious Diseases, 2022, 22, 448.	2.9	14
1773	ADAM10 and ADAM17 promote SARS oVâ€2 cell entry and spike proteinâ€mediated lung cell fusion. EMBO Reports, 2022, 23, e54305.	4.5	57
1774	Transmembrane Protease Serine 2 Proteolytic Cleavage of the SARS-CoV-2 Spike Protein: A Mechanistic Quantum Mechanics/Molecular Mechanics Study to Inspire the Design of New Drugs To Fight the COVID-19 Pandemic. Journal of Chemical Information and Modeling, 2022, 62, 2510-2521.	5.4	8
1776	Bioinformatics analysis reveals molecular connections between non-alcoholic fatty liver disease (NAFLD) and COVID-19. Journal of Cell Communication and Signaling, 2022, 16, 609-619.	3.4	1
1777	Development of a cost-effective ovine antibody-based therapy against SARS-CoV-2 infection and contribution of antibodies specific to the spike subunit proteins. Antiviral Research, 2022, 203, 105332.	4.1	2
1778	Identification, optimization, and biological evaluation of 3-O-β-chacotriosyl ursolic acid derivatives as novel SARS-CoV-2 entry inhibitors by targeting the prefusion state of spike protein. European Journal of Medicinal Chemistry, 2022, 238, 114426.	5.5	9
1779	Evolution and Epidemiology of SARS-CoV-2 Virus. Methods in Molecular Biology, 2022, 2452, 3-18.	0.9	0
1780	Integrin/TGF-β1 Inhibitor GLPG-0187 Blocks SARS-CoV-2 Delta and Omicron Pseudovirus Infection of Airway Epithelial Cells In Vitro, Which Could Attenuate Disease Severity. Pharmaceuticals, 2022, 15, 618.	3.8	12
1781	Endomembrane remodeling in SARS-CoV-2 infection. , 2022, 1, 100031.		12
1782	An Electrostatically-steered Conformational Selection Mechanism Promotes SARS-CoV-2 Spike Protein Variation. Journal of Molecular Biology, 2022, 434, 167637.	4.2	1
1784	Functional Peptides from SARS-CoV-2 Binding with Cell Membrane: From Molecular Dynamics Simulations to Cell Demonstration. Cells, 2022, 11, 1738.	4.1	0
1785	SARS-CoV-2 infects human cardiomyocytes promoted by inflammation and oxidative stress. International Journal of Cardiology, 2022, 362, 196-205.	1.7	9
1786	A mechanical-thermodynamic model for understanding endocytosis of COVID-19 virus SARS-CoV-2. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , 095440622210985.	2.1	1
1788	SARS-CoV-2 ORF7a potently inhibits the antiviral effect of the host factor SERINC5. Nature Communications, 2022, 13, .	12.8	32
1789	A qualitative RT-PCR assay for the specific identification of the SARS-CoV-2 B.1.1.529 (Omicron) Variant of Concern. Journal of Clinical Virology, 2022, 152, 105191.	3.1	15
1790	SARS-CoV-2 Permissive glioblastoma cell line for high throughput antiviral screening. Antiviral Research, 2022, 203, 105342.	4.1	9
1791	Low expression of TMPRSS2–a SARS-CoV-2 internalization protease–associates with basal subtype of head and neck squamous cell carcinoma. Translational Oncology, 2022, 22, 101458.	3.7	3

#	ARTICLE Enhanced Susceptibility of SARS-CoV-2 Spike RBD Protein Assay Targeted by Cellular Receptors ACE2	IF	Citations
1792	and CD147: Multivariate Data Analysis of Multisine Impedimetric Response. SSRN Electronic Journal, 0, ,	0.4	0
1793	Human interaction targets of SARS-CoV-2 spike protein: A systematic review. European Journal of Inflammation, 2022, 20, 1721727X2210953.	0.5	3
1794	DEEMD: Drug Efficacy Estimation Against SARS-CoV-2 Based on Cell Morphology With Deep Multiple Instance Learning. IEEE Transactions on Medical Imaging, 2022, 41, 3128-3145.	8.9	3
1795	Journey of Chloroquine/ Hydroxychloroquine in the management of COVID-19. Research Journal of Pharmacology and Pharmacodynamics, 2022, , 110-116.	0.6	0
1796	How COVID-19 Hijacks the Cytoskeleton: Therapeutic Implications. Life, 2022, 12, 814.	2.4	4
1797	The ORF8 Protein of SARS-CoV-2 Modulates the Spike Protein and Its Implications in Viral Transmission. Frontiers in Microbiology, 2022, 13, .	3.5	14
1798	Human Cell Organelles in SARS-CoV-2 Infection: An Up-to-Date Overview. Viruses, 2022, 14, 1092.	3.3	3
1800	COVID-19 and Liquid Homeostasis in the Lung—A Perspective through the Epithelial Sodium Channel (ENaC) Lens. Cells, 2022, 11, 1801.	4.1	4
1801	Possible Role of Matrix Metalloproteinases and TGF-β in COVID-19 Severity and Sequelae. Journal of Interferon and Cytokine Research, 2022, 42, 352-368.	1.2	16
1802	Different Aspects of Emetine's Capabilities as a Highly Potent SARS-CoV-2 Inhibitor against COVID-19. ACS Pharmacology and Translational Science, 2022, 5, 387-399.	4.9	20
1804	An Insight Based on Computational Analysis of the Interaction between the Receptor-Binding Domain of the Omicron Variants and Human Angiotensin-Converting Enzyme 2. Biology, 2022, 11, 797.	2.8	10
1805	Protective neutralizing epitopes in SARSâ€CoVâ€2. Immunological Reviews, 2022, 310, 76-92.	6.0	23
1806	COVID-19 therapies: do we see substantial progress?. Cellular and Molecular Biology Letters, 2022, 27, .	7.0	4
1807	The key role of Calpain in COVID-19 as a therapeutic strategy. Inflammopharmacology, 2022, 30, 1479-1491.	3.9	8
1808	Changing Dynamics of SARS-CoV-2: A Global Challenge. Applied Sciences (Switzerland), 2022, 12, 5546.	2.5	3
1810	Opioid-Use, COVID-19 Infection, and Their Neurological Implications. Frontiers in Neurology, 2022, 13, .	2.4	2
1811	Could a Lower Toll-like Receptor (TLR) and NF-κB Activation Due to a Changed Charge Distribution in the Spike Protein Be the Reason for the Lower Pathogenicity of Omicron?. International Journal of Molecular Sciences, 2022, 23, 5966.	4.1	9
1812	Biochemical Characterization of SARS-CoV-2 Spike RBD Mutations and Their Impact on ACE2 Receptor Binding. Frontiers in Molecular Biosciences, 2022, 9, .	3.5	3

#	Article	IF	CITATIONS
1813	<scp>TNF</scp> â€i±/ <scp>IFN</scp> â€i³ synergy amplifies senescenceâ€associated inflammation and <scp>SARSâ€CoV</scp> â€2 receptor expression via hyperâ€activated <scp>JAK</scp> / <scp>STAT1</scp> . Aging Cell, 2022, 21, .	6.7	31
1814	Principles of SARS-CoV-2 glycosylation. Current Opinion in Structural Biology, 2022, 75, 102402.	5.7	27
1815	Effects of Spike Mutations in SARS-CoV-2 Variants of Concern on Human or Animal ACE2-Mediated Virus Entry and Neutralization. Microbiology Spectrum, 2022, 10, .	3.0	24
1816	Mutations of the SARS-CoV-2 Spike Glycoprotein Detected in Cats and Their Effect on Its Structure and Function. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	3.9	4
1817	Expediting knowledge acquisition by a web framework for Knowledge Graph Exploration and Visualization (KGEV): case studies on COVID-19 and Human Phenotype Ontology. BMC Medical Informatics and Decision Making, 2022, 22, .	3.0	3
1818	SARS-CoV-2 Induces Expression of Cytokine and MUC5AC/5B in Human Nasal Epithelial Cell through ACE 2 Receptor. BioMed Research International, 2022, 2022, 1-9.	1.9	3
1819	Structural Characterization of a Neutralizing Nanobody With Broad Activity Against SARS-CoV-2 Variants. Frontiers in Microbiology, 2022, 13, .	3.5	5
1820	Novel cleavage sites identified in SARS-CoV-2 spike protein reveal mechanism for cathepsin L-facilitated viral infection and treatment strategies. Cell Discovery, 2022, 8, .	6.7	40
1821	SPR Based Biosensing Chip for COVID-19 Diagnosis—A Review. IEEE Sensors Journal, 2022, 22, 13800-13810.	4.7	58
1822	Effect of the Graphene Nanosheet on Bio-Functions of the Spike Protein at Open and Closed States: The Comparison Between SARS-CoV-2 WT and Omicron Variant. SSRN Electronic Journal, 0, , .	0.4	0
1823	Polyphosphate in Antiviral Protection: A Polyanionic Inorganic Polymer in the Fight Against Coronavirus SARS-CoV-2 Infection. Progress in Molecular and Subcellular Biology, 2022, , 145-189.	1.6	4
1825	Peptide Binder with High-Affinity for the SARS-CoV-2 Spike Receptor-Binding Domain. ACS Applied Materials & Interfaces, 2022, 14, 28527-28536.	8.0	6
1826	Understanding the pivotal roles of ACE2 in SARS-CoV-2 infection: from structure/function to therapeutic implication. Egyptian Journal of Medical Human Genetics, 2022, 23, .	1.0	7
1827	Structure of Human TMPRSS2 in Complex with SARS-CoV-2 Spike Glycoprotein and Implications for Potential Therapeutics. Journal of Physical Chemistry Letters, 2022, 13, 5324-5333.	4.6	9
1828	The past, current and future epidemiological dynamic of SARS-CoV-2. Oxford Open Immunology, 2022, 3,	2.8	24
1829	A Newly Engineered A549 Cell Line Expressing ACE2 and TMPRSS2 Is Highly Permissive to SARS-CoV-2, Including the Delta and Omicron Variants. Viruses, 2022, 14, 1369.	3.3	26
1830	Bovine colostrum-derived antibodies against SARS-CoV-2 show great potential to serve as prophylactic agents. PLoS ONE, 2022, 17, e0268806.	2.5	14
1831	Development of an efficient reproducible cell-cell transmission assay for rapid quantification of SARS-CoV-2 Spike interaction with hACE2. Cell Reports Methods, 2022, , 100252.	2.9	1

~			~
(11	TAT	ON	Report
\sim	/		ILLI OKT

#	Article	IF	CITATIONS
1832	Interaction of 5-[4′-(N-Methyl-1,3-benzimidazol-2-yl)phenyl]-10,15,20-tri-(N-methyl-3′-pyridyl)porphyrin Triiodide with SARS-CoV-2 Spike Protein. Russian Journal of General Chemistry, 2022, 92, 1005-1010.	0.8	1
1833	Mechanisms of SARS-CoV-2 Infection-Induced Kidney Injury: A Literature Review. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	15
1834	Ionization of D571 Is Coupled with SARS-CoV-2 Spike Up/Down Equilibrium Revealing the pH-Dependent Allosteric Mechanism of Receptor-Binding Domains. Journal of Physical Chemistry B, 2022, 126, 4828-4839.	2.6	3
1835	Overview of SARS-CoV-2 and possible targets for the management of COVID-19 infections. Coronaviruses, 2022, 03, .	0.3	0
1837	Clinical characteristics and risk factors for COVID-19 infection and disease severity: A nationwide observational study in Estonia. PLoS ONE, 2022, 17, e0270192.	2.5	23
1838	Detection of SARS-CoV-2 infection in thyroid follicular cells from a COVID-19 autopsy series. European Thyroid Journal, 2022, 11, .	2.4	8
1839	Potential role of astrocyte angiotensin converting enzyme 2 in the neural transmission of COVID-19 and a neuroinflammatory state induced by smoking and vaping. Fluids and Barriers of the CNS, 2022, 19,	5.0	13
1840	Comparison of commercial SARS-CoV-2 surrogate neutralization assays with a full virus endpoint dilution neutralization test in two different cohorts. Journal of Virological Methods, 2022, 307, 114569.	2.1	6
1841	Roles of the ACE/Ang II/AT1R pathway, cytokine release, and alteration of tight junctions in COVID-19 pathogenesis. Tissue Barriers, 2023, 11, .	3.2	8
1844	¹ H qNMR-Based Metabolomics Discrimination of Covid-19 Severity. Journal of Proteome Research, 2022, 21, 1640-1653.	3.7	18
1845	Human Superantibodies to 3CLpro Inhibit Replication of SARS-CoV-2 across Variants. International Journal of Molecular Sciences, 2022, 23, 6587.	4.1	3
1846	COVID-19 liver and gastroenterology findings: An <i>in silico</i> analysis of SARS-CoV-2 interactions with liver molecules. World Journal of Hepatology, 2022, 14, 1131-1141.	2.0	0
1847	Methodology of Purification of Inactivated Cell-Culture-Grown SARS-CoV-2 Using Size-Exclusion Chromatography. Vaccines, 2022, 10, 949.	4.4	0
1848	Multiplex Detection of Antibody Landscapes to SARS-CoV-2/Influenza/Common Human Coronaviruses Following Vaccination or Infection with SARS-CoV-2 and Influenza. Clinical Infectious Diseases, 0, , .	5.8	4
1849	HYGIEIA: HYpothesizing the Genesis of Infectious Diseases and Epidemics through an Integrated Systems Biology Approach. Viruses, 2022, 14, 1373.	3.3	2
1850	Plasma Angiotensin II Is Increased in Critical Coronavirus Disease 2019. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	18
1851	Clinical and Genetic Characteristics of Coronaviruses with Particular Emphasis on SARS-CoV-2 Virus. Polish Journal of Microbiology, 2022, 71, 141-159.	1.7	0
1852	Early shedding of membrane-bounded ACE2 could be an indicator for disease severity in SARS-CoV-2. Biochimie, 2022, 201, 139-147.	2.6	9

#	Article	IF	CITATIONS
1853	The Role of Host-Cellular Responses in COVID-19 Endothelial Dysfunction. Current Drug Targets, 2022, 23, .	2.1	1
1854	RelCoVax®, a two antigen subunit protein vaccine candidate against SARS-CoV-2 induces strong immune responses in mice. Vaccine, 2022, 40, 4522-4530.	3.8	6
1855	A comprehensive account of SARS-CoV-2 genome structure, incurred mutations, lineages and COVID-19 vaccination program. Future Virology, 0, , .	1.8	4
1856	Metalloproteinase-Dependent and TMPRSS2-Independent Cell Surface Entry Pathway of SARS-CoV-2 Requires the Furin Cleavage Site and the S2 Domain of Spike Protein. MBio, 2022, 13, .	4.1	23
1857	Structural Plasticity and Immune Evasion of SARS-CoV-2 Spike Variants. Viruses, 2022, 14, 1255.	3.3	30
1858	COVID-19 Diagnosis: A Comprehensive Review of the RT-qPCR Method for Detection of SARS-CoV-2. Diagnostics, 2022, 12, 1503.	2.6	28
1859	Significant role of host sialylated glycans in the infection and spread of severe acute respiratory syndrome coronavirus 2. PLoS Pathogens, 2022, 18, e1010590.	4.7	18
1860	Glucocorticoids Bind to SARS-CoV-2 S1 at Multiple Sites Causing Cooperative Inhibition of SARS-CoV-2 S1 Interaction With ACE2. Frontiers in Immunology, 0, 13, .	4.8	5
1861	Discovery of Triple Inhibitors of Both SARS-CoV-2 Proteases and Human Cathepsin L. Pharmaceuticals, 2022, 15, 744.	3.8	5
1862	Comparative Structural Analysis of Human ACE2 Receptor with Spike Protein of SARS-CoV-2 Variants: Implications to Understand Infectivity of the Virus. Advances and Applications in Bioinformatics and Chemistry, 0, Volume 15, 21-27.	2.6	1
1863	Robust anti-SARS-CoV2 single domain antibodies cross neutralize multiple viruses. IScience, 2022, 25, 104549.	4.1	2
1864	Bioluminescent and Fluorescent Reporter-Expressing Recombinant SARS-CoV-2. Methods in Molecular Biology, 2022, , 235-248.	0.9	3
1865	Immunoglobulin Yolk (IgY) Targeting S1, RBD of Spike Glycoprotein and Nucleocapsid of SARS-CoV-2 Blocking RBD-ACE2 Binding Interaction. SSRN Electronic Journal, 0, , .	0.4	0
1866	General overview on SARS-CoV-2 and potential role of natural compounds as antiviral drugs targeting SARS-CoV-2 proteins. Arab Gulf Journal of Scientific Research, 2022, , 15-36.	0.6	0
1867	General overview on SARS-CoV-2 and potential role of natural compounds as antiviral drugs targeting SARS-CoV-2 proteins. Arab Gulf Journal of Scientific Research, 2022, , 1-13.	0.6	0
1868	The nervous system during <scp>COVID</scp> â€19: Caught in the crossfire. Immunological Reviews, 2022, 311, 90-111.	6.0	9
1869	The spike glycoprotein of highly pathogenic human coronaviruses: structural insights for understanding infection, evolution and inhibition. FEBS Open Bio, 2022, 12, 1602-1622.	2.3	6
1870	Differential Dynamics of Humoral and Cell-Mediated Immunity with Three Doses of BNT162b2 SARS-CoV-2 Vaccine in Healthcare Workers in Japan: A Prospective Cohort Study. Vaccines, 2022, 10, 1050.	4.4	3

# 1871	ARTICLE Dimethoxycurcumin Acidifies Endolysosomes and Inhibits SARS-CoV-2 Entry. Frontiers in Virology, 0, 2,	IF 1.4	CITATIONS 2
1872	Comparing India's Second COVID Wave with the First Wave-A Single-Center Experience. Recent Advances in Anti-Infective Drug Discovery, 2022, 17, 178-186.	0.8	4
1873	Potential Autoimmunity Resulting from Molecular Mimicry between SARS-CoV-2 Spike and Human Proteins. Viruses, 2022, 14, 1415.	3.3	39
1874	Distinct airway epithelial immune responses after infection with SARS-CoV-2 compared to H1N1. Mucosal Immunology, 2022, 15, 952-963.	6.0	15
1875	Will Peptides Help to Stop COVID-19?. Biochemistry (Moscow), 2022, 87, 590-604.	1.5	1
1876	Decrypting the cellular and molecular intricacies associated with COVID-19-induced chronic pain. Metabolic Brain Disease, 2022, 37, 2629-2642.	2.9	4
1877	In Silico Analysis Using SARS-CoV-2 Main Protease and a Set of Phytocompounds to Accelerate the Development of Therapeutic Components against COVID-19. Processes, 2022, 10, 1397.	2.8	1
1878	Analysis of the docking property of host variants of hACE2 for SARS-CoV-2 in a large cohort. PLoS Computational Biology, 2022, 18, e1009834.	3.2	1
1879	IgG N-glycome changes during the course of severe COVID-19: An observational study. EBioMedicine, 2022, 81, 104101.	6.1	18
1880	Cell and Animal Models for SARS-CoV-2 Research. Viruses, 2022, 14, 1507.	3.3	9
1881	The SARSâ€CoVâ€2 main protease (M ^{pro}): Structure, function, and emerging therapies for COVIDâ€19. MedComm, 2022, 3, .	7.2	79
1882	Nanotechnology for SARS-CoV-2 diagnosis. Nanofabrication, 0, 7, .	1.1	1
1883	Coronavirus disease 2019 and the placenta: A literature review. Placenta, 2022, 126, 209-223.	1.5	10
1884	Amelioration of SARS-CoV-2 infection by ANO6 phospholipid scramblase inhibition. Cell Reports, 2022, 40, 111117.	6.4	10
1886	Omicron Binding Mode: Contact Analysis and Dynamics of the Omicron Receptor-Binding Domain in Complex with ACE2. Journal of Chemical Information and Modeling, 2022, 62, 3844-3853.	5.4	11
1888	Pharmacological Profile of Nigella sativa Seeds in Combating COVID-19 through In-Vitro and Molecular Docking Studies. Processes, 2022, 10, 1346.	2.8	3
1889	Pathogenic Mechanism and Multi-omics Analysis of Oral Manifestations in COVID-19. Frontiers in Immunology, 0, 13, .	4.8	4
1890	COVID-19 and risk of neurodegenerative disorders: A Mendelian randomization study. Translational Psychiatry, 2022, 12, .	4.8	42

#	Article	IF	CITATIONS
1891	Molecular dynamics studies reveal structural and functional features of the SARS oVâ€2 spike protein. BioEssays, 2022, 44, .	2.5	9
1892	RNA Viruses, Pregnancy and Vaccination: Emerging Lessons from COVID-19 and Ebola Virus Disease. Pathogens, 2022, 11, 800.	2.8	3
1893	Interaction of Bioactive Compounds of Moringa oleifera Leaves with SARS-CoV-2 Proteins to Combat COVID-19 Pathogenesis: a Phytochemical and In Silico Analysis. Applied Biochemistry and Biotechnology, 2022, 194, 5918-5944.	2.9	11
1894	Epigallocatechin gallate (EGCG) attenuates severe acute respiratory coronavirus disease 2 (SARS-CoV-2) infection by blocking the interaction of SARS-CoV-2 spike protein receptor-binding domain to human angiotensin-converting enzyme 2. PLoS ONE, 2022, 17, e0271112.	2.5	23
1895	Significance of chlorineâ€dioxideâ€based oral rinses in preventing <scp>SARSâ€CoV</scp> â€2 cell entry. Oral Diseases, 2022, 28, 2481-2491.	3.0	3
1896	A Comprehensive Review of Andrographis paniculata (Burm. f.) Nees and Its Constituents as Potential Lead Compounds for COVID-19 Drug Discovery. Molecules, 2022, 27, 4479.	3.8	28
1897	Long-Term Sequelae of COVID-19 in Experimental Mice. Molecular Neurobiology, 2022, 59, 5970-5986.	4.0	16
1898	SARS-CoV-2 and the Missing Link of Intermediate Hosts in Viral Emergence - What We Can Learn From Other Betacoronaviruses. Frontiers in Virology, 0, 2, .	1.4	3
1899	Hyperimmunized Chickens Produce Neutralizing Antibodies against SARS-CoV-2. Viruses, 2022, 14, 1510.	3.3	4
1900	Tissue repair strategies: What we have learned from COVID-19 in the application of MSCs therapy. Pharmacological Research, 2022, 182, 106334.	7.1	2
1901	MiRNA-SARS-CoV-2 dialogue and prospective anti-COVID-19 therapies. Life Sciences, 2022, 305, 120761.	4.3	23
1902	A systemic review on liquid crystals, nanoformulations and its application for detection and treatment of SARS $\hat{a} \in CoV-2$ (COVID $\hat{a} \in 19$). Journal of Molecular Liquids, 2022, 362, 119795.	4.9	4
1903	Hydroxypropyl-beta-cyclodextrin (HP-BCD) inhibits SARS-CoV-2 replication and virus-induced inflammatory cytokines. Antiviral Research, 2022, 205, 105373.	4.1	12
1904	SARS-CoV-2, COVID-19, and Reproduction: Effects on Fertility, Pregnancy, and Neonatal Life. Biomedicines, 2022, 10, 1775.	3.2	12
1905	Exposure to avian coronavirus vaccines is associated with increased levels of <scp>SARSâ€CoV</scp> â€2â€crossâ€reactive antibodies. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 3648-3662.	5.7	2
1906	Study of protease-mediated processes initiating viral infection and cell–cell viral spreading of SARS-CoV-2. Journal of Molecular Modeling, 2022, 28, .	1.8	2
1907	Interactions between COVID-19 and Lung Cancer: Lessons Learned during the Pandemic. Cancers, 2022, 14, 3598.	3.7	7
1908	Does COVID-19 lockdowns have impacted on global dengue burden? A special focus to India. BMC Public Health, 2022, 22, .	2.9	11

#	Article	IF	CITATIONS
1909	Advanced Strategies of Enzyme Activity Regulation for Biomedical Applications. ChemBioChem, 2022, 23, .	2.6	7
1910	G6PD deficiency: imbalance of functional dichotomy contributing to the severity of COVID-19. Future Microbiology, 0, , .	2.0	5
1911	Decreased Interfacial Dynamics Caused by the N501Y Mutation in the SARS-CoV-2 S1 Spike:ACE2 Complex. Frontiers in Molecular Biosciences, 0, 9, .	3.5	9
1912	Nanotechnologyâ€facilitated vaccine development during the coronavirus disease 2019 (COVIDâ€19) pandemic. Exploration, 2022, 2, .	11.0	22
1913	Three-Dimensional Visualization of Viral Structure, Entry, and Replication Underlying the Spread of SARS-CoV-2. Chemical Reviews, 2022, 122, 14066-14084.	47.7	11
1914	Designing ferritin nanocage based vaccine candidates for SARS-CoV-2 by <i>in silico</i> engineering of its HLA I and HLA II epitope peptides. Journal of Biomolecular Structure and Dynamics, 0, , 1-13.	3.5	0
1915	Enhanced susceptibility of SARS-CoV-2 spike RBD protein assay targeted by cellular receptors ACE2 and CD147: Multivariate data analysis of multisine impedimetric response. Sensors and Actuators B: Chemical, 2022, 370, 132427.	7.8	7
1916	Neuropilin-1 in the pathogenesis of preeclampsia, HIV-1, and SARS-CoV-2 infection: A review. Virus Research, 2022, 319, 198880.	2.2	5
1917	Net-Shaped DNA Nanostructures Designed for Rapid/Sensitive Detection and Potential Inhibition of the SARS-CoV-2 Virus. Journal of the American Chemical Society, 2023, 145, 20214-20228.	13.7	33
1918	SUMOylation and Viral Infections of the Brain. Pathogens, 2022, 11, 818.		4
		2.8	4
1919	COVID-19 Pandemic: Insights into Interactions between SARS-CoV-2 Infection and MAFLD. International Journal of Biological Sciences, 2022, 18, 4756-4767.	2.8 6.4	5
1919 1920	COVID-19 Pandemic: Insights into Interactions between SARS-CoV-2 Infection and MAFLD. International		
	COVID-19 Pandemic: Insights into Interactions between SARS-CoV-2 Infection and MAFLD. International Journal of Biological Sciences, 2022, 18, 4756-4767. (+)-Usnic acid and its salts, inhibitors of SARSâ€CoVâ€2, identified by using in silico methods and in vitro	6.4	5
1920	COVID-19 Pandemic: Insights into Interactions between SARS-CoV-2 Infection and MAFLD. International Journal of Biological Sciences, 2022, 18, 4756-4767. (+)-Usnic acid and its salts, inhibitors of SARSâ€CoVâ€2, identified by using in silico methods and in vitro assay. Scientific Reports, 2022, 12, . Mucosal administration of a live attenuated recombinant COVID-19 vaccine protects nonhuman	6.4 3.3	5 12
1920 1921	COVID-19 Pandemic: Insights into Interactions between SARS-CoV-2 Infection and MAFLD. International Journal of Biological Sciences, 2022, 18, 4756-4767. (+)-Usnic acid and its salts, inhibitors of SARSâ€CoVâ€2, identified by using in silico methods and in vitro assay. Scientific Reports, 2022, 12, . Mucosal administration of a live attenuated recombinant COVID-19 vaccine protects nonhuman primates from SARS-CoV-2. Npj Vaccines, 2022, 7, . Development of transgenic models susceptible and resistant to SARS-CoV-2 infection in FVB	6.4 3.3 6.0	5 12 23
1920 1921 1922	COVID-19 Pandemic: Insights into Interactions between SARS-CoV-2 Infection and MAFLD. International Journal of Biological Sciences, 2022, 18, 4756-4767. (+)-Usnic acid and its salts, inhibitors of SARSâ€CoVâ€2, identified by using in silico methods and in vitro assay. Scientific Reports, 2022, 12, . Mucosal administration of a live attenuated recombinant COVID-19 vaccine protects nonhuman primates from SARS-CoV-2. Npj Vaccines, 2022, 7, . Development of transgenic models susceptible and resistant to SARS-CoV-2 infection in FVB background mice. PLoS ONE, 2022, 17, e0272019. Hemagglutinin Subtype Specificity and Mechanisms of Highly Pathogenic Avian Influenza Virus Genesis.	6.4 3.3 6.0 2.5	5 12 23 2
1920 1921 1922 1923	COVID-19 Pandemic: Insights into Interactions between SARS-CoV-2 Infection and MAFLD. International Journal of Biological Sciences, 2022, 18, 4756-4767. (+)-Usnic acid and its salts, inhibitors of SARSâ€CoVâ€2, identified by using in silico methods and in vitro assay. Scientific Reports, 2022, 12, . Mucosal administration of a live attenuated recombinant COVID-19 vaccine protects nonhuman primates from SARS-CoV-2. Npj Vaccines, 2022, 7, . Development of transgenic models susceptible and resistant to SARS-CoV-2 infection in FVB background mice. PLoS ONE, 2022, 17, e0272019. Hemagglutinin Subtype Specificity and Mechanisms of Highly Pathogenic Avian Influenza Virus Genesis. Viruses, 2022, 14, 1566.	 6.4 3.3 6.0 2.5 3.3 	5 12 23 2 17

~			_	
CI	ΓΑΤΙ	ION	REI	PORT

#	Article	IF	CITATIONS
1927	Affinity of anti-spike antibodies to three major SARS-CoV-2 variants in recipients of three major vaccines. Communications Medicine, 2022, 2, .	4.2	3
1929	The Key Role of Lysosomal Protease Cathepsins in Viral Infections. International Journal of Molecular Sciences, 2022, 23, 9089.	4.1	18
1930	COVID-19 and pregnancy: clinical outcomes; mechanisms, and vaccine efficacy. Translational Research, 2023, 251, 84-95.	5.0	14
1931	Vaccines against SARS-CoV-2 variants and future pandemics. Expert Review of Vaccines, 2022, 21, 1363-1376.	4.4	6
1932	Evolutionary remodelling of Nâ€ŧerminal domain loops fineâ€ŧunes <scp>SARS oV</scp> â€₂ spike. EMBO Reports, 2022, 23, .	4.5	18
1933	GRP78, a Novel Host Factor for SARS-CoV-2: The Emerging Roles in COVID-19 Related to Metabolic Risk Factors. Biomedicines, 2022, 10, 1995.	3.2	8
1934	T cell perturbations persist for at least 6 months following hospitalization for COVID-19. Frontiers in Immunology, 0, 13, .	4.8	16
1935	PEDOT:PSS in Solution Form Exhibits Strong Potential in Inhibiting SARS-CoV-2 Infection of the Host Cells by Targeting Viruses and Also the Host Cells. Biomacromolecules, 2022, 23, 3535-3548.	5.4	4
1936	Plasma metabolome and cytokine profile reveal glycylproline modulating antibody fading in convalescent COVID-19 patients. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
1937	Role of tannic acid against SARS-cov-2 cell entry by targeting the interface region between S-protein-RBD and human ACE2. Frontiers in Pharmacology, 0, 13, .	3.5	1
1938	Discovery of novel potential inhibitors of TMPRSS2 and Mpro of SARS oVâ€2 using E-pharmacophore and docking-based virtual screening combined with molecular dynamic and quantum mechanics. Journal of Biomolecular Structure and Dynamics, 2023, 41, 6775-6788.	3.5	4
1939	Identification and semisynthesis of (â^')-anisomelic acid as oral agent against SARS-CoV-2 in mice. National Science Review, 2022, 9, .	9.5	1
1940	CRISPR-Cas system: from diagnostic tool to potential antiviral treatment. Applied Microbiology and Biotechnology, 2022, 106, 5863-5877.	3.6	10
1941	Therapeutic Potentials of Black Seeds (Nigella sativa) in the Management of COVID-19 -A Review of Clinical and In-silico Studies. Anti-Infective Agents, 2023, 21, 14-23.	0.4	3
1942	Soluble ACE2 is Filtered into the Urine. Kidney360, 0, 3, 10.34067/KID.0001622022.	2.1	1
1944	Structural bioinformatics analysis of SARS-CoV-2 variants reveals higher hACE2 receptor binding affinity for Omicron B.1.1.529 spike RBD compared to wild type reference. Scientific Reports, 2022, 12, .	3.3	11
1945	In vitro high-content tissue models to address precision medicine challenges. Molecular Aspects of Medicine, 2022, , 101108.	6.4	1
1946	Identification of novel tumor microenvironment-associated genes in gastric cancer based on single-cell RNA-sequencing datasets. Frontiers in Genetics, 0, 13, .	2.3	2

#	Article	IF	CITATIONS
1947	The roles of cellular protease interactions in viral infections and programmed cell death: a lesson learned from the SARS-CoV-2 outbreak and COVID-19 pandemic. Pharmacological Reports, 2022, 74, 1149-1165.	3.3	5
1949	Structural analysis of Spike proteins from SARS-CoV-2 variants of concern highlighting their functional alterations. Future Virology, 2022, 17, 723-732.	1.8	7
1950	Evolution of Stronger SARS-CoV-2 Variants as Revealed Through the Lens of Molecular Dynamics Simulations. Protein Journal, 2022, 41, 444-456.	1.6	4
1951	Heterogeneous expression of ACE2, TMPRSS2, and FURIN at single-cell resolution in advanced non-small cell lung cancer. Journal of Cancer Research and Clinical Oncology, 0, , .	2.5	4
1952	Unravelling the Mechanistic Role of ACE2 and TMPRSS2 in Hypertension: A Risk Factor for COVID-19. Current Hypertension Reviews, 2022, 18, 130-137.	0.9	5
1953	Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infectious Diseases, 2022, 8, 1758-1814.	3.8	47
1954	Superrepellent Doubly Reentrant Geometry Promotes Antibiofouling and Prevention of Coronavirus Contamination. Advanced Materials Technologies, 2023, 8, .	5.8	1
1956	Promising natural products against <scp>SARSâ€CoV</scp> â€2: Structure, function, and clinical trials. Phytotherapy Research, 2022, 36, 3833-3858.	5.8	9
1957	SARS-COV-2/COVID-19: scenario, epidemiology, adaptive mutations, and environmental factors. Environmental Science and Pollution Research, 2022, 29, 69117-69136.	5.3	7
1958	Search for Novel Potent Inhibitors of the SARS-CoV-2 Papain-like Enzyme: A Computational Biochemistry Approach. Pharmaceuticals, 2022, 15, 986.	3.8	1
1959	In Vitro Evaluation of In Silico Screening Approaches in Search for Selective ACE2 Binding Chemical Probes. Molecules, 2022, 27, 5400.	3.8	1
1960	An ACE2-IgG4 Fc Fusion Protein Demonstrates Strong Binding to All Tested SARS-CoV-2 Variants and Reduced Lung Inflammation in Animal Models of SARS-CoV-2 and Influenza. Pathogens and Immunity, 2022, 7, 104-121.	3.1	1
1961	Serum N-glycomic profiling may provide potential signatures for surveillance of COVID-19. Glycobiology, 0, , .	2.5	1
1962	Genomic surveillance of SARS-CoV-2 by sequencing the RBD region using Sanger sequencing from North Kerala. Frontiers in Public Health, 0, 10, .	2.7	2
1963	Genetically Engineered MRI-Trackable Extracellular Vesicles as SARS-CoV-2 Mimetics for Mapping ACE2 Binding <i>In Vivo</i> . ACS Nano, 2022, 16, 12276-12289.	14.6	6
1964	Computational Design of Miniprotein Inhibitors Targeting SARS-CoV-2 Spike Protein. Langmuir, 0, , .	3.5	6
1965	Ultrarapid and ultrasensitive detection of SARSâ€CoVâ€2 antibodies in COVIDâ€19 patients via a 3Dâ€printed nanomaterialâ€based biosensing platform. Journal of Medical Virology, 2022, 94, 5808-5826.	5.0	8
1966	UV222 disinfection of SARS-CoV-2 in solution. Scientific Reports, 2022, 12, .	3.3	10

#	Article	IF	CITATIONS
1967	Scope of repurposed drugs against the potential targets of the latest variants of SARS-CoV-2. Structural Chemistry, 2022, 33, 1585-1608.	2.0	6
1968	Perspective Chapter: Tracking Trails of SARS CoV-2 - Variants to Therapy. Infectious Diseases, 0, , .	4.0	0
1969	Targeted escape of SARS-CoV-2 in vitro from monoclonal antibody S309, the precursor of sotrovimab. Frontiers in Immunology, 0, 13, .	4.8	10
1970	In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	15
1971	Increased TRIM31 gene expression is positively correlated with SARS-CoV-2 associated genes TMPRSS2 and TMPRSS4 in gastrointestinal cancers. Scientific Reports, 2022, 12, .	3.3	11
1972	Intelligent resolution: Integrating Cryo-EM with Al-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action. International Journal of High Performance Computing Applications, 0, , 109434202211135.	3.7	2
1973	Discovery of natural products to block SARS-CoV-2 S-protein interaction with Neuropilin-1 receptor: A molecular dynamics simulation approach. Microbial Pathogenesis, 2022, 170, 105701.	2.9	6
1974	Multivalent ACE2 engineering—A promising pathway for advanced coronavirus nanomedicine development. Nano Today, 2022, 46, 101580.	11.9	7
1975	Targeted therapy in Coronavirus disease 2019 (COVID-19): Implication from cell and gene therapy to immunotherapy and vaccine. International Immunopharmacology, 2022, 111, 109161.	3.8	9
1976	Virtual screening and molecular dynamics simulation for identification of natural antiviral agents targeting SARS-CoV-2 NSP10. Biochemical and Biophysical Research Communications, 2022, 626, 114-120.	2.1	2
1977	Predicting COVID-19 disease severity from SARS-CoV-2 spike protein sequence by mixed effects machine learning. Computers in Biology and Medicine, 2022, 149, 105969.	7.0	7
1978	Deciphering the enigmatic crosstalk between prostate cancer and Alzheimer's disease: A current update on molecular mechanisms and combination therapy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166524.	3.8	3
1979	Epigenetic perspectives of COVID-19: Virus infection to disease progression and therapeutic control. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166527.	3.8	4
1981	SARS-CoV-2 hijacks macropinocytosis to facilitate its entry and promote viral spike–mediated cell-to-cell fusion. Journal of Biological Chemistry, 2022, 298, 102511.	3.4	9
1982	SARS-CoV-2-associated gut microbiome alteration; A new contributor to colorectal cancer pathogenesis. Pathology Research and Practice, 2022, 239, 154131.	2.3	7
1983	Spike S1 domain interactome in non-pulmonary systems: A role beyond the receptor recognition. Frontiers in Molecular Biosciences, 0, 9, .	3.5	6
1985	Converting non-neutralizing SARS-CoV-2 antibodies into broad-spectrum inhibitors. Nature Chemical Biology, 2022, 18, 1270-1276.	8.0	8
1986	Cross-Reactivity of SARS-CoV-2 Nucleocapsid-Binding Antibodies and Its Implication for COVID-19 Serology Tests. Viruses, 2022, 14, 2041.	3.3	18

#	Article	IF	CITATIONS
1987	Electrospun-Based Membranes as a Key Tool to Prevent Respiratory Infections. Polymers, 2022, 14, 3787.	4.5	2
1988	Towards novel nano-based vaccine platforms for SARS-CoV-2 and its variants of concern: Advances, challenges and limitations. Journal of Drug Delivery Science and Technology, 2022, 76, 103762.	3.0	0
1989	Exploring the anti-SARS-CoV-2 main protease potential of FDA approved marine drugs using integrated machine learning templates as predictive tools. International Journal of Biological Macromolecules, 2022, 220, 1415-1428.	7.5	5
1990	Single domain antibodies derived from ancient animals as broadly neutralizing agents for SARS-CoV-2 and other coronaviruses. Biomedical Engineering Advances, 2022, 4, 100054.	3.8	3
1991	Diagnostic and therapeutic potential of protease inhibition. Molecular Aspects of Medicine, 2022, 88, 101144.	6.4	7
1992	Alterations in heparan sulfate proteoglycan synthesis and sulfation and the impact on vascular endothelial function. Matrix Biology Plus, 2022, 16, 100121.	3.5	12
1993	Combating Coronavirus Using Resonant Electromagnetic Irradiation. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2022, 6, 477-484.	3.4	1
1994	SARS-CoV-2 Infection of Lung Organoids Reveals Conserved Use of Tetraspanin-8 by Ancestral-, Delta-, and Omicron- Variants. SSRN Electronic Journal, 0, , .	0.4	0
1995	SARS-CoV-2 Variants: Impact of Spike Mutations on Vaccine and Therapeutic Strategies. , 2022, , 143-160.		0
1996	Wie hat das Coronavirus unsere sichere Welt der SelbstverstĤdlichkeiten verĤdert?. , 2022, , 193-220.		Ο
1997	The emerging role of miRNAs in the pathogenesis of COVID-19: Protective effects of nutraceutical polyphenolic compounds against SARS-CoV-2 infection. International Journal of Medical Sciences, 2022, 19, 1340-1356.	2.5	11
1998	Computationally Repurposed Natural Products Targeting SARS-CoV-2 Attachment and Entry Mechanisms. , 2022, , 505-537.		3
1999	Development and application of ribonucleic acid therapy strategies against COVID-19. International Journal of Biological Sciences, 2022, 18, 5070-5085.	6.4	18
2000	Essential Multiorgan Pathophysiology of COVID-19. , 2022, , 3-13.		Ο
2001	Biophysical and structural characterizations of the effects of mutations on the structure–activity relationships of SARS-CoV-2 spike protein. Methods in Enzymology, 2022, , 299-321.	1.0	2
2002	Lapachol and (<i>î±</i> / <i>î²</i>)-lapachone as inhibitors of SARS-CoV-2 main protease (Mpro) and hACE-2: ADME properties, docking and dynamic simulation approaches. Pharmacognosy Magazine, 2022, .	0.6	3
2003	SARS-CoV-2 Invasion and Pathogenesis of COVID-19: A Perspective of Viral Receptors, Bradykinin, and Purinergic System. , 2022, , 31-48.		0
2004	Understanding COVID-19 Epidemics: A Multi-Scale Modeling Approach. Modeling and Simulation in Science, Engineering and Technology, 2022, , 11-42.	0.6	3

		Citation Re	PORT	
#	Article		IF	Citations
2005	Laboratory Markers of COVID-19 in the Emergency Room. Biomarkers in Disease, 2022	2, , 1-28.	0.1	0
2006	COVID-19, Influenza, and Other Acute Respiratory Viral Infections: Etiology, Immunop Diagnosis, and Treatment. Part I. COVID-19 and Influenza. Molecular Genetics, Microb Virology, 2022, 37, 1-9.	athogenesis, iology and	0.3	1
2007	COVID-19–Associated Acute Kidney Injury. Nephrology Self-assessment Program: Ne 94-99.	2phSAP, 2022, 21,	3.0	0
2008	Global public health implications of human exposure to viral contaminated water. Fror Microbiology, 0, 13, .	tiers in	3.5	24
2010	Redox stress in COVID-19: Implications for hematologic disorders. Best Practice and Re Clinical Haematology, 2022, 35, 101373.	esearch in	1.7	0
2012	Broad-Spectrum Small-Molecule Inhibitors of the SARS-CoV-2 Spike—ACE2 Proteinâ€ from a Chemical Space of Privileged Protein Binders. Pharmaceuticals, 2022, 15, 1084	"Protein Interaction	3.8	5
2013	Time Series Analysis of SARS-CoV-2 Genomes and Correlations among Highly Prevalen Microbiology Spectrum, 2022, 10, .	t Mutations.	3.0	8
2014	Neurological Complications of SARS-CoV-2 Infection and COVID-19 Vaccines: From Mo Mechanisms to Clinical Manifestations. Current Drug Targets, 2022, 23, .	blecular	2.1	1
2015	Therapeutic Potential of Myrrh, a Natural Resin, in Health Management through Modu Oxidative Stress, Inflammation, and Advanced Glycation End Products Formation Usin Silico Analysis. Applied Sciences (Switzerland), 2022, 12, 9175.		2.5	11
2016	A replication-competent smallpox vaccine LC16m8î"-based COVID-19 vaccine. Emergi Infections, 2022, 11, 2359-2370.	ng Microbes and	6.5	5
2017	Placenta, the Key Witness of COVID-19 Infection in Premature Births. Diagnostics, 202	22, 12, 2323.	2.6	2
2018	Novel Regioselective Approach to Cyclize Phage-Displayed Peptides in Combination wi Epitope-Directed Selection to Identify a Potent Neutralizing Macrocyclic Peptide for S/ Chemical Biology, 2022, 17, 2911-2922.		3.4	6
2019	COVID-19 and cognitive impairment: neuroinvasive and blood‒brain barrier dysfunct Neuroinflammation, 2022, 19, .	ion. Journal of	7.2	36
2020	Structural topological analysis of spike proteins of SARS-CoV-2 variants of concern hig distinctive amino acid substitution patterns. European Journal of Cell Biology, 2022, 1		3.6	4
2022	Potential of conserved antigenic sites in development of universal SARS-like coronavir Frontiers in Immunology, 0, 13, .	us vaccines.	4.8	0
2023	Boosting the detection performance of severe acute respiratory syndrome coronavirus through a sensitive optical biosensor with new superior antibody. Bioengineering and Medicine, 2023, 8, .		7.1	2
2024	Electrostatic Features for the Receptor Binding Domain of SARS-COV-2 Wildtype and I Compass to the Severity of the Future Variants with the Charge-Rule. Journal of Physic 2022, 126, 6835-6852.	ts Variants. al Chemistry B,	2.6	19
2025	Energetics of Spike Protein Opening of SARS-CoV-1 and SARS-CoV-2 and Its Variants o Implications in Host Receptor Scanning and Transmission. Biochemistry, 2022, 61, 21		2.5	6

#	Article	IF	CITATIONS
2026	Update on Extracellular Vesicle-Based Vaccines and Therapeutics to Combat COVID-19. International Journal of Molecular Sciences, 2022, 23, 11247.	4.1	7
2027	Structurally Modified Bioactive Peptide Inhibits SARS-CoV-2 Lentiviral Particles Expression. Pharmaceutics, 2022, 14, 2045.	4.5	2
2029	The emerging multifunctional roles ofÂERAP1, ERAP2 and IRAP between antigen processing and renin-angiotensin system modulation. Frontiers in Immunology, 0, 13, .	4.8	8
2030	The Spike-Stabilizing D614G Mutation Interacts with S1/S2 Cleavage Site Mutations To Promote the Infectious Potential of SARS-CoV-2 Variants. Journal of Virology, 2022, 96, .	3.4	6
2031	SARS-CoV-2 Variants, Current Vaccines and Therapeutic Implications for COVID-19. Vaccines, 2022, 10, 1538.	4.4	12
2032	New-Onset and Relapsed Membranous Nephropathy post SARS-CoV-2 and COVID-19 Vaccination. Viruses, 2022, 14, 2143.	3.3	7
2033	Diffusion-Induced Ingress of Angiotensin-Converting Enzyme 2 into the Charge Conducting Path of a Pentacene Channel for Efficient Detection of SARS-CoV-2 in Saliva Samples. ACS Sensors, 2022, 7, 3006-3013.	7.8	7
2034	Neuropilin-1 Facilitates Pseudorabies Virus Replication and Viral Glycoprotein B Promotes Its Degradation in a Furin-Dependent Manner. Journal of Virology, 2022, 96, .	3.4	10
2035	Transcriptomics and RNA-Based Therapeutics as Potential Approaches to Manage SARS-CoV-2 Infection. International Journal of Molecular Sciences, 2022, 23, 11058.	4.1	2
2036	Design of Three Residues Peptides against SARS-CoV-2 Infection. Viruses, 2022, 14, 2103.	3.3	8
2037	Long-term effect of SARS-CoV-2 infection on cardiovascular outcomes and all-cause mortality. Life Sciences, 2022, 310, 121018.	4.3	13
2038	A decoy microrobot that removes SARS-CoV-2 and its variants in wastewater. Cell Reports Physical Science, 2022, 3, 101061.	5.6	4
2039	Native and activated antithrombin inhibits TMPRSS2 activity and SARS oVâ€2 infection. Journal of Medical Virology, 2023, 95, .	5.0	13
2040	Metabolic dyshomeostasis induced by SARS-CoV-2 structural proteins reveals immunological insights into viral olfactory interactions. Frontiers in Immunology, 0, 13, .	4.8	1
2041	SARS-CoV-2 requires acidic pH to infect cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	54
2042	Preventing SARS-CoV-2 Infection Using Anti-spike Nanobody-IFN-Î ² Conjugated Exosomes. Pharmaceutical Research, 0, , .	3.5	2
2043	Suppression of ACE2 SUMOylation protects against SARS-CoV-2 infection through TOLLIP-mediated selective autophagy. Nature Communications, 2022, 13, .	12.8	22
2044	Safety, Tolerability, and Pharmacokinetics of the Novel Antiviral Agent Ensitrelvir Fumaric Acid, a SARS-CoV-2 3CL Protease Inhibitor, in Healthy Adults. Antimicrobial Agents and Chemotherapy, 2022, 66,	3.2	26

#	Article	IF	CITATIONS
2045	Proteomic insights into SARS-CoV-2 infection mechanisms, diagnosis, therapies and prognostic monitoring methods. Frontiers in Immunology, 0, 13, .	4.8	6
2046	Diabetes mellitus y COVID-19, Â $_{i}$ una relaci $ ilde{A}^{3}$ n bidireccional?. Iatreia, 0, , .	0.1	0
2047	Intranasal immunization with recombinant Vaccinia virus encoding trimeric SARS-CoV-2 spike receptor-binding domain induces neutralizing antibody. Vaccine, 2022, 40, 5757-5763.	3.8	5
2048	Immunology to Immunotherapeutics of SARS-CoV-2: Identification of Immunogenic Epitopes for Vaccine Development. Current Microbiology, 2022, 79, .	2.2	3
2049	Covid-19 Transmission, Risks Factors and Disease Characteristics in Asthmatics Patients. Postepy Mikrobiologii, 2022, 61, 125-132.	0.1	0
2050	An overview of gastrointestinal diseases in patients with COVID-19: A narrative review. Medicine (United States), 2022, 101, e30297.	1.0	1
2051	A recombinant subunit vaccine candidate produced in plants elicits neutralizing antibodies against SARS-CoV-2 variants in macaques. Frontiers in Plant Science, 0, 13, .	3.6	3
2053	Therapeutic prospects of ceRNAs in COVID-19. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	3
2054	Identification of interaction partners using protein aggregation and NMR spectroscopy. PLoS ONE, 2022, 17, e0270058.	2.5	0
2055	Subtyping of major SARS-CoV-2 variants reveals different transmission dynamics based on 10 million genomes. , 0, , .		3
2056	Druggable targets and therapeutic development for COVID-19. Frontiers in Chemistry, 0, 10, .	3.6	4
2057	Differential patterns of cross-reactive antibody response against SARS-CoV-2 spike protein detected for chronically ill and healthy COVID-19 naÃ ⁻ ve individuals. Scientific Reports, 2022, 12, .	3.3	8
2058	Dynamics of Neutralizing Antibodies and Binding Antibodies to Domains of SARS-CoV-2 Spike Protein in COVID-19 Survivors. Viral Immunology, 2022, 35, 545-552.	1.3	4
2059	Adaptationâ€Proof SARS oVâ€2 Vaccine Design. Advanced Functional Materials, 2022, 32, .	14.9	7
2060	Protocol for characterizing the inhibition of SARS-CoV-2 infection by a protein of interest in cultured cells. STAR Protocols, 2022, 3, 101802.	1.2	0
2061	Autophagyâ€linked plasma and lysosomal membrane protein <scp>PLAC8</scp> is a key host factor for <scp>SARS oV</scp> â€2 entry into human cells. EMBO Journal, 2022, 41, .	7.8	14
2062	Chinese herbal prescriptions for COVID-19 management: Special reference to Taiwan Chingguan Yihau (NRICM101). Frontiers in Pharmacology, 0, 13, .	3.5	10
2063	Recombinant Protein Micelles to Block Transduction by SARS-CoV-2 Pseudovirus. ACS Nano, 2022, 16, 17466-17477.	14.6	2

		_		
Сіт	ATIC	NNE D		
	ALIC	on R	EP.	JRT

#	Article	IF	CITATIONS
2064	Current therapeutic strategies and possible effective drug delivery strategies against COVID-19. Current Drug Delivery, 2022, 19, .	1.6	1
2066	Immunoglobulin yolk targeting spike 1, receptor binding domain of spike glycoprotein and nucleocapsid of SARS-CoV-2 blocking RBD-ACE2 binding interaction. International Immunopharmacology, 2022, 112, 109280.	3.8	1
2067	Pattern enrichment analysis for phage selection of stapled peptide ligands. Chemical Science, 2022, 13, 12634-12642.	7.4	3
2068	Synergistic Effects of Environmental Factors on the Spread of Corona Virus. Springer Series on Bio- and Neurosystems, 2022, , 677-695.	0.2	0
2069	Acute pancreatitis as an adverse effect of COVID-19 vaccination. SAGE Open Medical Case Reports, 2022, 10, 2050313X2211311.	0.3	6
2070	Development of a Targeted Drug Delivery System for the Treatment of SARS-CoV-2. Journal of Biosciences and Medicines, 2022, 10, 13-33.	0.2	0
2071	LONG-COVID: AN OUTCOME OF MITOCHONDRIAL DYSFUNCTION (A BRIEF NARRATIVE REVIEW)., 2022, , 22-27.		0
2072	Advances in Targeting ACE2 for Developing COVID-19 Therapeutics. Annals of Biomedical Engineering, 2022, 50, 1734-1749.	2.5	5
2073	SARSâ€CoVâ€2 cellular tropism and direct multiorgan failure in COVIDâ€19 patients: Bioinformatic predictions, experimental observations, and open questions. Cell Biology International, 2023, 47, 308-326.	3.0	7
2074	Proviral role of human respiratory epithelial cellâ€derived small extracellular vesicles in SARSâ€CoVâ€2 infection. Journal of Extracellular Vesicles, 2022, 11, .	12.2	7
2075	Cell Entry and Unusual Replication of SARS-CoV-2. Current Drug Targets, 2022, 23, 1539-1554.	2.1	1
2076	Angiotensin converting enzyme 2 level and its significance in COVIDâ€19 and other diseases patients. European Journal of Clinical Investigation, 0, , .	3.4	2
2077	Spike protein mediated membrane fusion during SARS oVâ€2 infection. Journal of Medical Virology, 2023, 95, .	5.0	15
2078	Scramblases and virus infection. BioEssays, 2022, 44, .	2.5	1
2079	Variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Vaccine Effectiveness. Vaccines, 2022, 10, 1751.	4.4	10
2080	A Review of Potential Therapeutic Strategies for COVID-19. Viruses, 2022, 14, 2346.	3.3	3
2081	Transmembrane serine protease TMPRSS2 implicated in SARS-CoV-2 infection is autoactivated intracellularly and requires N-glycosylation for regulation. Journal of Biological Chemistry, 2022, 298, 102643.	3.4	2
2082	The Comparison of Mutational Progression in SARS-CoV-2: A Short Updated Overview. Journal of Molecular Pathology, 2022, 3, 201-218.	1.2	13

#	Article	IF	CITATIONS
2083	Membrane attachment and fusion of HIV-1, influenza A, and SARS-CoV-2: resolving the mechanisms with biophysical methods. Biophysical Reviews, 2022, 14, 1109-1140.	3.2	15
2084	Tissue―and cellâ€expression of druggable host proteins provide insights into repurposing drugs for <scp>COVID</scp> â€19. Clinical and Translational Science, 0, , .	3.1	2
2085	Operational intricacies of sequencing-based surveillance in developing countries. Annals of Translational Medicine, 2022, 10, 1043-1043.	1.7	0
2086	Fluid nanoporous microinterface enables multiscale-enhanced affinity interaction for tumor-derived extracellular vesicle detection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
2087	Antifungal Effect of Nanoparticles against COVID-19 Linked Black Fungus: A Perspective on Biomedical Applications. International Journal of Molecular Sciences, 2022, 23, 12526.	4.1	10
2088	Increased circulating microparticles contribute to severe infection and adverse outcomes of COVID-19 patients with diabetes. American Journal of Physiology - Heart and Circulatory Physiology, 0,	3.2	0
2089	Arylcoumarin perturbs SARS-CoV-2 pathogenesis by targeting the S-protein/ACE2 interaction. Scientific Reports, 2022, 12, .	3.3	0
2090	Irradiation of UVC LED at 277 nm inactivates coronaviruses in association to photodegradation of spike protein. Heliyon, 2022, 8, e11132.	3.2	2
2091	Oligomerization-Dependent Beta-Structure Formation in SARS-CoV-2 Envelope Protein. International Journal of Molecular Sciences, 2022, 23, 13285.	4.1	5
2092	Structural basis for mouse receptor recognition by SARS-CoV-2 omicron variant. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	26
2093	Tracking machine learning models for pandemic scenarios: a systematic review of machine learning models that predict local and global evolution of pandemics. Network Modeling Analysis in Health Informatics and Bioinformatics, 2022, 11, .	2.1	1
2094	Essential role of TMPRSS2 in SARS-CoV-2 infection in murine airways. Nature Communications, 2022, 13,	12.8	46
2095	Choosing a cellular model to study SARS-CoV-2. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	22
2096	Infection of the oral cavity with SARS-CoV-2 variants: Scope of salivary diagnostics. Frontiers in Oral Health, 0, 3, .	3.0	3
2097	Glycosylation in SARS-CoV-2 variants: A path to infection and recovery. Biochemical Pharmacology, 2022, 206, 115335.	4.4	7
2098	<scp>DNA</scp> damage contributes to ageâ€associated differences in <scp>SARS oV</scp> â€2 infection. Aging Cell, 2022, 21, .	6.7	10
2099	Smart healthcare: A prospective future medical approach for COVID-19. Journal of the Chinese Medical Association, 2023, 86, 138-146.	1.4	7
2100	Redox Status Is the Mainstay of SARS-CoV-2 and Host for Producing Therapeutic Opportunities. Antioxidants, 2022, 11, 2061.	5.1	1

#	Article	IF	CITATIONS
2101	An update on the interaction between COVID-19, vaccines, and diabetic kidney disease. Frontiers in Immunology, 0, 13, .	4.8	0
2102	Chimeric mRNA-based COVID-19 vaccine induces protective immunity against Omicron and Delta variants. Molecular Therapy - Nucleic Acids, 2022, 30, 465-476.	5.1	6
2103	Selective sweeps in SARS-CoV-2 variant competition. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	9
2104	Computational analysis of interior mutations of SARS-CoV-2 Spike protein suggest a balance of protein stability and S2: S1 separation propensity. Computational and Structural Biotechnology Journal, 2022, 20, 6078-6086.	4.1	0
2105	Effect of the Graphene Nanosheet on Functions of the Spike Protein in Open and Closed States: Comparison between SARS-CoV-2 Wild Type and the Omicron Variant. Langmuir, 2022, 38, 13972-13982.	3.5	3
2106	Identification and differential usage of a host metalloproteinase entry pathway by SARS-CoV-2 Delta and Omicron. IScience, 2022, 25, 105316.	4.1	16
2107	Combined use of lactoferrin and vitamin D as a preventive and therapeutic supplement for SARS-CoV-2 infection: Current evidence. World Journal of Clinical Cases, 0, 10, 11665-11670.	0.8	1
2108	Leukocyte metabolism in obese type 2 diabetic individuals associated with COVID-19 severity. Frontiers in Microbiology, 0, 13, .	3.5	1
2109	Induction of cross-reactive, mucosal anti-SARS-CoV-2 antibody responses in rheumatoid arthritis patients after 3rd dose of COVID-19 vaccination. Journal of Autoimmunity, 2022, 133, 102918.	6.5	1
2110	D3AI-Spike: A deep learning platform for predicting binding affinity between SARS-CoV-2 spike receptor binding domain with multiple amino acid mutations and human angiotensin-converting enzyme 2. Computers in Biology and Medicine, 2022, 151, 106212.	7.0	5
2111	Transmission and intervention dynamics of SARS-CoV-2. , 2023, , 69-83.		0
2112	Mutations in SARS-CoV-2: Insights on structure, variants, vaccines, and biomedical interventions. Biomedicine and Pharmacotherapy, 2023, 157, 113977.	5.6	66
2113	<i>In silico</i> study identifies peptide inhibitors that negate the effect of non-synonymous mutations in major drug targets of SARS-CoV-2 variants. Journal of Biomolecular Structure and Dynamics, 2023, 41, 9551-9561.	3.5	1
2114	Insight into the role of clathrinâ€mediated endocytosis inhibitors in SARS oVâ€2 infection. Reviews in Medical Virology, 2023, 33, .	8.3	14
2115	Proteolysis and Deficiency of α1-Proteinase Inhibitor in SARS-CoV-2 Infection. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2022, 16, 271-291.	0.4	1
2117	Antiviral effects of phytochemicals against severe acute respiratory syndrome coronavirus 2 and their mechanisms of action: A review. Phytotherapy Research, 2023, 37, 1036-1056.	5.8	9
2118	Intranasal delivery of a rationally attenuated SARS-CoV-2 is immunogenic and protective in Syrian hamsters. Nature Communications, 2022, 13, .	12.8	11
2119	Serological responses triggered by different SARS-CoV-2 vaccines against SARS-CoV-2 variants in Taiwan. Frontiers in Immunology, 0, 13, .	4.8	3

#	Article	IF	CITATIONS
2120	Circular RNAs as emerging regulators in COVID-19 pathogenesis and progression. Frontiers in Immunology, 0, 13, .	4.8	4
2121	Novel CYP11A1-Derived Vitamin D and Lumisterol Biometabolites for the Management of COVID-19. Nutrients, 2022, 14, 4779.	4.1	14
2122	<i>Ganoderma lucidum</i> polysaccharides ameliorate lipopolysaccharide-induced acute pneumonia via inhibiting NRP1-mediatedÂinflammation. Pharmaceutical Biology, 2022, 60, 2201-2209.	2.9	7
2123	Tfh cells and the germinal center are required for memory B cell formation & humoral immunity after ChAdOx1 nCoV-19 vaccination. Cell Reports Medicine, 2022, 3, 100845.	6.5	6
2124	Structural remodeling of SARS-CoV-2 spike protein glycans reveals the regulatory roles in receptor-binding affinity. Glycobiology, 2023, 33, 126-137.	2.5	11
2125	Structural effects of spike protein D614G mutation in SARS-CoV-2. Biophysical Journal, 2023, 122, 2910-2920.	0.5	11
2126	Promising Drug Fondaparinux for the Treatment of COVID-19: an In Silico Analysis of Low Molecular Weight Heparin, Direct Oral Anticoagulant, and Antiplatelet Drug Interactions with Host Protease Furin. Cardiovascular Drugs and Therapy, 0, , .	2.6	1
2127	Inflammation in COVID-19: A Risk for Superinfections. Covid, 2022, 2, 1609-1624.	1.5	4
2128	Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial Metabolism in Human Pulmonary Microvascular Endothelial Cells: Involvement of Factor Xa. Disease Markers, 2022, 2022, 1-11.	1.3	5
2129	Green and Regioselective Approach for the Synthesis of 3-Substituted Indole Based 1,2-Dihydropyridine and Azaxanthone Derivatives as a Potential Lead for SARS-CoV-2 and Delta Plus Mutant Virus: DFT and Docking Studies. ACS Omega, 0, , .	3.5	3
2130	Rapid discovery and classification of inhibitors of coronavirus infection by pseudovirus screen and amplified luminescence proximity homogeneous assay. Antiviral Research, 2023, 209, 105473.	4.1	4
2131	Genetic landscape of colorectal cancer patients manifesting tumor shrinkage during SARS-Cov-2 infection. Therapeutic Advances in Medical Oncology, 2022, 14, 175883592211383.	3.2	2
2132	Nanobody derived using a peptide epitope from the spike protein receptor-binding motif inhibits entry of SARS-CoV-2 variants. Journal of Biological Chemistry, 2023, 299, 102732.	3.4	3
2133	A PEG-lipid-free COVID-19 mRNA vaccine triggers robust immune responses in mice. Materials Horizons, 2023, 10, 466-472.	12.2	4
2134	Circulating microRNAs as emerging regulators of COVID-19. Theranostics, 2023, 13, 125-147.	10.0	11
2135	Discovery and structural optimization of 3-O-β-Chacotriosyl betulonic acid saponins as potent fusion inhibitors of Omicron virus infections. Bioorganic Chemistry, 2023, 131, 106316.	4.1	4
2136	Inhibitory activities of alginate phosphate and sulfate derivatives against SARS-CoV-2 in vitro. International Journal of Biological Macromolecules, 2023, 227, 316-328.	7.5	2
2137	A Polymorphism in the TMPRSS2 Gene Increases the Risk of Death in Older Patients Hospitalized with COVID-19. Viruses, 2022, 14, 2557.	3.3	9

CITATI	 D	_
	REDU	ID T
CITAT	ICLF U	

#	Article	IF	CITATIONS
2138	Targeted screening of genetic associations with COVID-19 susceptibility and severity. Frontiers in Genetics, 0, 13, .	2.3	7
2139	Formulation, Device, and Clinical Factors Influencing the Targeted Delivery of COVID-19 Vaccines to the Lungs. AAPS PharmSciTech, 2023, 24, .	3.3	2
2140	Serological survey of SARS-CoV-2 in companion animals in China. Frontiers in Veterinary Science, 0, 9, .	2.2	3
2141	Innate and adaptive immune response in SARS-CoV-2 infection-Current perspectives. Frontiers in Immunology, 0, 13, .	4.8	14
2142	Assessment of SARSâ€CoVâ€⊋ entry in gingival epithelial cells expressing CD147. European Journal of Oral Sciences, 0, , .	1.5	0
2143	Antcin A, a phytosterol regulates <scp>SARSâ€CoV</scp> â€2 spike proteinâ€mediated metabolic alteration in <scp>THP</scp> â€1 cells explored by the <scp>¹Hâ€NMR</scp> â€based metabolomics approach. Phytotherapy Research, 2023, 37, 885-902.	5.8	2
2144	Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	3
2146	From acute SARS-CoV-2 infection to pulmonary hypertension. Frontiers in Physiology, 0, 13, .	2.8	8
2147	The SARS-CoV-2 spike protein binds and modulates estrogen receptors. Science Advances, 2022, 8, .	10.3	17
2148	Silver nanoparticles with excellent biocompatibility block pseudotyped SARS-CoV-2 in the presence of lung surfactant. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	1
2150	Desloratadine, an FDA-approved cationic amphiphilic drug, inhibits SARS-CoV-2 infection in cell culture and primary human nasal epithelial cells by blocking viral entry. Scientific Reports, 2022, 12, .	3.3	5
2151	Use of Antiandrogens as Therapeutic Agents in COVID-19 Patients. Viruses, 2022, 14, 2728.	3.3	3
2152	Interpretable and Predictive Deep Neural Network Modeling of the SARS-CoV-2 Spike Protein Sequence to Predict COVID-19 Disease Severity. Biology, 2022, 11, 1786.	2.8	4
2153	Impact of SARS-CoV-2 vaccination on systemic immune responses in people living with HIV. Frontiers in Immunology, 0, 13, .	4.8	10
2154	Ultrasensitive Isothermal Detection of SARS-CoV-2 Based on Self-Priming Hairpin-Utilized Amplification of the G-Rich Sequence. Analytical Chemistry, 2022, 94, 17448-17455.	6.5	4
2155	A call for immediate action to increase COVID-19 vaccination uptake to prepare for the third pandemic winter. Nature Communications, 2022, 13, .	12.8	7
2156	Advanced Plasmonic Nanoparticle-Based Techniques for the Prevention, Detection, and Treatment of Current COVID-19. Plasmonics, 2023, 18, 311-347.	3.4	4
2157	Loss of furin site enhances SARS-CoV-2 spike protein pseudovirus infection. Gene, 2023, 856, 147144.	2.2	6

#	Article	IF	CITATIONS
2159	Small-molecule metabolites in SARS-CoV-2 treatment: a comprehensive review. Biological Chemistry, 2022, .	2.5	0
2160	Small molecules in the treatment of COVID-19. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	42
2161	Pharmacoinformatic approach to identify potential phytochemicals against SARS-CoV-2 spike receptor-binding domain in native and variants of concern. Molecular Diversity, 0, , .	3.9	0
2162	A chromosome-level genome assembly reveals genomic characteristics of the American mink (Neogale) Tj ETQq1	1 0.7843 4.4	14 _. rgBT /Ov
2163	Clinical effects of 2-DG drug restraining SARS-CoV-2 infection: A fractional order optimal control study. Journal of Biological Physics, 2022, 48, 415-438.	1.5	1
2164	Focus on Marine Animal Safety and Marine Bioresources in Response to the SARS-CoV-2 Crisis. International Journal of Molecular Sciences, 2022, 23, 15136.	4.1	3
2165	Development of Fluorescence-Tagged SARS-CoV-2 Virus-like Particles by a Tri-Cistronic Vector Expression System for Investigating the Cellular Entry of SARS-CoV-2. Viruses, 2022, 14, 2825.	3.3	4
2166	COVID-19 vaccination boosts the potency and breadth of the immune response against SARS-CoV-2 among recovered patients in Wuhan. Cell Discovery, 2022, 8, .	6.7	3
2167	Control of SARS-CoV-2 infection by MT1-MMP-mediated shedding of ACE2. Nature Communications, 2022, 13, .	12.8	8
2168	Cardiovascular, Pulmonary, and Neuropsychiatric Short- and Long-Term Complications of COVID-19. Cells, 2022, 11, 3882.	4.1	7
2169	Epidemiology and Characteristics of SARS-CoV-2 Variants of Concern: The Impacts of the Spike Mutations. Microorganisms, 2023, 11, 30.	3.6	11
2170	Modified DNA vaccine confers improved humoral immune response and effective virus protection against SARS-CoV-2 delta variant. Scientific Reports, 2022, 12, .	3.3	5
2171	Preventive and Therapeutic Effects of Punica granatum (Pomegranate) in Respiratory and Digestive Diseases: A Review. Applied Sciences (Switzerland), 2022, 12, 12326.	2.5	4
2172	Controlled Transport of Magnetic Particles and Cells Using C-Shaped Magnetic Thin Films in Microfluidic Chips. Micromachines, 2022, 13, 2177.	2.9	1
2173	QUALITY OF LIFE AND MENTAL HEALTH IN MULTIPLE SLCEROSIS PATIENTS DURING THE COVID-19 PANDEMIC Multiple Sclerosis and Related Disorders, 2022, , 104487.	2.0	3
2174	SARS-CoV-2 Infection in Patients with Cystic Fibrosis: What We Know So Far. Life, 2022, 12, 2087.	2.4	4
2175	A Review: The Antiviral Activity of Cyclic Peptides. International Journal of Peptide Research and Therapeutics, 2023, 29, .	1.9	7
2176	Monoclonal antibodies against S2 subunit of spike protein exhibit broad reactivity toward SARS-CoV-2 variants. Journal of Biomedical Science, 2022, 29, .	7.0	4

#	Article	IF	CITATIONS
2178	A risk assessment study of SARS-CoV-2 propagation in the manufacturing of cellular products. Regenerative Medicine, 0, , .	1.7	0
2179	Novel Affibody Molecules Specifically Bind to SARS-CoV-2 Spike Protein and Efficiently Neutralize Delta and Omicron Variants. Microbiology Spectrum, 2023, 11, .	3.0	1
2180	Biology of SARS-CoV-2 Coronavirus; Origin, Structure, and Variants. Contemporary Cardiology, 2022, , 3-18.	0.1	0
2181	Colchicine in COVID-19 (Mechanism of Action, Effect on Prognosis). Contemporary Cardiology, 2022, , 317-329.	0.1	0
2182	The role of calcium and calcium regulating hormonal system in the mechanisms of COVID-19 contagiousness and severity. , 2022, , 14-22.		0
2183	Recombinant Protein Vaccines against Human Betacoronaviruses: Strategies, Approaches and Progress. International Journal of Molecular Sciences, 2023, 24, 1701.	4.1	5
2184	S Protein, ACE2 and Host Cell Proteases in SARS-CoV-2 Cell Entry and Infectivity; Is Soluble ACE2 a Two Blade Sword? A Narrative Review. Vaccines, 2023, 11, 204.	4.4	5
2185	Bioinformatic analysis of the S protein of human respiratory coronavirus. Molecular Phylogenetics and Evolution, 2023, 181, 107704.	2.7	1
2186	Serum titer of neutralizing antibodies after COVID-19 vaccination in Japanese patients with inflammatory bowel disease. Journal of Clinical Biochemistry and Nutrition, 2023, , .	1.4	0
2187	Extracellular vesicles mediate antibody-resistant transmission of SARS-CoV-2. Cell Discovery, 2023, 9, .	6.7	21
2188	The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics. Virology Journal, 2023, 20, .	3.4	41
2189	Genome Structure, Life Cycle, and Taxonomy of Coronaviruses and the Evolution of SARS-CoV-2. Current Topics in Microbiology and Immunology, 2023, , 305-339.	1.1	3
2190	The Ethanol Extract of Evodiae Fructus and Its Ingredient, Rutaecarpine, Inhibit Infection of SARS-CoV-2 and Inflammatory Responses. International Journal of Molecular Sciences, 2023, 24, 762.	4.1	0
2191	SARS-CoV2 entry factors are expressed in primary human glioblastoma and recapitulated in cerebral organoid models. Journal of Neuro-Oncology, 0, , .	2.9	0
2192	Understanding the Spike Protein in COVID-19 Vaccine in Recombinant Vesicular Stomatitis Virus (rVSV) Using Automated Capillary Western Blots. ACS Omega, 2023, 8, 3319-3328.	3.5	3
2193	Fluorogenic reporter enables identification of compounds that inhibit SARS-CoV-2. Nature Microbiology, 2023, 8, 121-134.	13.3	6
2194	Rapid detection of SARS-CoV-2: The gradual boom of lateral flow immunoassay. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	11
2196	Optimizing variant-specific therapeutic SARS-CoV-2 decoys using deep-learning-guided molecular dynamics simulations. Scientific Reports, 2023, 13, .	3.3	5

ARTICLE IF CITATIONS Characterization and phylogenetic analysis of Iranian SARSâ \in CoVâ \in 2 genomes: A phylogenomic study. 2197 1.5 1 Health Science Reports, 2023, 6, . Three-Dimensional Cell Culture Methods in Infectious Diseases and Vaccine Research. Future 2198 1.8 Pharmacology, 2023, 3, 48-60. Intensive Care during the COVID-19 Pandemic. Vaccines, 2023, 11, 125. 2199 4.4 1 6-Shogaol Exhibits Anti-viral and Anti-inflammatory Activity in COVID-19-Associated Inflammation by Regulating NLRP3 Inflammasomes. ACS Omega, 2023, 8, 2618-2628. Diversifying the chloroquinoline scaffold against SARS-COV-2 main protease: Virtual screening 2201 approach using cross-docking, sitemap analysis and molecular dynamics simulation. Journal of the 0.8 0 Serbian Chemical Society, 2023, , 3-3. A Review of the Currently Available Antibody Therapy for the Treatment of Coronavirus Disease 2019 (COVID-19). Antibodies, 2023, 12, 5. 2.5 Nasopharyngeal epithelial cells from patients with coronavirus disease 2019 express abnormal levels 2203 2.3 4 of Toll-like receptors. Pathogens and Global Health, 2023, 117, 401-408. In-Silico Lead Druggable Compounds Identification against SARS COVID-19 Main Protease Target from In-House, Chembridge and Zinc Databases by Structure-Based Virtual Screening, Molecular Docking 2204 3.5 10 and Molecular Dynamics Simulations. Bioengineering, 2023, 10, 100. Impact of antigenic evolution and original antigenic sin on SARS-CoV-2 immunity. Journal of Clinical 2205 8.2 32 Investigation, 2023, 133, . Applications of nanobodies in the prevention, detection, and treatment of the evolving SARS-CoV-2. 4.4 Biochemical Pharmacology, 2023, 208, 115401. Fingerprinting trimeric SARS-CoV-2 RBD by capillary isoelectric focusing with whole-column imaging 2207 3 2.4 detection. Analytical Biochemistry, 2023, 663, 115034. Inhibition of SARS-CoV2 viral infection with natural antiviral plants constituents: An in-silico 3.5 approach. Journal of King Saud University - Science, 2023, 35, 102534. Comparative In-Silico Molecular Docking of Silymarin for SARS-CoV-2 Receptor. Journal of Molecular 2209 0.3 0 Docking, 2022, 2, 58-67. SARS-CoV-2 Main Protease Drug Design, Assay Development, and Drug Resistance Studies. Accounts of Chemical Research, 2023, 56, 157-168. 2210 15.6 34 2211 Effects of in Utero SARS-CoV-2 Exposure on Newborn Health Outcomes. Encyclopedia, 2023, 3, 15-27. 4.5 1 Broad-Spectrum Cyclopropane-Based Inhibitors of Coronavirus 3C-like Proteases: Biochemical, 4.9 Structural, and Virólogical Studies. ACS Pharmacology and Translational Science, 2023, 6, 181-194. Hybridoma-derived neutralizing monoclonal antibodies against Beta and Delta variants of SARS-CoV-2 2213 3.02 in vivo. Virologica Sinica, 2023, 38, 257-267. Increase in the Immune Response in Balb/c Mice after the Co-Administration of a Vector-Based COVID-19 2214 4.4 Vaccine with Cytosine Phosphoguanine Oligodeoxynucleotide. Vaccines, 2023, 11, 53.

		CITATION R	EPORT	
# 2215	ARTICLE THE WITHIN-HOST VIRAL KINETICS OF SARS-COV-2. Journal of Applied Analysis and Computat	ion, 2020, .	IF 0.5	CITATIONS
2217	SKI-1/S1P Facilitates SARS-CoV-2 Spike Induced Cell-to-Cell Fusion via Activation of SREBP-2 a Metalloproteases, Whereas PCSK9 Enhances the Degradation of ACE2. Viruses, 2023, 15, 360		3.3	3
2219	Blood pH and COVIDâ€19. Archiv Der Pharmazie, 2023, 356, .		4.1	1
2220	Bioinformatic modelling of SARS-CoV-2 pandemic with a focus on country-specific dynamics. Public Health, 2023, 23, .	ВМС	2.9	0
2221	Characterization of two linear epitopes SARS CoV-2 spike protein formulated in tandem repea ONE, 2023, 18, e0280627.	ıt. PLoS	2.5	2
2223	Virtual screening and molecular dynamics simulations provide insight into repurposing drugs SARS-CoV-2 variants Spike protein/ACE2 interface. Scientific Reports, 2023, 13, .	against	3.3	15
2224	Revealing the Molecular Interactions between Human ACE2 and the Receptor Binding Domair SARS-CoV-2 Wild-Type, Alpha and Delta Variants. International Journal of Molecular Sciences, 2517.		4.1	1
2225	SARS-CoV-2 as an Oncolytic Virus Following Reactivation of the Immune System: A Review. International Journal of Molecular Sciences, 2023, 24, 2326.		4.1	7
2226	Systematic pan-cancer analysis identifies cGAS as an immunological and prognostic biomarke of Translational Medicine, 2023, 11, 121-121.	r. Annals	1.7	2
2227	SARS-CoV-2-free residual proteins mediated phenotypic and metabolic changes in peripheral b monocytic-derived macrophages in support of viral pathogenesis. PLoS ONE, 2023, 18, e0280	blood)592.	2.5	0
2228	Impacts of viral pathogenesis and vaccine immunization on the host humoral immune respon SARS-CoV-2 and associated variants of concern (VOCs) infection. , 2023, , 237-262.	se in		0
2229	Unveiling the prevalence and impact of diabetes on COVID-19. , 2023, , 287-301.			0
2230	The role of HLA genotypes in understanding the pathogenesis of severe COVID-19. Egyptian J Medical Human Genetics, 2023, 24, .	ournal of	1.0	3
2231	Survival-based CRISPR genetic screens across a panel of permissive cell lines identify common cell-specific SARS-CoV-2 host factors. Heliyon, 2023, 9, e12744.	and	3.2	5
2233	Cutaneous manifestations in elderly patients with confirmed coronavirus disease 2019 and the outcomes: A systematic review. Journal of Dermatology, 2023, 50, 679-691.	e disease	1.2	0
2234	Transformation in Health Sector During Pandemic by Photonics Devices. Signals and Commur Technology, 2023, , 167-183.	hication	0.5	0
2236	Customization of aptamer to develop CRISPR/Cas12a-derived ultrasensitive biosensor. Talant 256, 124312.	а, 2023,	5.5	7
2237	Nanotechnology and materials science help fight against SARS-CoV-2. , 2023, , 295-321.			0

#	Article	IF	CITATIONS
2238	Impact of antibody-level on viral shedding in B.1.617.2 (Delta) variant-infected patients analyzed using a joint model of longitudinal and time-to-event data. Mathematical Biosciences and Engineering, 2023, 20, 8875-8891.	1.9	0
2239	Efficient capture of recombinant SARS-CoV-2 receptor-binding domain (RBD) with citrate-coated magnetic iron oxide nanoparticles. Nanoscale, 2023, 15, 7854-7869.	5.6	1
2240	ACE2 in pulmonary diseases. , 2023, , 285-316.		0
2242	A trimeric spike-based COVID-19 vaccine candidate induces broad neutralization against SARS-CoV-2 variants. Human Vaccines and Immunotherapeutics, 2023, 19, .	3.3	1
2243	Molecular recognition of SARS-CoV-2 spike protein with three essential partners: exploring possible immune escape mechanisms of viral mutants. Journal of Molecular Modeling, 2023, 29, .	1.8	4
2244	New insights into how popular electronic cigarette aerosols and aerosol constituents affect SARS-CoV-2 infection of human bronchial epithelial cells. Scientific Reports, 2023, 13, .	3.3	3
2246	Density estimation of SARS-CoV2 spike proteins using super pixels segmentation technique. Applied Soft Computing Journal, 2023, 138, 110210.	7.2	7
2247	Cellular electrical impedance to profile SARS-CoV-2 fusion inhibitors and to assess the fusogenic potential of spike mutants. Antiviral Research, 2023, 213, 105587.	4.1	0
2248	Sensitive SARS-CoV-2 salivary antibody assays for clinical saline gargle samples using smartphone-based competitive particle immunoassay platforms. Biosensors and Bioelectronics, 2023, 229, 115221.	10.1	4
2249	In SARS-CoV-2 delta variants, Spike-P681R and D950N promote membrane fusion, Spike-P681R enhances spike cleavage, but neither substitution affects pathogenicity in hamsters. EBioMedicine, 2023, 91, 104561.	6.1	14
2250	Baculovirus-expressed self-assembling SARS-CoV-2 nanoparticle vaccines targeting the S protein induce protective immunity in mice. Process Biochemistry, 2023, 129, 200-208.	3.7	1
2251	Metallo-antiviral aspirants: Answer to the upcoming virus outbreak. European Journal of Medicinal Chemistry Reports, 2023, 8, 100104.	1.4	2
2252	Tight junction protein occludin is an internalization factor for SARS-CoV-2 infection and mediates virus cell-to-cell transmission. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	3
2254	Spike-mediated viral membrane fusion is inhibited by a specific anti-IFITM2 monoclonal antibody. Antiviral Research, 2023, 211, 105546.	4.1	2
2255	The Need for Speed and Efficiency: A Brief Review of Small Molecule Antivirals for COVID-19. Frontiers in Drug Discovery, 0, 2, .	2.8	7
2256	Epigenetic Targets and Pathways Linked to SARS-CoV-2 Infection and Pathology. Microorganisms, 2023, 11, 341.	3.6	2
2257	Insight into SARS-CoV-2 Omicron variant immune escape possibility and variant independent potential therapeutic opportunities. Heliyon, 2023, 9, e13285.	3.2	4
2258	Quantitative profiling of N-glycosylation of SARS-CoV-2 spike protein variants. Glycobiology, 2023, 33, 188-202.	2.5	7

#	Article	IF	CITATIONS
2259	The evolution of the spike protein and hACE2 interface of SARS-CoV-2 omicron variants determined by hydrogen bond formation. Briefings in Functional Genomics, 0, , .	2.7	0
2260	The immune paradox of SARSâ€CoVâ€2: Lymphocytopenia and autoimmunity evoking features in COVIDâ€19 and possible treatment modalities. Reviews in Medical Virology, 2023, 33, .	.3 8.3	1
2261	Inhibiting the Deubiquitinase UCHL1 Reduces SARS-CoV-2 Viral Uptake by ACE2. American Journal of Respiratory Cell and Molecular Biology, 0, , .	2.9	4
2262	Bi-anti therapy for SARS-CoV-2 infection among mild/moderate patients to prevent coronavirus disease 2019 from progressing to severe disease. Journal of Translational Medicine, 2023, 21, .	4.4	1
2263	SARS-CoV-2 infection of intestinal epithelia cells sensed by RIG-I and DHX-15 evokes innate immune response and immune cross-talk. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	2
2264	Protease-Responsive Potential-Tunable AIEgens for Cell Selective Imaging of TMPRSS2 and Accurate Inhibitor Screening. Analytical Chemistry, 2023, 95, 3789-3798.	6.5	1
2265	Apalutamide Prevents SARS-CoV-2 Infection in Lung Epithelial Cells and in Human Nasal Epithelial Cells. International Journal of Molecular Sciences, 2023, 24, 3288.	4.1	1
2266	Does the SARS-CoV-2 Spike Receptor-Binding Domain Hamper the Amyloid Transformation of Alpha-Synuclein after All?. Biomedicines, 2023, 11, 498.	3.2	3
2267	COVID-19 and Its Impact on Onset and Progression of Parkinson's and Cognitive Dysfunction. , 0, , .		0
2268	Cross-Reactivity of Antibodies in Intravenous Immunoglobulin Preparation for Protection against SARS-CoV-2. Microorganisms, 2023, 11, 471.	3.6	1
2269	Employing T-Cell Memory to Effectively Target SARS-CoV-2. Pathogens, 2023, 12, 301.	2.8	0
2270	DRaW: prediction of COVID-19 antivirals by deep learning—an objection on using matrix factorization. BMC Bioinformatics, 2023, 24, .	2.6	2
2271	Human brain organoids to explore SARSâ€CoVâ€2â€induced effects on the central nervous system. Reviews in Medical Virology, 2023, 33, .	8.3	7
2272	SARS-CoV-2 Variant-Specific mRNA Vaccine: Pros and Cons. Viral Immunology, 0, , .	1.3	0
2273	O-Linked Sialoglycans Modulate the Proteolysis of SARS-CoV-2 Spike and Likely Contribute to the Mutational Trajectory in Variants of Concern. ACS Central Science, 2023, 9, 393-404.	11.3	8
2274	Potent Therapeutic Strategies for COVID-19 with Single-Domain Antibody Immunoliposomes Neutralizing SARS-CoV-2 and Lip/cGAMP Enhancing Protective Immunity. International Journal of Molecular Sciences, 2023, 24, 4068.	4.1	6
2275	Nigelladine A among Selected Compounds from Nigella sativa Exhibits Propitious Interaction with Omicron Variant of SARS-CoV-2: An In Silico Study. International Journal of Clinical Practice, 2023, 2023, 1-14.	1.7	2
2276	Investigating the competition between ACE2 natural molecular interactors and SARS-CoV-2 candidate inhibitors. Chemico-Biological Interactions, 2023, 374, 110380.	4.0	1

#	Article	IF	CITATIONS
2277	Molecular mechanisms of human coronavirus NL63 infection and replication. Virus Research, 2023, 327, 199078.	2.2	1
2278	Lessons Learnt from COVID-19: Computational Strategies for Facing Present and Future Pandemics. International Journal of Molecular Sciences, 2023, 24, 4401.	4.1	4
2280	Structure-based design of oligomeric receptor-binding domain (RBD) recombinant proteins as potent vaccine candidates against SARS-CoV-2. Human Vaccines and Immunotherapeutics, 2023, 19, .	3.3	1
2281	Innate immune cell and severe acute respiratory syndrome coronavirus 2 interaction. Exploration of Immunology, 0, , 28-39.	0.3	0
2282	Thoughts on mRNA Vaccine Response. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2023, 42, 1-2.	1.6	0
2283	SARS-CoV-2 Spike-Mediated Entry and Its Regulation by Host Innate Immunity. Viruses, 2023, 15, 639.	3.3	1
2284	In vitro and in vivo suppression of SARSâ€CoVâ€⊋ replication by a modified, short, cellâ€penetrating peptide targeting the Câ€ŧerminal domain of the viral spike protein. Journal of Medical Virology, 2023, 95, .	5.0	8
2285	SARS-CoV-2 Delta (B.1.617.2) variant replicates and induces syncytia formation in human induced pluripotent stem cell-derived macrophages. PeerJ, 0, 11, e14918.	2.0	0
2286	SARS-CoV-2 S Mutations: A Lesson from the Viral World to Understand How Human Furin Works. International Journal of Molecular Sciences, 2023, 24, 4791.	4.1	2
2287	Short-Chain Fatty Acids in the Microbiota–Gut–Brain Axis: Role in Neurodegenerative Disorders and Viral Infections. ACS Chemical Neuroscience, 2023, 14, 1045-1062.	3.5	10
2288	Interferonâ€induced transmembrane protein 3 (IFITM3) limits lethality of SARS oVâ€2 in mice. EMBO Reports, 2023, 24, .	4.5	13
2289	Systematic Guidelines for Effective Utilization of COVID-19 Databases in Genomic, Epidemiologic, and Clinical Research. Viruses, 2023, 15, 692.	3.3	1
2290	SIM imaging resolves endocytosis of SARS-CoV-2 spike RBD in living cells. Cell Chemical Biology, 2023, 30, 248-260.e4.	5.2	8
2291	Rescuing fertility during COVID-19 infection: exploring potential pharmacological and natural therapeutic approaches for comorbidity, by focusing on NLRP3 inflammasome mechanism Journal of Assisted Reproduction and Genetics, 0, , .	2.5	1
2294	Epigenetic perspectives associated with COVID-19 infection and related cytokine storm: an updated review. Infection, 2023, 51, 1603-1618.	4.7	8
2295	COVID-19-Induced Myocarditis: Pathophysiological Roles of ACE2 and Toll-like Receptors. International Journal of Molecular Sciences, 2023, 24, 5374.	4.1	6
2296	Metabolomics Approach in Differentiating RAS Responses in ARDS and SAR-CoV-2. , 2023, , 95-110.		0
2297	Exposure of low-temperature plasma after vaccination in tongue promotes systemic IgM induction against spike protein of SARS-CoV-2. Free Radical Research, 2023, 57, 30-37.	3.3	0

#	Article	IF	CITATIONS
2300	Research progress in spike mutations of SARS oVâ€2 variants and vaccine development. Medicinal Research Reviews, 2023, 43, 932-971.	10.5	7
2301	A Small Molecule That In Vitro Neutralizes Infection of SARS-CoV-2 and Its Most Infectious Variants, Delta, and Omicron. Biomedicines, 2023, 11, 916.	3.2	0
2302	Timeline of changes in spike conformational dynamics in emergent SARS-CoV-2 variants reveal progressive stabilization of trimer stalk with altered NTD dynamics. ELife, 0, 12, .	6.0	16
2306	Many Roles of Carbohydrates: A Computational Spotlight on the Coronavirus S Protein Binding. ACS Applied Bio Materials, 2024, 7, 646-656.	4.6	3
2307	Laboratory Markers of COVID-19 in the Emergency Room. Biomarkers in Disease, 2023, , 889-916.	0.1	0
2308	Study on Interactions of the SARS-CoV-2 Spike Proteins with the Human Toll-like Receptor 4 using Molecular Dynamic Simulations. , 2023, 4, 34-46.		0
2309	Receptors and Cofactors That Contribute to SARS-CoV-2 Entry: Can Skin Be an Alternative Route of Entry?. International Journal of Molecular Sciences, 2023, 24, 6253.	4.1	3
2310	Abiotic Synthetic Antibody Inhibitor with Broad-Spectrum Neutralization and Antiviral Efficacy against Escaping SARS-CoV-2 Variants. ACS Nano, 2023, 17, 7017-7034.	14.6	1
2312	Enhancement of SARS oVâ€2 infection and growth by an ACE2â€specific monoclonal antibody. Journal of Medical Virology, 2023, 95, .	5.0	0
2313	SARS-CoV-2 Receptors and Their Involvement in Cell Infection. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2023, 17, 1-11.	0.6	0
2314	Two Resveratrol Oligomers Inhibit Cathepsin L Activity to Suppress SARS-CoV-2 Entry. Journal of Agricultural and Food Chemistry, 2023, 71, 5535-5546.	5.2	4
2315	More than a key—the pathological roles of SARS-CoV-2 spike protein in COVID-19 related cardiac injury. Sports Medicine and Health Science, 2023, , .	2.0	2
2316	Comprehensive deep mutational scanning reveals the pH induced stability and binding differences between SARS-CoV-2 spike RBD and human ACE2. Journal of Biomolecular Structure and Dynamics, 2023, 41, 15207-15218.	3.5	1
2317	Biomimetic SARS-CoV-2 Spike Protein Nanoparticles. Biomacromolecules, 2023, 24, 2030-2041.	5.4	1
2318	Non-classical HLA class I molecules and their potential role in viral infections. Human Immunology, 2023, 84, 384-392.	2.4	3
2319	Evolving Real-World Effectiveness of Monoclonal Antibodies for Treatment of COVID-19. Annals of Internal Medicine, 2023, 176, 496-504.	3.9	16
2320	Well-Defined Heparin Mimetics Can Inhibit Binding of the Trimeric Spike of SARS-CoV-2 in a Length-Dependent Manner. Jacs Au, 2023, 3, 1185-1195.	7.9	5
2321	SARS-CoV-2: Structure, Pathogenesis, and Diagnosis. , 2024, , 24-51.		0

#	Article	IF	CITATIONS
2322	SARS-CoV-2 evolved variants optimize binding to cellular glycocalyx. Cell Reports Physical Science, 2023, 4, 101346.	5.6	12
2323	Development and external validation of prediction models for critical outcomes of unvaccinated COVID-19 patients based on demographics, medical conditions and dental status. Heliyon, 2023, 9, e15283.	3.2	0
2324	SARS-CoV-2 infection aggravates cigarette smoke-exposed cell damage in primary human airway epithelia. Virology Journal, 2023, 20, .	3.4	4
2325	High-throughput screening of spike variants uncovers the key residues that alter the affinity and antigenicity of SARS-CoV-2. Cell Discovery, 2023, 9, .	6.7	2
2326	Waning anti-SARS-CoV-2 receptor-binding domain total antibody in CoronaVac-vaccinated individuals in Indonesia. F1000Research, 0, 11, 300.	1.6	1
2327	Gender Susceptibility and Comorbidities in COVID-19 Headache. Headache, 2023, , 109-120.	0.4	0
2328	Genetic polymorphisms of ACE1, ACE2, IFTM3, TMPRSS2 and TNFα genes associated with susceptibility and severity of SARS-CoV-2 infection: a systematic review and meta-analysis. Clinical and Experimental Medicine, 2023, 23, 3251-3264.	3.6	4
2329	Sphingosine Kinases Promote Ebola Virus Infection and Can Be Targeted to Inhibit Filoviruses, Coronaviruses, and Arenaviruses Using Late Endocytic Trafficking to Enter Cells. ACS Infectious Diseases, 2023, 9, 1064-1077.	3.8	0
2330	A ferritin-based COVID-19 nanoparticle vaccine that elicits robust, durable, broad-spectrum neutralizing antisera in non-human primates. Nature Communications, 2023, 14, .	12.8	21
2331	Integrin \hat{I}^21 is a key determinant of the expression of angiotensin-converting enzyme 2 (ACE2) in the kidney epithelial cells European Journal of Cell Biology, 2023, 102, 151316.	3.6	1
2332	Omicsynin B4 potently blocks coronavirus infection by inhibiting host proteases cathepsin L and TMPRSS2. Antiviral Research, 2023, 214, 105606.	4.1	1
2333	A critical appraisal of neurological evidence on paediatric COVID-19 patients. A systematic literature review. Heliyon, 2023, 9, e15630.	3.2	1
2334	Evaluating the effect of SARS-CoV-2 spike mutations with a linear doubly robust learner. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	0
2335	Discovery of Highly Potent Small Molecule Pan-Coronavirus Fusion Inhibitors. Viruses, 2023, 15, 1001.	3.3	1
2336	Organotypic human lung bud microarrays identify BMP-dependent SARS-CoV-2 infection in lung cells. Stem Cell Reports, 2023, , .	4.8	0
2337	SARS-CoV-2 Enters Human Leydig Cells and Affects Testosterone Production In Vitro. Cells, 2023, 12, 1198.	4.1	2
2338	Nebulizer spray delivery of phytopharmaceutical nanosuspension via oral and nasal route. , 2023, , 437-457.		0
2339	Neuronal progenitors of the dentate gyrus express the SARS-CoV-2 cell receptor during migration in the developing human hippocampus. Cellular and Molecular Life Sciences, 2023, 80, .	5.4	2

#	Article	IF	CITATIONS
2340	Distribution and Functional Analyses of Mutations in Spike Protein and Phylogenic Diversity of SARS-CoV-2 Variants Emerged during the Year 2021 in India. Journal of Global Infectious Diseases, 2023, Publish Ahead of Print, .	0.5	1
2341	Influenza A virus exploits transferrin receptor recycling to enter host cells. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	8
2342	Novel Polymyxin-Inspired Peptidomimetics Targeting the SARS-CoV-2 Spike:hACE2 Interface. International Journal of Molecular Sciences, 2023, 24, 8765.	4.1	1
2343	Deciphering the Relationship between SARS-CoV-2 and Cancer. International Journal of Molecular Sciences, 2023, 24, 7803.	4.1	6
2344	Different In Silico Approaches Using Heterocyclic Derivatives against the Binding between Different Lineages of SARS-CoV-2 and ACE2. Molecules, 2023, 28, 3908.	3.8	1
2345	Fibrinolytic system and COVID-19: From an innovative view of epithelial ion transport. Biomedicine and Pharmacotherapy, 2023, 163, 114863.	5.6	1
2346	Development of high affinity broadly reactive aptamers for spike protein of multiple SARS-CoV-2 variants. RSC Advances, 2023, 13, 15322-15326.	3.6	2
2347	SARS-CoV-2 induced liver injury: Incidence, risk factors, impact on COVID-19 severity and prognosis in different population groups. World Journal of Gastroenterology, 0, 29, 2397-2432.	3.3	3
2348	SARS-CoV-2 Testing of the Maxillary Sinus Immediately after COVID-19 Recovery. Plastic and Reconstructive Surgery - Global Open, 2023, 11, e4959.	0.6	0
2349	Impaired potency of neutralizing antibodies against cell–cell fusion mediated by SARS-CoV-2. Emerging Microbes and Infections, 2023, 12, .	6.5	1
2350	Efficacy analysis and research progress of complementary and alternative medicines in the adjuvant treatment of COVID-19. Journal of Biomedical Science, 2023, 30, .	7.0	2
2351	Therapeutics for COVID-19. Nature Microbiology, 2023, 8, 771-786.	13.3	28
2352	Efficacy of the combination of monoclonal antibodies against the SARS-CoV-2 Beta and Delta variants. PLoS ONE, 2023, 18, e0284173.	2.5	2
2353	Pharmacokinetic Modeling of VV116 for Treatment of COVID-19. BIO Web of Conferences, 2023, 60, 02007.	0.2	0
2354	In Vitro Antiviral Activity of Nordihydroguaiaretic Acid against SARS-CoV-2. Viruses, 2023, 15, 1155.	3.3	0
2355	Accelerating antiviral drug discovery: lessons from COVID-19. Nature Reviews Drug Discovery, 2023, 22, 585-603.	46.4	25
2356	Neutrophil elastase decreases SARS-CoV-2 spike protein binding to human bronchial epithelia by clipping ACE-2 ectodomain from the epithelial surface. Journal of Biological Chemistry, 2023, 299, 104820.	3.4	1
2357	Spike substitution T813S increases Sarbecovirus fusogenicity by enhancing the usage of TMPRSS2. PLoS Pathogens, 2023, 19, e1011123.	4.7	2

#	Article	IF	CITATIONS
2358	Flavonoid as possible therapeutic targets against COVID-19: a scoping review of in silico studies. DARU, Journal of Pharmaceutical Sciences, 2023, 31, 51-68.	2.0	1
2359	Understanding how transmembrane domains regulate interactions between human BST-2 and the SARS-CoV-2 accessory protein ORF7a. Biochimica Et Biophysica Acta - Biomembranes, 2023, 1865, 184174.	2.6	3
2360	Docking-Based Evidence for the Potential of ImmunoDefender: A Novel Formulated Essential Oil Blend Incorporating Synergistic Antiviral Bioactive Compounds as Promising Mpro Inhibitors against SARS-CoV-2. Molecules, 2023, 28, 4296.	3.8	0
2361	Pericytes may facilitate SARS-CoV-2 entry into the nervous system. Journal of Bio-X Research, 2023, 6, 23-36.	0.2	Ο
2362	Safety and immunogenicity of SCB-2019, an adjuvanted, recombinant SARS-CoV-2 trimeric S-protein subunit COVID-19 vaccine in healthy 12–17 year-old adolescents. Human Vaccines and Immunotherapeutics, 2023, 19, .	3.3	2
2363	Medical Perspective on COVID-19. Contributions To Economics, 2023, , 15-103.	0.3	0
2364	Activation of Inflammasome complex in nasopharyngeal epithelial cells from patients with Coronavirus disease 2019 contributes to inflammatory state and worse disease outcomes. Immunology, 0, , .	4.4	1
2365	Reconsideration of drug repurposing through artificial intelligence program for the treatment of the novel coronavirus. , 2023, , 45-68.		0
2366	Neutralizing and Enhancing Epitopes of the SARS-CoV-2 Receptor-Binding Domain (RBD) Identified by Nanobodies. Viruses, 2023, 15, 1252.	3.3	3
2367	Identification of broad, potent antibodies to functionally constrained regions of SARS-CoV-2 spike following a breakthrough infection. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	9
2368	Integrative analysis of functional genomic screening and clinical data identifies a protective role for spironolactone in severe COVID-19. Cell Reports Methods, 2023, , 100503.	2.9	0
2369	Simple, Fast and Convenient Magnetic Bead-Based Sample Preparation for Detecting Viruses via Raman-Spectroscopy. Biosensors, 2023, 13, 594.	4.7	0
2370	Effect of the N501Y Mutation on Ligands Complexed with SARS-CoV-2 RBD: Insights on Potential Drug Candidates for COVID-19. , 2023, 2, 433-458.		1
2371	In silico screening, ADMET analysis and MD simulations of phytochemicals of Onosma bracteata Wall. as SARS CoV-2 inhibitors. 3 Biotech, 2023, 13, .	2.2	3
2372	The molecular basis of the neutralization breadth of the RBD-specific antibody CoV11. Frontiers in Immunology, 0, 14, .	4.8	4
2373	Dysfunction and Death of Pancreatic Beta-Cells in Type 2 Diabetes. , 2023, , 197-215.		0
2374	Isolation of Anti-SARS-CoV-2 Natural Products Extracted from <i>Mentha canadensis</i> and the Semi-synthesis of Antiviral Derivatives. Journal of Natural Products, 2023, 86, 1428-1436.	3.0	3
2375	Emerging Landscape of Nanobodies and Their Neutralizing Applications against SARS-CoV-2 Virus. ACS Pharmacology and Translational Science, 2023, 6, 925-942.	4.9	3

#	Article	IF	CITATIONS
2376	Study of fusion peptide release for the spike protein of SARS-CoV-2. RSC Advances, 2023, 13, 16970-16983.	3.6	0
2377	Translatability scoring in prospective and retrospective COVID drug development cases. European Journal of Clinical Pharmacology, 0, , .	1.9	0
2379	Host Cell Membrane Capture by the SARS-CoV-2 Spike Protein Fusion Intermediate. ACS Central Science, 2023, 9, 1213-1228.	11.3	2
2380	Pathophysiology: How COVID-19 Impacts the Pancreas and Peripheral Insulin Resistance. Contemporary Endocrinology, 2023, , 19-32.	0.1	0
2381	Sensing Dynamically Evolved Shortâ€Range Nanomechanical Forces in Fastâ€Mutating Single Viral Spike Proteins. Small Science, 2023, 3, .	9.9	0
2382	COVID infection in 4 steps: Thermodynamic considerations reveal how viral mucosal diffusion, target receptor affinity and furin cleavage act in concert to drive the nature and degree of infection in human COVID-19 disease. Heliyon, 2023, 9, e17174.	3.2	6
2383	Parallel use of human stem cell lung and heart models provide insights for SARS-CoV-2 treatment. Stem Cell Reports, 2023, 18, 1308-1324.	4.8	5
2384	Combining iCn3D and NextStrain to create a novel undergraduate research experience around SARS-CoV-2 variants and commercial antibodies. Frontiers in Genetics, 0, 14, .	2.3	0
2385	Knockout of angiotensin converting enzyme-2 receptor leads to morphological aberrations in rodent olfactory centers and dysfunctions associated with sense of smell. Frontiers in Neuroscience, 0, 17, .	2.8	1
2386	COVID-19 and interstitial lung diseases: AÂmultifaceted look at the relationship between the two diseases. Respiratory Investigation, 2023, 61, 601-617.	1.8	2
2387	ARF6 is a host factor for SARS-CoV-2 infection in vitro. Journal of General Virology, 2023, 104, .	2.9	4
2388	Nanostructures for prevention, diagnosis, and treatment of viral respiratory infections: from influenza virus to SARS-CoV-2 variants. Journal of Nanobiotechnology, 2023, 21, .	9.1	4
2389	Biological Mechanisms of Transplacental SARS-COV-2 Transmission. , 2023, , 49-62.		0
2390	Cathepsin inhibitors nitroxoline and its derivatives inhibit SARS-CoV-2 infection. Antiviral Research, 2023, 216, 105655.	4.1	1
2391	Spike-protein proteolytic antibodies in COVID-19 convalescent plasma contribute to SARS-CoV-2 neutralization. Cell Chemical Biology, 2023, 30, 726-738.e4.	5.2	8
2392	Adaptive variations in SARS-CoV-2 spike proteins: effects on distinct virus-cell entry stages. MBio, 0, , .	4.1	1
2393	Precision Medicine for More Oxygen (P4O2)—Study Design and First Results of the Long COVID-19 Extension. Journal of Personalized Medicine, 2023, 13, 1060.	2.5	2
2394	Membrane Protein Binding Interactions Studied in Live Cells via Diethylpyrocarbonate Covalent Labeling Mass Spectrometry. Analytical Chemistry, 2023, 95, 7178-7185.	6.5	3

		CITATION REPORT		
#	Article		IF	CITATIONS
2395	Overview of the cardio-metabolic impact of the COVID-19 pandemic. Endocrine, 2023,	80, 477-490.	2.3	1
2396	Proposing lead compounds for the development of SARS-CoV-2 receptor-binding inhib Biomolecular Structure and Dynamics, 2024, 42, 2282-2297.	itors. Journal of	3.5	1
2397	Convergence of immune escape strategies highlights plasticity of SARS-CoV-2 spike. P 2023, 19, e1011308.	LoS Pathogens,	4.7	4
2398	The Role of Structural Biology Task Force: Validation of the Binding Mode of Repurpose Against SARS-CoV-2 Protein Targets. SpringerBriefs in Applied Sciences and Technolog		0.4	0
2399	Single-Virus Fusion Measurements Reveal Multiple Mechanistically Equivalent Pathway SARS-CoV-2 Entry. Journal of Virology, 2023, 97, .	s for	3.4	3
2400	SARS-CoV-2 Binding to Terminal Sialic Acid of Gangliosides Embedded in Lipid Membra Infectious Diseases, 2023, 9, 1346-1361.	nes. ACS	3.8	4
2401	Repurposing Drugs for the Treatment of COVID-19 and Its Cardiovascular Manifestatic Research, 2023, 132, 1374-1386.	ons. Circulation	4.5	3
2402	hACE2-Induced Allosteric Activation in SARS-CoV versus SARS-CoV-2 Spike Assemblies Structural Dynamics. ACS Infectious Diseases, 2023, 9, 1180-1189.	Revealed by	3.8	7
2403	Hypothetical Study on Organophosphates and SARS-CoV-2 Collaborating in Causing S Respiratory and Immune Diseases for Future Generation: A Review. , 2023, , 27-46.	everal		0
2404	Optimization, and biological evaluation of 3-O-β-chacotriosyl betulinic acid amide deri small-molecule Omicron. European Journal of Medicinal Chemistry, 2023, 256, 115463		5.5	1
2405	Single-molecule FRET for virology: 20 years of insight into protein structure and dynam Reviews of Biophysics, 2023, 56, .	iics. Quarterly	5.7	0
2406	Acute pancreatitis following SARS-CoV-2 infection: A case report. SAGE Open Medical 2023, 11, 2050313X2311752.	Case Reports,	0.3	2
2407	Four new eudesmane-type and one new eremophilane-type sesquiterpenes from the w Carpesium abrotanoides L Fìtoterapìâ, 2023, 169, 105548.	hole plant of	2.2	0
2408	Interaction Between SARS-CoV-2 and Pathogenic Bacteria. Current Microbiology, 2023	s, 80, .	2.2	1
2409	Infectivity-enhancing antibodies against SARS-CoV-2. Uirusu, 2021, 71, 169-174.		0.1	0
2410	COVID-19 Therapeutic Potential of Natural Products. International Journal of Molecula 2023, 24, 9589.	r Sciences,	4.1	1
2411	Plausibility of natural immunomodulators in the treatment of COVID-19–A comprehe future recommendations. Heliyon, 2023, 9, e17478.	ensive analysis and	3.2	3
2412	Can Ursodeoxycholic Acid Prevent Severe Acute Respiratory Syndrome Coronavirus 2 I Reduce the Coronavirus Disease 2019 Severity? Current Knowledge and Unresolved Ise Diseases & Immunity, 0, Publish Ahead of Print, .	nfection or sues. Infectious	0.6	0

#	Article	IF	CITATIONS
2413	Respiratory viruses interacting with cells: the importance of electrostatics. Frontiers in Microbiology, 0, 14, .	3.5	2
2414	Umbelliferone and eriodictyol suppress the cellular entry of SARS-CoV-2. Cell and Bioscience, 2023, 13, .	4.8	3
2415	Statins: Beneficial Effects in Treatment of COVID-19. Advances in Experimental Medicine and Biology, 2023, , 457-476.	1.6	0
2416	Antiviral Mechanisms of Curcumin and Its Derivatives in Prevention and Treatment of COVID-19: A Review. Advances in Experimental Medicine and Biology, 2023, , 397-411.	1.6	1
2417	Prospects of Using Machine Learning and Diamond Nanosensing for High Sensitivity SARS-CoV-2 Diagnosis. Magnetochemistry, 2023, 9, 171.	2.4	1
2418	The Impact of COVID-19 on Parkinson's Disease: A Case-Controlled Registry and Questionnaire Study on Clinical Markers and Patients' Perceptions. Acta Neurologica Scandinavica, 2023, 2023, 1-10.	2.1	0
2419	Spotlight on contributory role of host immunogenetic profiling in SARS-CoV-2 infection: Susceptibility, severity, mortality, and vaccine effectiveness. Life Sciences, 2023, 328, 121907.	4.3	0
2420	Site-Specific Covalent Immobilization of SMA-Stabilized ACE2 for SARS-CoV-2 Recognition and Drug Screening. ACS Applied Materials & amp; Interfaces, 2023, 15, 33348-33361.	8.0	1
2422	Bioaerosol Dynamics. , 2023, , 27-50.		0
2423	ACE2-EGFR-MAPK signaling contributes to SARS-CoV-2 infection. Life Science Alliance, 2023, 6, e202201880.	2.8	4
2424	SARS-CoV-2 Spike Protein Is Capable of Inducing Cell–Cell Fusions Independent from Its Receptor ACE2 and This Activity Can Be Impaired by Furin Inhibitors or a Subset of Monoclonal Antibodies. Viruses, 2023, 15, 1500.	3.3	4
2425	Structure basis of two nanobodies neutralizing SARS-CoV-2 Omicron variant by targeting ultra-conservative epitopes. Journal of Structural Biology, 2023, 215, 107996.	2.8	0
2426	Cathepsins and SARSâ€CoVâ€2 infection: From pathogenic factors to potential therapeutic targets. British Journal of Pharmacology, 2023, 180, 2455-2481.	5.4	2
2427	The sesquiterpenes with the COVID-19 M ^{pro} inhibitory activity from the <i>Carpesium abrotanoides</i> L Natural Product Research, 0, , 1-9.	1.8	0
2428	An Overview of the Conventional and Novel Methods Employed for SARS-CoV-2 Neutralizing Antibody Measurement. Viruses, 2023, 15, 1504.	3.3	2
2429	Physicochemical Nature of SARS-CoV-2 Spike Protein Binding to Human Vimentin. ACS Applied Materials & Interfaces, 2023, 15, 34172-34180.	8.0	4
2430	TMEM106B is a receptor mediating ACE2-independent SARS-CoV-2 cell entry. Cell, 2023, 186, 3427-3442.e22.	28.9	31
2431	Aprotinin—Drug against Respiratory Diseases. International Journal of Molecular Sciences, 2023, 24, 11173.	4.1	2

#	Article	IF	CITATIONS
2432	Ebselen and Diphenyl Diselenide Inhibit SARS-CoV-2 Replication at Non-Toxic Concentrations to Human Cell Lines. Vaccines, 2023, 11, 1222.	4.4	1
2433	Interspecies transmission of SARS CoV-2 with special emphasis on viral mutations and ACE-2 receptor homology roles. International Journal of Veterinary Science and Medicine, 2023, 11, 55-86.	2.2	3
2434	Structural and functional characteristics of the SARS-CoV-2 Omicron subvariant BA.2 spike protein. Nature Structural and Molecular Biology, 2023, 30, 980-990.	8.2	9
2435	Association between ABO blood groups and SARS-CoV-2 infection in blood donors of Puglia region. Annals of Hematology, 2023, 102, 2923-2931.	1.8	1
2436	Postviral rhinosinusitis, focus on pathogenetic therapy. Vestnik Otorinolaringologii, 2023, 88, 38.	0.3	1
2437	COVID-19-associated anosmia. Vestnik Otorinolaringologii, 2023, 88, 63.	0.3	0
2438	Picolinic acid is a broad-spectrum inhibitor of enveloped virus entry that restricts SARS-CoV-2 and influenza A virus inÂvivo. Cell Reports Medicine, 2023, , 101127.	6.5	1
2439	Understanding the neurological implications of acute and long COVID using brain organoids. DMM Disease Models and Mechanisms, 2023, 16, .	2.4	1
2440	Recent Advancement in mRNA Vaccine Development and Applications. Pharmaceutics, 2023, 15, 1972.	4.5	6
2441	The effects of amino acid substitution of spike protein and genomic recombination on the evolution of SARS-CoV-2. Frontiers in Microbiology, 0, 14, .	3.5	2
2442	Host susceptibility and structural and immunological insight of S proteins of two SARS-CoV-2 closely related bat coronaviruses. Cell Discovery, 2023, 9, .	6.7	4
2443	Amphiphilic Sulfonated Polycarbonates Inactivate SARS-CoV-2 in Seconds. Macromolecules, 2023, 56, 6003-6009.	4.8	1
2444	Uncovering the morphological differences between SARS-CoV-2 and SARS-CoV based on transmission electron microscopy images. Microbes and Infection, 2023, 25, 105187.	1.9	4
2445	Recent Advances in Quantum Dot-Based Lateral Flow Immunoassays for the Rapid, Point-of-Care Diagnosis of COVID-19. Biosensors, 2023, 13, 786.	4.7	1
2446	Sensing a SARS-CoV-2 spike peptide using a titanium carbide-doped imprinted polymer-coated extended-gate field effect transistor. Sensing and Bio-Sensing Research, 2023, 41, 100577.	4.2	1
2447	Vascular Dysfunctions Contribute to the Long-Term Cognitive Deficits Following COVID-19. Biology, 2023, 12, 1106.	2.8	0
2449	TGF-β1 Inhibition of ACE2 Mediated by miRNA Uncovers Novel Mechanism of SARS-CoV-2 Pathogenesis. Journal of Innate Immunity, 2023, 15, 629-646.	3.8	0
2450	Design of a bifunctional pan-sarbecovirus entry inhibitor targeting the cell receptor and viral fusion protein. Journal of Virology, 2023, 97, .	3.4	1

#	ARTICLE Fusion peptide induced modification of membrane organization and dynamics: Implications in	IF	CITATIONS
2451 2452	developing fusion inhibitors. Chemical Physics Impact, 2023, 7, 100287. In silico and in vitro inhibition of host-based viral entry targets and cytokine storm in COVID-19 by	3.5	0
2453	ginsenoside compound K. Heliyon, 2023, 9, e19341. Abdômen agudo em pacientes com covid-19: uma revisão integrativa. Revista Do Colegio Brasileiro De Cirurgioes, 0, 50, .	0.6	0
2454	Biology and Behavior of Severe Acute Respiratory Syndrome Coronavirus Contagion with Emphasis on Treatment Strategies, Risk Assessment, and Resilience. Covid, 2023, 3, 1259-1303.	1.5	1
2455	Development of ELISA-Based Assay for Detection of SARS-CoV-2 Neutralizing Antibody. Viral Immunology, 0, , .	1.3	0
2456	Affinity and Pseudo-Affinity Membrane Chromatography for Viral Vector and Vaccine Purifications: A Review. Membranes, 2023, 13, 770.	3.0	1
2457	Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chemical Society Reviews, 2023, 52, 6497-6553.	38.1	1
2458	Giant Plasma Membrane Vesicles as Cellularâ€Mimics for Probing SARSâ€CoVâ€2 Binding at Single Particle Level. ChemistrySelect, 2023, 8, .	1.5	0
2459	Zoonoses in a changing world. BioScience, 2023, 73, 711-720.	4.9	0
2460	Characterization of CCoV-HuPn-2018 spike protein-mediated viral entry. Journal of Virology, 2023, 97, .	3.4	1
2461	Characterization of a mouse-adapted strain of bat severe acute respiratory syndrome-related coronavirus. Journal of Virology, 2023, 97, .	3.4	2
2462	A novel <i>in vitro</i> system of supported planar endosomal membranes (SPEMs) reveals an enhancing role for cathepsin B in the final stage of Ebola virus fusion and entry. Microbiology Spectrum, 2023, 11, .	3.0	2
2463	A disintegrin and metalloproteinase domain 9 facilitates SARS-CoV-2 entry into cells with low ACE2 expression. Microbiology Spectrum, 2023, 11, .	3.0	1
2464	mRNA vaccines in disease prevention and treatment. Signal Transduction and Targeted Therapy, 2023, 8,	17.1	9
2465	Antigens from the Helminth Fasciola hepatica Exert Antiviral Effects against SARS-CoV-2 In Vitro. International Journal of Molecular Sciences, 2023, 24, 11597.	4.1	0
2466	Aptamer-Based Strategies to Address Challenges in COVID-19 Diagnosis and Treatments. Interdisciplinary Perspectives on Infectious Diseases, 2023, 2023, 1-16.	1.4	2
2467	A Candidate DNA Vaccine Encoding the Native SARS-CoV-2 Spike Protein Induces Anti-Subdomain 1 Antibodies. Vaccines, 2023, 11, 1451.	4.4	1
2468	Genome analysis of SARS-CoV-2 isolates from a population reveals the rapid selective sweep of a haplotype carrying many pre-existing and new mutations. Virology Journal, 2023, 20, .	3.4	0

#	Article	IF	CITATIONS
2469	Assessment of safety and intranasal neutralizing antibodies of HPMC-based human anti-SARS-CoV-2 lgG1 nasal spray in healthy volunteers. Scientific Reports, 2023, 13, .	3.3	2
2470	Docking and Molecular Dynamics Simulations Clarify Binding Sites for Interactions of Novel Marine Sulfated Glycans with SARS-CoV-2 Spike Glycoprotein. Molecules, 2023, 28, 6413.	3.8	0
2471	The emerging roles of SUMOylation in pulmonary diseases. Molecular Medicine, 2023, 29, .	4.4	0
2472	Immune landscape and redox imbalance during neurological disorders in COVID-19. Cell Death and Disease, 2023, 14, .	6.3	1
2473	Preclinical discovery and development of nirmatrelvir/ritonavir combinational therapy for the treatment of COVID-19 and the lessons learned from SARS-COV-2 variants. Expert Opinion on Drug Discovery, 0, , 1-11.	5.0	0
2474	Host heparan sulfate promotes ACE2 super-cluster assembly and enhances SARS-CoV-2-associated syncytium formation. Nature Communications, 2023, 14, .	12.8	0
2475	SARS-CoV-2 viral genes Nsp6, Nsp8, and M compromise cellular ATP levels to impair survival and function of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Research and Therapy, 2023, 14, .	5.5	1
2476	A new integrated framework for the identification of potential virus–drug associations. Frontiers in Microbiology, 0, 14, .	3.5	1
2477	Mannose-Binding Lectins as Potent Antivirals against SARS-CoV-2. Viruses, 2023, 15, 1886.	3.3	0
2478	Spike protein mutations and structural insights of pangolin lineage B.1.1.25 with implications for viral pathogenicity and ACE2 binding affinity. Scientific Reports, 2023, 13, .	3.3	1
2479	Phellinus linteus mycelia extract in COVID-19 prevention and identification of its key metabolic compounds profiling using UPLC-QTOF-MS/MS spectrometry. Fìtoterapìâ, 2023, 171, 105695.	2.2	0
2480	Genome-wide loss-of-function screen using human pluripotent stem cells to study virus-host interactions for SARS-CoV-2. Stem Cell Reports, 2023, 18, 1766-1774.	4.8	0
2481	Inhaled drug delivery: Past, present, and future. Nano Today, 2023, 52, 101942.	11.9	3
2482	Complementary Pocket and Network-Based Approach to Search for Spike Protein Allosteric Pocket Sites. ACS Omega, 0, , .	3.5	0
2483	Acute abdomen in patients with covid-19: an integrative review. Revista Do Colegio Brasileiro De Cirurgioes, 0, 50, .	0.6	1
2484	The Key Site Variation and Immune Challenges in SARS-CoV-2 Evolution. Vaccines, 2023, 11, 1472.	4.4	2
2485	Large-scale synthesis of CISe/ZnS core-shell quantum dots and its effects on the enzymatic activity of recombinant human furin (an activator of SARS-COV-2ÂS1/S2 spike proteins). Colloids and Interface Science Communications, 2023, 56, 100737.	4.1	0
2486	Development of novel SARS-CoV-2 viral vectors. Scientific Reports, 2023, 13, .	3.3	0

#	Article	IF	CITATIONS
2487	An innovative strategy to investigate microbial protein modifications in a reliable fast and sensitive way: A therapy oriented proof of concept based on UV-C irradiation of SARS-CoV-2 spike protein. Pharmacological Research, 2023, 194, 106862.	7.1	1
2488	Broadly neutralizing humanized SARS-CoV-2 antibody binds to a conserved epitope on Spike and provides antiviral protection through inhalation-based delivery in non-human primates. PLoS Pathogens, 2023, 19, e1011532.	4.7	2
2489	Venom Peptides of Crotalus atrox Against SARS-Cov-2 Spike Protein and Human ACE2 Receptor by Molecular Docking Analysis. Sakarya University Journal of Science, 2023, 27, 735-743.	0.7	0
2490	SNHG15 aids SARS-CoV-2 entry via RABL2A. RNA Biology, 2023, 20, 539-547.	3.1	1
2491	Synthesis of indole-based ferulic acid derivatives and in vitro evaluation of antiviral activity against SARS-CoV-2. Medicinal Chemistry Research, 2023, 32, 2256-2267.	2.4	0
2492	Modeling the Within-Host Dynamics of SARS-CoV-2 Infection Based on Antiviral Treatment. Mathematics, 2023, 11, 3485.	2.2	2
2495	A Suitable Membrane Distance Regulated by the RBD_ACE2 Interaction is Critical for SARS oVâ€⊋ Spikeâ€Mediated Viral Invasion. Advanced Science, 2023, 10, .	11.2	0
2496	Viral infections and chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2023, 152, 819-826.	2.9	0
2498	SARS oVâ€2 variants of concern elicit divergent early immune responses in hACE2 transgenic mice. European Journal of Immunology, 2023, 53, .	2.9	0
2499	Long COVID: A Molecular, Cellular and Histopathology Overview. Journal of Biosciences and Medicines, 2023, 11, 90-113.	0.2	0
2500	Primary Exposure to SARS-CoV-2 via Infection or Vaccination Determines Mucosal Antibody-Dependent ACE2 Binding Inhibition. Journal of Infectious Diseases, 0, , .	4.0	1
2504	The role of Pannexin-1 channels, ATP, and purinergic receptors in the pathogenesis of HIV and SARS-CoV-2. Current Opinion in Pharmacology, 2023, 73, 102404.	3.5	1
2505	<i>E. coli</i> production of a multi-disulfide bonded SARS-CoV-2 Omicron BA.5 RBD exhibiting native-like biochemical and biophysical properties. Biophysics and Physicobiology, 2023, 20, n/a.	1.0	1
2506	Spike Protein Mutation-Induced Changes in the Kinetic and Thermodynamic Behavior of Its Receptor Binding Domains Explain Their Higher Propensity to Attain Open States in SARS-CoV-2 Variants of Concern. ACS Central Science, 2023, 9, 1894-1904.	11.3	2
2507	Development and Analytical Evaluation of a Point-of-Care Electrochemical Biosensor for Rapid and Accurate SARS-CoV-2 Detection. Sensors, 2023, 23, 8000.	3.8	0
2508	Stem cell-derived organoid models for SARS-CoV-2 and its molecular interaction with host cells. Molecular Biology Reports, 0, , .	2.3	0
2509	Association of seizures with COVID-19 infection in underage during the pandemic: A systematic review and meta-analysis. Epilepsy Research, 2023, 197, 107223.	1.6	0
2510	COVID-19 and Gastrointestinal Tract: From Pathophysiology to Clinical Manifestations. Medicina (Lithuania), 2023, 59, 1709.	2.0	0

#	Article	IF	CITATIONS
2511	COVID-19, Obesity, and GRP78: Unraveling the Pathological Link. Journal of Obesity and Metabolic Syndrome, 2023, 32, 183-196.	3.6	1
2512	N-linked glycoproteins and host proteases are involved in swine acute diarrhea syndrome coronavirus entry. Journal of Virology, 0, , .	3.4	0
2513	Infection Dynamics, Pathogenesis, and Immunity to SARS-CoV-2 in Naturally Susceptible Animal Species. Journal of Immunology, 2023, 211, 1195-1201.	0.8	3
2514	Global impact of proteoglycan science on human diseases. IScience, 2023, 26, 108095.	4.1	1
2515	Chiral distinction between hydroxychloroquine enantiomers in binding to angiotensin-converting enzyme 2, the forward receptor of SARS-CoV-2. Journal of Pharmaceutical and Biomedical Analysis, 2024, 237, 115770.	2.8	0
2516	The SARS-CoV-2 spike glycoprotein interacts with MAO-B and impairs mitochondrial energetics. Current Research in Neurobiology, 2023, 5, 100112.	2.3	2
2517	Autologous Platelet-Rich Plasma: A Potential Therapy to Mitigate Severe Covid-19 Manifestations. Biomedical and Pharmacology Journal, 2023, 16, 1663-1667.	0.5	0
2518	P21-activated kinase 1 (PAK1)-mediated cytoskeleton rearrangement promotes SARS-CoV-2 entry and ACE2 autophagic degradation. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	2
2519	Safety, immunogenicity and efficacy of Relcovax®, a dual receptor binding domain (RBD) and nucleocapsid (N) subunit protein vaccine candidate against SARS-CoV-2 virus. Vaccine, 2024, 42, 1051-1064.	3.8	1
2520	Total Chemical Synthesis of the SARSâ€CoVâ€2 Spike Receptorâ€Binding Domain. Chemistry - A European Journal, 2024, 30, .	3.3	0
2521	Desmoglein-2 and COVID-19 complications: insights into its role as a biomarker, pathogenesis and clinical implications. Journal of General Virology, 2023, 104, .	2.9	0
2522	Red Blood Cell-Derived Extracellular Vesicles Display Endogenous Antiviral Effects and Enhance the Efficacy of Antiviral Oligonucleotide Therapy. ACS Nano, 2023, 17, 21639-21661.	14.6	2
2523	Discovery of Nanosota-2, -3, and -4 as super potent and broad-spectrum therapeutic nanobody candidates against COVID-19. Journal of Virology, 0, , .	3.4	1
2524	Humoral and cellular immunity against diverse SARS-CoV-2 variants. Journal of Genetics and Genomics, 2023, 50, 934-947.	3.9	1
2525	Looking to the Future: Drug Delivery and Targeting in the Prophylaxis and Therapy of Severe and Chronic Diseases. Handbook of Experimental Pharmacology, 2023, , .	1.8	0
2526	An in silico drug repurposing pipeline to identify drugs with the potential to inhibit SARS-CoV-2 replication. Informatics in Medicine Unlocked, 2023, , 101387.	3.4	0
2527	Targeting SARS-CoV-2 main protease (Mpro) and human ACE-2: A virtual screening of carotenoids and polyphenols from tomato (Solanum lycopersicum L.) to combat Covid-19. , 2023, , .		1
2528	TMPRSS2 is a functional receptor for human coronavirus HKU1. Nature, 2023, 624, 207-214.	27.8	8

#	Article	IF	CITATIONS
2529	Cell type dependent stability and virulence of a recombinant SARS-CoV-2, and engineering of a propagation deficient RNA replicon to analyze virus RNA synthesis. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	0
2530	Enhanced protective efficacy of a thermostable RBD-S2 vaccine formulation against SARS-CoV-2 and its variants. Npj Vaccines, 2023, 8, .	6.0	1
2531	SARS-CoV-2 spike protein S1 activates Cx43 hemichannels and disturbs intracellular Ca2+ dynamics. Biological Research, 2023, 56, .	3.4	0
2532	SARS-CoV-2 and Epstein–Barr Virus-like Particles Associate and Fuse with Extracellular Vesicles in Virus Neutralization Tests. Biomedicines, 2023, 11, 2892.	3.2	0
2533	Molecular crystals and computational exploration of imines as drugs with reference to SARS-CoV-2 viral proteins. Molecular Crystals and Liquid Crystals, 2024, 768, 52-75.	0.9	0
2534	Virus-mimicking nanosystems: from design to biomedical applications. Chemical Society Reviews, 2023, 52, 8481-8499.	38.1	0
2535	Analysis of spike protein variants evolved in a novel in vivo long-term replication model for SARS-CoV-2. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	2
2536	Alterations in the gene expression of SARSâ€COVâ€2 entry receptors and enzymes in lungs and hearts of controlled and uncontrolled diabetic mice. Fundamental and Clinical Pharmacology, 0, , .	1.9	0
2537	Safety and neutralization antibody levels of inactivated SARS-CoV-2 vaccine in adult patients with Myasthenia Gravis: a prospective observational cohort study. Neurological Sciences, 0, , .	1.9	0
2538	Neuroprotective Agents with Therapeutic Potential for COVID-19. Biomolecules, 2023, 13, 1585.	4.0	2
2539	E3 ubiquitin ligase ZBTB25 suppresses beta coronavirus infection through ubiquitination of the main viral protease MPro. Journal of Biological Chemistry, 2023, 299, 105388.	3.4	0
2540	Genomic characterization of SARS-CoV-2 from Uganda using MinION nanopore sequencing. Scientific Reports, 2023, 13, .	3.3	0
2541	COVID-19 Antibody Seroconversion in Cancer Patients: Impact of Therapy Cessation—A Single-Center Study. Vaccines, 2023, 11, 1659.	4.4	0
2542	Clinical Utility of SARS-CoV-2 Serological Testing and Defining a Correlate of Protection. Vaccines, 2023, 11, 1644.	4.4	1
2543	Structural understanding of SARS-CoV-2 virus entry to host cells. Frontiers in Molecular Biosciences, 0, 10, .	3.5	0
2544	Spatiotemporal observations of host-pathogen interactions in mucosa during SARS-CoV-2 infection indicate a protective role of ILC2s. Microbiology Spectrum, 2023, 11, .	3.0	0
2545	Decoy peptides effectively inhibit the binding of SARS-CoV-2 to ACE2 on oral epithelial cells. Heliyon, 2023, 9, e22614.	3.2	1
2546	RAGE engagement by SARS-CoV-2 enables monocyte infection and underlies COVID-19 severity. Cell Reports Medicine, 2023, 4, 101266.	6.5	2

#	Article	IF	CITATIONS
2547	Herbal Compounds Dauricine and Isoliensinine Impede SARS-CoV-2 Viral Entry. Biomedicines, 2023, 11, 2914.	3.2	0
2548	Niacinamide enhances cathelicidin mediated SARS-CoV-2 membrane disruption. Frontiers in Immunology, 0, 14, .	4.8	1
2549	Overview of Nucleocapsid-Targeting Vaccines against COVID-19. Vaccines, 2023, 11, 1810.	4.4	0
2550	Establishment of a screening platform based on human coronavirus OC43 for the identification of microbial natural products with antiviral activity. Microbiology Spectrum, 0, , .	3.0	Ο
2551	Molecular PET/CT mapping of rhACE2 distribution and quantification in organs to aid in SARS oVâ€2 targeted therapy. Journal of Medical Virology, 2023, 95, .	5.0	0
2552	In Vitro Anti-Oxidant, In Vivo Anti-Hyperglycemic, and Untargeted Metabolomics-Aided-In Silico Screening of Macroalgae Lipophilic Extracts for Anti-Diabetes Mellitus and Anti-COVID-19 Potential Metabolites. Metabolites, 2023, 13, 1177.	2.9	Ο
2553	Dynamics of water-mediated interaction effects on the stability and transmission of Omicron. Scientific Reports, 2023, 13, .	3.3	0
2554	Immunodominant conserved moieties on spike protein of SARS-CoV-2 renders virulence factor for the design of epitope-based peptide vaccines. VirusDisease, 2023, 34, 456-482.	2.0	Ο
2555	Spatially resolved transcriptomics reveals distinct pulmonary immune responses during influenza virus and SARS-CoV-2 infections. Science Bulletin, 2023, , .	9.0	0
2556	Cross-regulation of antibody responses against the SARS-CoV-2 Spike protein and commensal microbiota via molecular mimicry. Cell Host and Microbe, 2023, 31, 1866-1881.e10.	11.0	1
2557	A bivalent form of a RBD-specific synthetic antibody effectively neutralizes SARS-CoV-2 variants. Antiviral Research, 2023, 220, 105738.	4.1	0
2558	Quantitative single-virus tracking for revealing the dynamics of SARS-CoV-2 fusion with plasma membrane. Science Bulletin, 2024, 69, 502-511.	9.0	Ο
2559	Evolution of the SARS-CoV-2 Omicron spike. Cell Reports, 2023, 42, 113444.	6.4	3
2560	Lys417 acts as a molecular switch that regulates the conformation of SARS-CoV-2 spike protein. ELife, 0, 12, .	6.0	Ο
2561	Nanomedicine approaches against SARS-CoV-2 and variants. Journal of Controlled Release, 2024, 365, 101-111.	9.9	1
2562	Inhibition of furin-like enzymatic activities and SARS-CoV-2 infection by osthole and phenolic compounds with aryl side chains. Biomedicine and Pharmacotherapy, 2023, 169, 115940.	5.6	Ο
2563	The Serum ACE2, CTSL, Angll, and TNFα Levels after COVID-19 and mRNA Vaccines: The Molecular Basis. Biomedicines, 2023, 11, 3160.	3.2	0
2564	Single-molecule force stability of the SARS-CoV-2–ACE2 interface in variants-of-concern. Nature Nanotechnology, 0, , .	31.5	3

#	Article	IF	CITATIONS
2565	Pre-Clinical Safety and Immunogenicity Study of a Coronavirus Protein-Based Subunit Vaccine for COVID-19. Vaccines, 2023, 11, 1771.	4.4	0
2568	Analysis of SARS-CoV-2 Variant-Specific Serum Antibody Post-Vaccination Utilizing Immortalized Human Hepatocyte-Like Cells (HLC) to Assess Development of Immunity. Hepatic Medicine: Evidence and Research, 0, Volume 15, 221-231.	2.5	0
2569	To be remembered: B cell memory response against <scp>SARSâ€CoV</scp> â€2 and its variants in vaccinated and unvaccinated individuals. Scandinavian Journal of Immunology, 0, , .	2.7	0
2570	ACE2 knockout hinders SARS-CoV-2 propagation in iPS cell-derived airway and alveolar epithelial cells. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	0
2571	Efficacies of S-nitrosoglutathione (GSNO) and GSNO reductase inhibitor in SARS-CoV-2 spike protein induced acute lung disease in mice. Frontiers in Pharmacology, 0, 14, .	3.5	0
2572	Novel S2 subunit-specific antibody with broad neutralizing activity against SARS-CoV-2 variants of concern. Frontiers in Immunology, 0, 14, .	4.8	0
2573	COVID-19: From emerging variants to vaccination. Cytokine and Growth Factor Reviews, 2023, , .	7.2	1
2574	Parasitic Signals: Multimodal Sonata for Real-time Interactive Simulation of the SARS-CoV-2 Virus. , 2023, , .		0
2575	The effects of vitamin D on different types of cells. Steroids, 2024, 202, 109350.	1.8	2
2576	Molecular Docking Studies of Boron ontaining Compounds as Dual Inhibitors of SARS ovâ€2 Spike Receptor Binding Domain/ACE2 Complex and Main Protease and ADMET Investigations. ChemistrySelect, 2023, 8, .	1.5	0
2577	Innovation-driven trend shaping COVID-19 vaccine development in China. Frontiers of Medicine, 2023, 17, 1096-1116.	3.4	0
2578	Structural insights into ACE2 interactions and immune activation of SARS-CoV-2 and its variants: an <i>in-silico</i> study. Journal of Biomolecular Structure and Dynamics, 0, , 1-14.	3.5	0
2579	A potential broadâ€spectrum neutralizing antibody against Betacoronavirus. Journal of Medical Virology, 2023, 95, .	5.0	0
2580	The most exposed regions of SARS-CoV-2 structural proteins are subject to strong positive selection and gene overlap may locally modify this behavior. MSystems, 0, , .	3.8	0
2581	Association of genetic polymorphisms with COVID-19 infection and outcomes: An updated meta-analysis based on 62 studies. Heliyon, 2024, 10, e23662.	3.2	0
2583	A single C-terminal residue controls SARS-CoV-2 spike trafficking and incorporation into VLPs. Nature Communications, 2023, 14, .	12.8	0
2584	Potent 3CLpro inhibitors effective against SARS-CoV-2 and MERS-CoV in animal models by therapeutic treatment. MBio, 2024, 15, .	4.1	1
2585	Procoagulant Status and Fibrinolytic Activity in COVID-19 Patients during Illness and Convalescence. Biomedicines, 2024, 12, 42.	3.2	0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2586	Anxiety in post-covid-19 syndrome $\hat{a} {\in} ``$ prevalence, mechanisms and treatment. , 2024,	3, 103932.		0
2587	Evaluation of the humoral and mucosal immune response of a multiepitope vaccine aga pigs. Frontiers in Immunology, 0, 14, .	inst COVID-19 in	4.8	0
2588	Mechanisms of SARS-CoV-2 Inactivation Using UVC Laser Radiation. ACS Photonics, 0,	,.	6.6	0
2589	Comparative immunohistochemical evaluation of variable expression of ACE2 and TMPI different age groups. Asia-Pacific Journal of Molecular Biology and Biotechnology, 0, , 5		0.1	0
2590	COVID-19 on Oral Health: A New Bilateral Connection for the Pandemic. Biomedicines,	2024, 12, 60.	3.2	0
2591	Inhibitor design for TMPRSS2: insights from computational analysis of its backbone hyc using a simple descriptor. European Biophysics Journal, 2024, 53, 27-46.	lrogen bonds	2.2	0
2592	Two-Stage Recognition Mechanism of the SARS-CoV-2 Receptor-Binding Domain to Angiotensin-Converting Enzyme-2 (ACE2). International Journal of Molecular Sciences, 7	2024, 25, 679.	4.1	1
2593	Review from host and guest approach to new frontiers nutraceuticals in the era of COV Foods, 2024, 9, 100303.	ID-19. Future	5.4	0
2594	Diagnosed and subjectively perceived long-term effects of COVID-19 infection on olfact assessed by supervised machine learning. Chemical Senses, 2024, 49, .	ory function	2.0	0
2595	Addressing Inequality in the COVID-19 Pandemic in Africa: A Snapshot from Clinical Syr Vaccine Distribution. Covid, 2024, 4, 170-190.	nptoms to	1.5	0
2596	Immunology of COVID-19 and Ineffective Immunity. , 2024, , 31-49.			0
2597	Genome-wide bioinformatics analysis of human protease capacity for proteolytic cleava SARS-CoV-2 spike glycoprotein. Microbiology Spectrum, 2024, 12, .	ge of the	3.0	0
2598	Antiandrogens as Therapies for COVID-19: A Systematic Review. Cancers, 2024, 16, 29	8.	3.7	0
2599	Investigating the Potential Shared Molecular Mechanisms between COVID-19 and Alzhevia Transcriptomic Analysis. Viruses, 2024, 16, 100.	zimer's Disease	3.3	0
2600	Overview of the SARS-CoV-2 nucleocapsid protein. International Journal of Biological Macromolecules, 2024, 260, 129523.		7.5	0
2602	Pregnancy outcomes after frozenâ€thawed embryo transfer in women with COVIDâ€19 prospective cohort study. Journal of Medical Virology, 2024, 96, .	9 history: A	5.0	0
2603	Potential therapeutic landscape of COVID-19: molecular targets, repurposed drugs, and cell-based intervention. , 2024, , 139-157.	l nano- and		0
2604	COVID-19 therapy directed against pathogenic mechanisms of severe acute respiratory coronavirus 2. , 2024, , 2697-2726.	syndrome		0

#	Article	IF	CITATIONS
2605	Peptidyl nitroalkene inhibitors of main protease rationalized by computational and crystallographic investigations as antivirals against SARS-CoV-2. Communications Chemistry, 2024, 7, .	4.5	0
2606	Cathepsin-Targeting SARS-CoV-2 Inhibitors: Design, Synthesis, and Biological Activity. ACS Pharmacology and Translational Science, 2024, 7, 493-514.	4.9	0
2607	Mystery of COVID 19: Focusing on important ncRNAs and effective signaling pathways. Pathology Research and Practice, 2024, 255, 155155.	2.3	0
2608	Identification of a druggable site on GRP78 at the GRP78-SARS-CoV-2 interface and virtual screening of compounds to disrupt that interface. Journal of Computer-Aided Molecular Design, 2024, 38, .	2.9	0
2609	Application of the zebrafish model in human viral research. Virus Research, 2024, 341, 199327.	2.2	0
2610	The Multisystem Impact of Long COVID: A Comprehensive Review. Diagnostics, 2024, 14, 244.	2.6	0
2611	SARS-CoV-2 Specific Nanobodies Neutralize Different Variants of Concern and Reduce Virus Load in the Brain of h-ACE2 Transgenic Mice. Viruses, 2024, 16, 185.	3.3	0
2612	Interaction Between Genetic Susceptibility and COVID-19 Pathogenesis in Pediatric Multisystem Inflammatory Disorders: The Role of Immune Responses. Viral Immunology, 2024, 37, 1-11.	1.3	0
2613	Mucosal Immunity against SARS-CoV-2 in the Respiratory Tract. Pathogens, 2024, 13, 113.	2.8	0
2614	Flavonoids derived from medicinal plants as a <scp>COVID</scp> â€19 treatment. Phytotherapy Research, 2024, 38, 1589-1609.	5.8	0
2615	A human antibody derived from original SARS-CoV-2 infection effectively neutralizes omicron. , 2024, 2, .		0
2616	Development of SARS-CoV-2 entry antivirals. , 2024, 3, 100144.		0
2617	Smart and emerging point of care electrochemical sensors based on nanomaterials for SARS-CoV-2 virus detection: Towards designing a future rapid diagnostic tool. Chemosphere, 2024, 352, 141269.	8.2	0
2618	Therapeutic antibodies and alternative formats against SARS-CoV-2. Antiviral Research, 2024, 223, 105820.	4.1	0
2619	Targeting the receptor binding domain and heparan sulfate binding for antiviral drug development against SARS-CoV-2 variants. Scientific Reports, 2024, 14, .	3.3	0
2620	NSP6 inhibits the production of ACE2-containing exosomes to promote SARS-CoV-2 infectivity. MBio, 2024, 15, .	4.1	0
2621	Possible Uses for Silymarin in Human Health: Systematic Review. American Journal of Plant Sciences, 2024, 15, 95-109.	0.8	0
2622	Hydroxypropyl-Beta Cyclodextrin Barrier Prevents Respiratory Viral Infections: A Preclinical Study. International Journal of Molecular Sciences, 2024, 25, 2061.	4.1	Ο

#	Article	IF	CITATIONS
2623	Engineering a "mucoâ€ŧrapping― <scp>ACE2</scp> â€immunoglobulin hybrid with picomolar affinity as an inhaled, panâ€variant immunotherapy for <scp>COVID</scp> â€19. Bioengineering and Translational Medicine, 0, , .	7.1	0
2624	A human monoclonal antibody neutralizes SARS-CoV-2 Omicron variants by targeting the upstream region of spike protein HR2 motif. , 2024, 2, 126-140.		0
2625	Computational design and engineering of self-assembling multivalent microproteins with therapeutic potential against SARS-CoV-2. Journal of Nanobiotechnology, 2024, 22, .	9.1	0
2626	Identification of SARS-CoV-2 Main Protease Inhibitors Using Chemical Similarity Analysis Combined with Machine Learning. Pharmaceuticals, 2024, 17, 240.	3.8	1
2627	A general computational design strategy for stabilizing viral class I fusion proteins. Nature Communications, 2024, 15, .	12.8	0
2628	The Protective Effect of Serum Levels of Vitamins C, D, and E and IgG and IgM Antibodies in Individuals Vaccinated Against COVID-19 and Experienced Disease Relapse. Jundishapur Journal of Microbiology, 2024, 16, .	0.5	0
2629	Role of marine natural products in the development of antiviral agents against SARS-CoV-2: potential and prospects. Marine Life Science and Technology, 0, , .	4.6	0
2630	Innovative translational platforms for rapid developing clinical vaccines against COVIDâ€19 and other infectious disease. Biotechnology Journal, 2024, 19, .	3.5	0
2631	Polyvalent Nanobody Structure Designed for Boosting SARS-CoV-2 Inhibition. Journal of the American Chemical Society, 2024, 146, 5894-5900.	13.7	0
2632	Unveiling the Pathological Mechanisms of Death Induced by SARS-CoV-2 Viral Pneumonia. Microorganisms, 2024, 12, 459.	3.6	0
2633	Cognitive disorders of patients with cerebrovascular disorders who suffered from COVID-19. Psychiatry Neurology and Medical Psychology, 2023, , 21-29.	0.1	0
2634	Exploring Retrograde Trafficking: Mechanisms and Consequences in Cancer and Disease. Traffic, 2024, 25, .	2.7	0
2635	Characterization of a neutralizing antibody that recognizes a loop region adjacent to the receptor-binding interface of the SARS-CoV-2 spike receptor-binding domain. Microbiology Spectrum, 2024, 12, .	3.0	0
2636	Vero cell-adapted SARS-CoV-2 strain shows increased viral growth through furin-mediated efficient spike cleavage. Microbiology Spectrum, 2024, 12, .	3.0	0
2637	Laboratory biomarkers associated with COVID-19 mortality among inpatients in a Peruvian referral hospital. Heliyon, 2024, 10, e27251.	3.2	0
2638	Differentiating Cell Entry Potentials of SARS-CoV-2 Omicron Subvariants on Human Lung Epithelium Cells. Viruses, 2024, 16, 391.	3.3	0
2639	Insights from <i>in silico</i> study of receptor energetics of SARS-CoV-2 variants. Physical Chemistry Chemical Physics, 2024, 26, 8794-8806.	2.8	0
2640	Improved fluorescenceâ€based assay for rapid screening and evaluation of SARSâ€CoVâ€2 main protease inhibitors. Journal of Medical Virology, 2024, 96, .	5.0	0

		CITATION RE	PORT	
#	Article		IF	Citations
2641	Discordant Antigenic Properties of Soluble and Virion SARS-CoV-2 Spike Proteins. Viruses, 202	24, 16, 407.	3.3	0
2642	Unraveling the genetic variations underlying virulence disparities among SARS-CoV-2 strains a global regions: insights from Pakistan. Virology Journal, 2024, 21, .	cross	3.4	0
2644	Preclinical Development of a Novel Epitope-based DNA Vaccine Candidate against SARS-CoV-2 Evaluation of Immunogenicity in BALB/c Mice. AAPS PharmSciTech, 2024, 25, .	? and	3.3	0
2645	Bulk and Single-Cell RNA Sequencing Elucidate the Etiology of Severe COVID-19. International Journal of Molecular Sciences, 2024, 25, 3280.		4.1	0
2646	Crosstalk between COVID-19 and the gut-brain axis: a gut feeling. Postgraduate Medical Journ	ıal, O, , .	1.8	0
2647	Structure-based design of pan-coronavirus inhibitors targeting host cathepsin L and calpain-1. Transduction and Targeted Therapy, 2024, 9, .	Signal	17.1	0
2648	Allosteric pathways of <scp>SARS</scp> and <scp>SARSâ€CoV</scp> â€2 spike protein ident relational inference. Proteins: Structure, Function and Bioinformatics, 0, , .	ified by neural	2.6	0
2649	Bio-Chemoinformatics-Driven Analysis of nsp7 and nsp8 Mutations and Their Effects on Viral Replication Protein Complex Stability. Current Issues in Molecular Biology, 2024, 46, 2598-26	19.	2.4	0
2650	Functional dissection of the spike glycoprotein S1 subunit and identification of cellular cofact for regulation of swine acute diarrhea syndrome coronavirus entry. Journal of Virology, 2024, 9	ors 98, .	3.4	0
2651	Niclosamide: A career builder. Journal of Controlled Release, 2024, , .		9.9	0
2652	The evolution of preexisting primary immune thrombocytopenia after COVID-19 onset: A nation representative, prospective, multicentre, observational study. Annals of Hematology, 2024, 10 1549-1559.	onally)3,	1.8	0
2653	Burden and risk profile of acute kidney injury in severe COVID-19 pneumonia admissions: a Fir Jimma University medical center, Ethiopia. BMC Nephrology, 2024, 25, .	iding from	1.8	0
2654	Murine alveolar macrophages rapidly accumulate intranasally administered SARS-CoV-2 Spike leading to neutrophil recruitment and damage. ELife, 0, 12, .	protein	6.0	0