Modelling COVID-19

Nature Reviews Physics 2, 279-281 DOI: 10.1038/s42254-020-0178-4

Citation Report

#	Article	IF	CITATIONS
1	Response to Gal Almogy: Superspreaders do matter. International Journal of Infectious Diseases, 2020, 98, 187.	1.5	0
2	Accounting for Underreporting in Mathematical Modeling of Transmission and Control of COVID-19 in Iran. Frontiers in Physics, 2020, 8, .	1.0	16
3	Intelligent computing with Levenberg–Marquardt artificial neural networks for nonlinear system of COVID-19 epidemic model for future generation disease control. European Physical Journal Plus, 2020, 135, 932.	1.2	101
4	Modeling and Forecasting the COVID-19 Temporal Spread in Greece: An Exploratory Approach Based on Complex Network Defined Splines. International Journal of Environmental Research and Public Health, 2020, 17, 4693.	1.2	42
5	COVID-19 and SARS-CoV-2. Modeling the present, looking at the future. Physics Reports, 2020, 869, 1-51.	10.3	151
6	The impact of asymptomatic individuals on the strength of public health interventions to prevent the second outbreak of COVID-19. Nonlinear Dynamics, 2020, 101, 2003-2012.	2.7	16
7	Modelling insights into the COVID-19 pandemic. Paediatric Respiratory Reviews, 2020, 35, 64-69.	1.2	35
8	Investigating time, strength, and duration of measures in controlling the spread of COVID-19 using a networked meta-population model. Nonlinear Dynamics, 2020, 101, 1789-1800.	2.7	19
10	How do social media and individual behaviors affect epidemic transmission and control?. Science of the Total Environment, 2021, 761, 144114.	3.9	29
11	Mitigating COVID-19 Transmission in Schools With Digital Contact Tracing. IEEE Transactions on Computational Social Systems, 2021, 8, 1302-1310.	3.2	7
12	Highâ€Resolution Agentâ€Based Modeling of COVIDâ€19 Spreading in a Small Town. Advanced Theory and Simulations, 2021, 4, 2000277.	1.3	39
13	Assessing the interplay between travel patterns and SARS-CoV-2 outbreak in realistic urban setting. Applied Network Science, 2021, 6, 4.	0.8	12
14	Simulations of the spread of COVID-19 and control policies in Tunisia. Journal of Public Health in Africa, 0, , .	0.2	0
16	Random-Forest-Bagging Broad Learning System With Applications for COVID-19 Pandemic. IEEE Internet of Things Journal, 2021, 8, 15906-15918.	5.5	42
17	Dynamics of cascades on burstiness-controlled temporal networks. Nature Communications, 2021, 12, 133.	5.8	20
19	Anomalous role of information diffusion in epidemic spreading. Physical Review Research, 2021, 3, .	1.3	27
20	Virus spread versus contact tracing: Two competing contagion processes. Physical Review Research, 2021, 3, .	1.3	23
21	Modelling and predicting the effect of social distancing and travel restrictions on COVID-19 spreading. Journal of the Royal Society Interface, 2021, 18, 20200875.	1.5	61

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
22	Testing and tracking in the UK: A dynamic causal modelling study. Wellcome Open Research, 0, 5, 144.	0.9	3
23	Mobility, exposure, and epidemiological timelines of COVID-19 infections in China outside Hubei province. Scientific Data, 2021, 8, 54.	2.4	13
24	Role of high-dose exposure in transmission hot zones as a driver of SARS-CoV-2 dynamics. Journal of the Royal Society Interface, 2021, 18, 20200916.	1.5	7
25	Superspreading of SARS-CoV-2 in the USA. PLoS ONE, 2021, 16, e0248808.	1.1	9
27	Global short-term forecasting of COVID-19 cases. Scientific Reports, 2021, 11, 7555.	1.6	12
29	Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review. International Journal of Environmental Research and Public Health, 2021, 18, 4287.	1.2	35
32	Non-pharmaceutical interventions during the COVID-19 pandemic: A review. Physics Reports, 2021, 913, 1-52.	10.3	336
33	Rapid Prediction and Evaluation of COVID-19 Epidemic in the United States Based on Feature Selection and Improved ARIMAX Model. , 2021, , .		3
34	Mathematical model, forecast and analysis on the spread of COVID-19. Chaos, Solitons and Fractals, 2021, 147, 110995.	2.5	16
35	Network models and the interpretation of prolonged infection plateaus in the COVID19 pandemic. Epidemics, 2021, 35, 100463.	1.5	8
37	Disposable face masks and reusable face coverings as non-pharmaceutical interventions (NPIs) to prevent transmission of SARS-CoV-2 variants that cause coronavirus disease (COVID-19): Role of new sustainable NPI design innovations and predictive mathematical modelling. Science of the Total Environment, 2021, 772, 145530.	3.9	61
38	Machine learning spatio-temporal epidemiological model to evaluate Germany-county-level COVID-19 risk. Machine Learning: Science and Technology, 2021, 2, 035031.	2.4	14
39	Epidemics, the Ising-model and percolation theory: A comprehensive review focused on Covid-19. Physica A: Statistical Mechanics and Its Applications, 2021, 573, 125963.	1,2	31
41	Reacting to outbreaks at neighboring localities. Journal of Theoretical Biology, 2021, 520, 110632.	0.8	2
42	How risky is it to visit a supermarket during the pandemic?. PLoS ONE, 2021, 16, e0253835.	1.1	6
43	Optimal test-kit-based intervention strategy of epidemic spreading in heterogeneous complex networks. Chaos, 2021, 31, 071101.	1.0	15
44	An epidemic model for COVID-19 transmission in Argentina: Exploration of the alternating quarantine and massive testing strategies. Mathematical Biosciences, 2022, 346, 108664.	0.9	8
45	Reservoir computing on epidemic spreading: A case study on COVID-19 cases. Physical Review E, 2021, 104, 014308.	0.8	24

#	Article	IF	CITATIONS
46	Endemic information-contagion outbreaks in complex networks with potential spreaders based recurrent-state transmission dynamics. Physica A: Statistical Mechanics and Its Applications, 2021, 573, 125907.	1.2	10
47	Designing the Safe Reopening of US Towns Through Highâ€Resolution Agentâ€Based Modeling. Advanced Theory and Simulations, 2021, 4, 2100157.	1.3	10
48	Predicting Hospital Resource Use During COVID-19 Surges: A Simple but Flexible Discretely Integrated Condition Event Simulation of Individual Patient-Hospital Trajectories. Value in Health, 2021, 24, 1570-1577.	0.1	10
49	TLQP: Early-stage transportation lock-down and quarantine problem. Transportation Research Part C: Emerging Technologies, 2021, 129, 103218.	3.9	14
50	Impact of vaccine supplies and delays on optimal control of the COVID-19 pandemic: mapping interventions for the Philippines. Infectious Diseases of Poverty, 2021, 10, 107.	1.5	23
51	Targeted pandemic containment through identifying local contact network bottlenecks. PLoS Computational Biology, 2021, 17, e1009351.	1.5	3
52	Reaction-diffusion spatial modeling of COVID-19: Greece and Andalusia as case examples. Physical Review E, 2021, 104, 024412.	0.8	23
53	Merits and Limitations of Mathematical Modeling and Computational Simulations in Mitigation of COVID-19 Pandemic: A Comprehensive Review. Archives of Computational Methods in Engineering, 2022, 29, 1311-1337.	6.0	21
54	Evaluating the effectiveness of control measures in multiple regions during the early phase of the COVID-19 pandemic in 2020. Biosafety and Health, 2021, 3, 264-275.	1.2	11
55	A Downscaling Approach to Compare COVID-19 Count Data from Databases Aggregated at Different Spatial Scales. Journal of the Royal Statistical Society Series A: Statistics in Society, 2022, 185, 202-218.	0.6	2
56	An Agent-based Decision Support for a Vaccination Campaign. Journal of Medical Systems, 2021, 45, 97.	2.2	12
58	Dynamics of partially mitigated multi-phasic epidemics at low susceptible depletion: phases of COVID-19 control in Italy as case study. Mathematical Biosciences, 2021, 340, 108671.	0.9	2
59	A data-driven model for COVID-19 pandemic – Evolution of the attack rate and prognosis for Brazil. Chaos, Solitons and Fractals, 2021, 152, 111359.	2.5	11
60	A model for social spreading of Covid-19: Cases of Mexico, Finland and Iceland. Physica A: Statistical Mechanics and Its Applications, 2021, 582, 126274.	1.2	8
61	Lifting Lockdown Control Measure Assessment: From Finite-to Infinite-Dimensional Epidemic Models for Covid-19. Infosys Science Foundation Series, 2021, , 159-190.	0.3	0
62	A Review on Predictive Systems and Data Models for COVID-19. Studies in Computational Intelligence, 2021, , 123-164.	0.7	11
67	Testing and tracking in the UK: A dynamic causal modelling study. Wellcome Open Research, 0, 5, 144.	0.9	12
68	Worldwide COVID-19 spreading explained: traveling numbers as a primary driver for the pandemic.	0.3	18

#	Article	IF	CITATIONS
69	An Index for Lifting Social Distancing During the COVID-19 Pandemic: Algorithm Recommendation for Lifting Social Distancing. Journal of Medical Internet Research, 2020, 22, e22469.	2.1	9
70	What leads to parallel evolution?. ELife, 2021, 10, .	2.8	0
71	Control of COVID-19 outbreak using an extended SEIR model. Mathematical Models and Methods in Applied Sciences, 2021, 31, 2399-2424.	1.7	15
76	A new hybrid risk-averse best-worst method and portfolio optimization to select temporary hospital locations for Covid-19 patients. Journal of the Operational Research Society, 2023, 74, 509-526.	2.1	14
77	Effects of mobility restrictions during COVID19 in Italy. Scientific Reports, 2021, 11, 21783.	1.6	12
79	Epidemic spreading: Tailored models for COVID-19. Europhysics News, 2020, 51, 38-40.	0.1	Ο
81	Nonparametric estimation and inference for spatiotemporal epidemic models. Journal of Nonparametric Statistics, 2022, 34, 683-705.	0.4	5
82	On some fundamental challenges in monitoring epidemics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20210117.	1.6	4
83	COVID-19 Flow-Maps an open geographic information system on COVID-19 and human mobility for Spain. Scientific Data, 2021, 8, 310.	2.4	11
84	Disordered beta thinned ensemble with applications. Physical Review E, 2021, 104, 054144.	0.8	0
85	A quantitative assessment of epidemiological parameters required to investigate COVID-19 burden. Epidemics, 2021, 37, 100530.	1.5	8
86	Analysis, Prediction, and Control of Epidemics: A Survey from Scalar to Dynamic Network Models. IEEE Circuits and Systems Magazine, 2021, 21, 4-23.	2.6	46
87	Microsimulation based quantitative analysis of COVID-19 management strategies. PLoS Computational Biology, 2022, 18, e1009693.	1.5	19
88	A model predictive control approach to optimally devise a twoâ€dose vaccination rollout: A case study on COVIDâ€19 in Italy. International Journal of Robust and Nonlinear Control, 2023, 33, 4808-4823.	2.1	25
89	Lack of practical identifiability may hamper reliable predictions in COVID-19 epidemic models. Science Advances, 2022, 8, eabg5234.	4.7	12
90	Limitations of Canadian COVID-19 data reporting to the general public. Journal of Public Health Policy, 2022, 43, 203-221.	1.0	5
91	Understanding the uneven spread of COVID-19 in the context of the global interconnected economy. Scientific Reports, 2022, 12, 666.	1.6	23
92	Optimization of vaccination for COVID-19 in the midst of a pandemic. Networks and Heterogeneous Media, 2022, 17, 443.	0.5	7

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
93	A measure model for the spread of viral infections with mutations. Networks and Heterogeneous Media, 2022, 17, 427.	0.5	3
94	Nonlinear Random Walks Optimize the Trade-Off between Cost and Prevention in Epidemics Lockdown Measures: The Esir Model. SSRN Electronic Journal, 0, , .	0.4	0
95	Predicting the Effects of Waning Vaccine Immunity Against COVIDâ€19 through Highâ€Resolution Agentâ€Based Modeling. Advanced Theory and Simulations, 2022, 5, 2100521.	1.3	11
96	Complex Systems for the Most Vulnerable. Journal of Physics Complexity, 0, , .	0.9	1
97	A multi-layer network model to assess school opening policies during a vaccination campaign: a case study on COVID-19 in France. Applied Network Science, 2022, 7, 12.	0.8	4
98	Critical time-dependent branching process modelling epidemic spreading with containment measures*. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 224006.	0.7	1
99	Contributions of modelling for the control of COVID-19 nosocomial transmission. Anaesthesia, Critical Care & Pain Medicine, 2022, 41, 101054.	0.6	3
100	Convergence and Equilibria Analysis of a Networked Bivirus Epidemic Model. SIAM Journal on Control and Optimization, 2022, 60, S323-S346.	1.1	10
101	Sentiment mutation and negative emotion contagion dynamics in social media: A case study on the Chinese Sina Microblog. Information Sciences, 2022, 594, 118-135.	4.0	18
102	The epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic. Scientific Reports, 2021, 11, 23775.	1.6	10
103	City-Scale Simulation of Covid-19 Pandemic & Intervention Policies Using Agent-Based Modelling. , 2021, , .		0
104	A single-agent extension of the SIR model describes the impact of mobility restrictions on the COVID-19 epidemic. Scientific Reports, 2021, 11, 24467.	1.6	7
106	Modelling the link between Covid-19 cases, hospital admissions and deaths in England. National Accounting Review, 2022, 4, 38-55.	1.5	2
107	Topological Data Analysis of Spatial Systems. Understanding Complex Systems, 2022, , 389-399.	0.3	3
108	Introducing simple models of social systems. American Journal of Physics, 2022, 90, 462-468.	0.3	3
109	Individual- and pair-based models of epidemic spreading: Master equationsÂand analysis of their forecasting capabilities. Physical Review Research, 2022, 4, .	1.3	1
111	Finite-time scaling for epidemic processes with power-law superspreading events. Physical Review E, 2022, 105, .	0.8	3
112	Urban Determinants of COVID-19 Spread: a Comparative Study across Three Cities in New York State. Journal of Urban Health, 2022, 99, 909-921.	1.8	6

		CITATION REPORT		
#	Article		IF	CITATIONS
113	Smartphone apps in the COVID-19 pandemic. Nature Biotechnology, 2022, 40, 1013-10	022.	9.4	48
114	Modelling how face masks and symptoms-based quarantine synergistically and cost-eff SARS-CoV-2 transmission in Bangladesh. Epidemics, 2022, 40, 100592.	ectively reduce	1.5	4
115	An epidemic-economic model for COVID-19. Mathematical Biosciences and Engineering 9658-9696.	;, 2022, 19,	1.0	3
116	The COVID-19 pandemic as inspiration to reconsider epidemic models: A novel approac homogeneous epidemic spread modeling. Mathematical Biosciences and Engineering, 2	h to spatially 2022, 19, 9853-9886.	1.0	0
117	Inferring spatial source of disease outbreaks using maximum entropy. Physical Review E	2, 2022, 106, .	0.8	2
118	Use of Modeling to Inform Decision Making in North Carolina during the COVID-19 Pan Qualitative Study. MDM Policy and Practice, 2022, 7, 238146832211163.	demic: A	0.5	2
119	Analysis of Spatial and Spatiotemporal Anomalies Using Persistent Homology: Case Stu COVID-19 Data. SIAM Journal on Mathematics of Data Science, 2022, 4, 1116-1144.	dies with	1.0	3
120	Agent Simulation Model of COVID-19 Epidemic Agent-Based on GIS: A Case Study of Hu Shanghai. International Journal of Environmental Research and Public Health, 2022, 19,	Jangpu District, 10242.	1.2	5
121	Withinâ€host dynamics of SARSâ€CoVâ€2 infection: A systematic review and metaâ€a and Emerging Diseases, 2022, 69, 3964-3971.	nalysis. Transboundary	1.3	5
123	Estimating and forecasting the burden and spread of Colombia's SARS-CoV2 first w Reports, 2022, 12, .	rave. Scientific	1.6	0
124	Estimation of the basic reproduction number of COVID-19 from the incubation period c European Physical Journal: Special Topics, 0, , .	listribution.	1.2	1
125	A data-validated temporary immunity model of COVID-19 spread in Michigan. Mathema and Engineering, 2022, 19, 10122-10142.	tical Biosciences	1.0	5
126	Optimizing Symptom Based Testing Strategies for Pandemic Mitigation. IEEE Access, 20 84934-84945.	022, 10,	2.6	4
127	Using Epidemic Modeling, Machine Learning and Control Feedback Strategy for Policy N COVID-19. IEEE Access, 2022, 10, 98244-98258.	Management of	2.6	4
128	The COVID-19 Pandemic Evolution in Hawaiâ€~i and New Jersey: A Lesson on Infection 1 the Role of Human Behavior. Modeling and Simulation in Science, Engineering and Tech 109-140.	ransmissibility and inology, 2022, ,	0.4	3
129	SARS-CoV-2 transmission in university classes. Network Modeling Analysis in Health Info Bioinformatics, 2022, 11, .	ormatics and	1.2	2
130	Population genetic models for the spatial spread of adaptive variants: A review in light c evolution. PLoS Genetics, 2022, 18, e1010391.	of SARS-CoV-2	1.5	5
131	Is the Increased Transmissibility of SARS-CoV-2 Variants Driven by within or Outside-Ho Mathematics, 2022, 10, 3422.	st Processes?.	1.1	2

CITATION REPORT

#	Article	IF	CITATIONS
132	Sequential time-window learning with approximate Bayesian computation: an application to epidemic forecasting. Nonlinear Dynamics, 0, , .	2.7	0
133	Epidemic spreading under mutually independent intra- and inter-host pathogen evolution. Nature Communications, 2022, 13, .	5.8	12
134	Assessing the asymptomatic proportion of SARS-CoV-2 infection with age in China before mass vaccination. Journal of the Royal Society Interface, 2022, 19, .	1.5	5
135	Exploring a COVIDâ€19 Endemic Scenario: Highâ€Resolution Agentâ€Based Modeling of Multiple Variants. Advanced Theory and Simulations, 0, , 2200481.	1.3	2
136	Social distancing as a public-good dilemma for socio-economic cost: An evolutionary game approach. Heliyon, 2022, 8, e11497.	1.4	4
137	Adapting a Physical Earthquake-Aftershock Model to Simulate the Spread of COVID-19. International Journal of Environmental Research and Public Health, 2022, 19, 16527.	1.2	1
138	Tiered social distancing policies and epidemic control. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	1.0	1
139	A Following Wave Pattern of Suicide-Related Pediatric Emergency Room Admissions during the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 2023, 20, 1619.	1.2	4
140	Learning on Health Fairness and Environmental Justice via Interactive Visualization. , 2022, , .		0
141	Using digital traces to build prospective and real-time county-level early warning systems to anticipate COVID-19 outbreaks in the United States. Science Advances, 2023, 9, .	4.7	7
142	Transmission trends of the global COVID-19 pandemic with combined effects of adaptive behaviours and vaccination. Epidemiology and Infection, 2023, 151, .	1.0	0
143	On the contact tracing for COVID-19: A simulation study. Epidemics, 2023, 43, 100677.	1.5	2
144	The Design and Utilisation of PanSim, a Portable Pandemic Simulator. , 2022, , .		0
146	Applications of deep learning in forecasting COVID-19 pandemic and county-level risk warning. , 2023, , 119-132.		0
147	A Time-Dependent Mathematical Model for COVID-19 Transmission Dynamics and Analysis of Critical and Hospitalized Cases with Bed Requirements. Lecture Notes in Electrical Engineering, 2023, , 85-120.	0.3	0
161	Data-driven Discovery of Biological Time-delay System by Parameterized Dictionary Learning. , 2023, , .		0