Mapping the twist-angle disorder and Landau levels in a

Nature 581, 47-52 DOI: 10.1038/s41586-020-2255-3

Citation Report

#	Article	IF	CITATIONS
1	Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science, 2020, 367, 900-903.	6.0	844
2	Heteromoiré Engineering on Magnetic Bloch Transport in Twisted Graphene Superlattices. Nano Letters, 2020, 20, 7572-7579.	4.5	10
3	Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature, 2020, 583, 379-384.	13.7	225
4	Flattening is flattering: The revolutionizing 2D electronic systems*. Chinese Physics B, 2020, 29, 097307.	0.7	6
5	Graphene bilayers with a twist. Nature Materials, 2020, 19, 1265-1275.	13.3	416
6	Electronic-structure methods for twisted moir $ ilde{A}$ © layers. Nature Reviews Materials, 2020, 5, 748-763.	23.3	142
7	Symmetry breaking in the double moiré superlattices of relaxed twisted bilayer graphene on hexagonal boron nitride. Physical Review B, 2020, 102, .	1.1	17
8	Twistronics in Graphene, from Transfer Assembly to Epitaxy. Applied Sciences (Switzerland), 2020, 10, 4690.	1.3	9
9	Nematicity with a twist: Rotational symmetry breaking in a moiré superlattice. Science Advances, 2020, 6, eaba8834.	4.7	65
10	Nanoscale Conductivity Imaging of Correlated Electronic States in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow><mml:mi>WSe</mml:mi></mml:mrow><mml:mrow><mml:mn>2Moiré Superlattices. Physical Review Letters. 2020. 125. 186803.</mml:mn></mml:mrow></mml:msub></mml:math 	ml:mn> <td>າmີ່<mark>:</mark>mrow><</td>	າmີ່ <mark>:</mark> mrow><
11	Topologically derived dislocation theory for twist and stretch moiré superlattices in bilayer graphene. Physical Review B, 2020, 102, .	1.1	12
12	Superconductivity and strong correlations in moir $ ilde{A}$ $ ilde{C}$ flat bands. Nature Physics, 2020, 16, 725-733.	6.5	448
13	Independent superconductors and correlated insulators in twisted bilayer graphene. Nature Physics, 2020, 16, 926-930.	6.5	276
14	Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature, 2020, 582, 203-208.	13.7	297
15	Modeling mechanical relaxation in incommensurate trilayer van der Waals heterostructures. Physical Review B, 2020, 101, .	1.1	31
16	Observation of flat bands in twisted bilayer graphene. Nature Physics, 2021, 17, 189-193.	6.5	144
17	Systematic investigations of the electron, phonon, elastic and thermal properties of monolayer so-MoS2 by first-principles calculations. Applied Surface Science, 2021, 539, 148248.	3.1	11
18	Engineering an Indium Selenide van der Waals Interface for Multilevel Charge Storage. ACS Applied Materials & Interfaces, 2021, 13, 4618-4625.	4.0	12

TATION REDO

#	Article	IF	Citations
19	Moiré metrology of energy landscapes in van der Waals heterostructures. Nature Communications, 2021, 12, 242.	5.8	60
20	Enhanced second-order Stark effect in twisted bilayer graphene quantum dots. Nano Research, 2021, 14, 3935.	5.8	4
21	The 2021 quantum materials roadmap. JPhys Materials, 2020, 3, 042006.	1.8	111
22	Spin-polarized superconductivity: Order parameter topology, current dissipation, and multiple-period Josephson effect. Physical Review Research, 2021, 3, .	1.3	11
23	Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene. Nature Physics, 2021, 17, 478-481.	6.5	138
24	Engineering symmetry breaking in 2D layered materials. Nature Reviews Physics, 2021, 3, 193-206.	11.9	135
25	Twisted Bilayer Graphene: A Versatile Fabrication Method and the Detection of Variable Nanometric Strain Caused by Twist-Angle Disorder. ACS Applied Nano Materials, 2021, 4, 1858-1866.	2.4	19
26	Misalignment instability in magic-angle twisted bilayer graphene on hexagonal boron nitride. 2D Materials, 2021, 8, 025025.	2.0	11
27	Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature, 2021, 590, 405-409.	13.7	139
28	Measuring local moir \tilde{A} lattice heterogeneity of twisted bilayer graphene. Physical Review Research, 2021, 3, .	1.3	16
29	Stackingâ€Engineered Heterostructures in Transition Metal Dichalcogenides. Advanced Materials, 2021, 33, e2005735.	11.1	47
30	Nano-imaging photoresponse in a moir \tilde{A} unit cell of minimally twisted bilayer graphene. Nature Communications, 2021, 12, 1640.	5.8	29
31	Recent Advances in 2D Superconductors. Advanced Materials, 2021, 33, e2006124.	11.1	68
32	Unveiling Atomic-Scale Moiré Features and Atomic Reconstructions in High-Angle Commensurately Twisted Transition Metal Dichalcogenide Homobilayers. Nano Letters, 2021, 21, 3262-3270.	4.5	15
33	Generalized Wigner crystallization in moir $ ilde{A}$ © materials. Physical Review B, 2021, 103, .	1.1	46
34	Moiré Patterns in 2D Materials: A Review. ACS Nano, 2021, 15, 5944-5958.	7.3	107
35	Selection rules of twistronic angles in two-dimensional material flakes via dislocation theory. Physical Review B, 2021, 103, .	1.1	3
36	Recovery of massless Dirac fermions at charge neutrality in strongly interacting twisted bilayer graphene with disorder. Physical Review B, 2021, 103, .	1.1	19

#	Article	IF	CITATIONS
37	Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene. Nature Physics, 2021, 17, 710-714.	6.5	114
38	Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening. Science, 2021, 371, 1261-1265.	6.0	151
39	Recent Advances in Synthesis and Study of 2D Twisted Transition Metal Dichalcogenide Bilayers. Small Structures, 2021, 2, 2000153.	6.9	29
40	Entropic evidence for a Pomeranchuk effect in magic-angle graphene. Nature, 2021, 592, 214-219.	13.7	118
41	Synthesis of Waferâ€Scale Graphene with Chemical Vapor Deposition for Electronic Device Applications. Advanced Materials Technologies, 2021, 6, 2000744.	3.0	46
42	Strain fields in twisted bilayer graphene. Nature Materials, 2021, 20, 956-963.	13.3	126
44	Two-dimensional nanomaterials with engineered bandgap: Synthesis, properties, applications. Nano Today, 2021, 37, 101059.	6.2	82
45	Nematicity and competing orders in superconducting magic-angle graphene. Science, 2021, 372, 264-271.	6.0	223
46	Gate-defined Josephson junctions in magic-angle twisted bilayer graphene. Nature Nanotechnology, 2021, 16, 760-763.	15.6	51
47	Scanning probe microscopy. Nature Reviews Methods Primers, 2021, 1, .	11.8	103
48	Electric-field-tunable electronic nematic order in twisted double-bilayer graphene. 2D Materials, 2021, 8, 034005.	2.0	23
49	Imaging orbital ferromagnetism in a moir $ ilde{A}$ © Chern insulator. Science, 2021, 372, 1323-1327.	6.0	94
50	Reduction of the twisted bilayer graphene chiral Hamiltonian into a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>2</mml:mn><mml:mo>×</mml:mo><mml:m matrix operator and physical origin of flat bands at magic angles. Physical Review B, 2021, 103, .</mml:m </mml:math 	n>121x/mm	l:mu ז >
51	Pairing in magic-angle twisted bilayer graphene: Role of phonon and plasmon umklapp. Physical Review B, 2021, 103, .	1.1	34
52	Flat band carrier confinement in magic-angle twisted bilayer graphene. Nature Communications, 2021, 12, 4180.	5.8	22
53	Twist-angle-disorder and sulfur-induced annihilation of percolative magnetism in exfoliated lamellae of highly oriented pyrolytic graphite. Carbon Trends, 2021, 4, 100044.	1.4	6
54	Mirror symmetry breaking and lateral stacking shifts in twisted trilayer graphene. Physical Review B, 2021, 104, .	1.1	36
55	Strain-Induced Quantum Phase Transitions in Magic-Angle Graphene. Physical Review Letters, 2021, 127, 027601.	2.9	67

#	Article	IF	CITATIONS
56	Intrinsic Room-Temperature Ferromagnetism in V ₂ C MXene Nanosheets. ACS Applied Materials & Interfaces, 2021, 13, 33363-33370.	4.0	20
57	Charge- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mn>4</mml:mn><mml:mi>e</mml:mi></mml:math> Superconductivity from Multicomponent Nematic Pairing: Application to Twisted Bilayer Graphene. Physical Review Letters, 2021, 127, 047001.	2.9	30
58	Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35
59	Flat bands with fragile topology through superlattice engineering on single-layer graphene. Physical Review Research, 2021, 3, .	1.3	7
60	Probing the bright exciton state in twisted bilayer graphene via resonant Raman scattering. Applied Physics Letters, 2021, 119, .	1.5	7
61	Strong Interminivalley Scattering in Twisted Bilayer Graphene Revealed by High-Temperature Magneto-Oscillations. Physical Review Letters, 2021, 127, 056802.	2.9	11
62	Scanning SQUID microscopy in a cryogen-free dilution refrigerator. Review of Scientific Instruments, 2021, 92, 083704.	0.6	9
63	Theoretical Study of Chemical Vapor Deposition Synthesis of Graphene and Beyond: Challenges and Perspectives. Journal of Physical Chemistry Letters, 2021, 12, 7942-7963.	2.1	15
64	In-Plane Critical Magnetic Fields in Magic-Angle Twisted Trilayer Graphene. Physical Review Letters, 2021, 127, 097001.	2.9	38
65	Fracton-elasticity duality in twisted moir $ ilde{A}$ © superlattices. Physical Review B, 2021, 104, .	1.1	9
66	High transmission in twisted bilayer graphene with angle disorder. Physical Review B, 2021, 104, .	1.1	10
67	Observation of interband collective excitations in twisted bilayer graphene. Nature Physics, 2021, 17, 1162-1168.	6.5	47
68	A review of assembly techniques for fabricating twisted bilayer graphene. Journal of Micromechanics and Microengineering, 2021, 31, 114004.	1.5	5
69	Realization of topological Mott insulator in a twisted bilayer graphene lattice model. Nature Communications, 2021, 12, 5480.	5.8	50
70	Quantum Hall superconductivity from moir $ ilde{A}$ © Landau levels. Physical Review Research, 2021, 3, .	1.3	7
71	Improving spatial resolution of scanning SQUID microscopy with an on-chip design. Superconductor Science and Technology, 2021, 34, 115011.	1.8	6
72	Exact Diagonalization for Magic-Angle Twisted Bilayer Graphene. Physical Review Letters, 2021, 127, 147203.	2.9	32
73	Emergence of intrinsically isolated flat bands and their topology in fully relaxed twisted multilayer graphene. Physical Review B, 2021, 104, .	1.1	4

#	Article	IF	CITATIONS
75	Giant spatial Goos–Hächen shifts in a non-Hermitian dielectric slab sandwiched by graphene. Optik, 2021, 242, 167332.	1.4	14
76	Effective continuum model of twisted bilayer GeSe and origin of the emerging one-dimensional mode. Physical Review B, 2021, 104, .	1.1	6
77	Nanoscale magnetic field imaging for 2D materials. Nature Reviews Physics, 2022, 4, 49-60.	11.9	44
78	Interplay of edge/screw dislocations and enhanced magnetism in exfoliated pyrolytic graphite with distorted hexagonal moiré superlattices. Carbon Trends, 2021, 5, 100106.	1.4	6
79	Van Hove singularities, moiré-superlattices and rhombohedral stacking in exfoliated sublattices of highly oriented pyrolytic graphite. Materials Today Chemistry, 2021, 22, 100585.	1.7	2
80	Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature, 2021, 589, 536-541.	13.7	151
81	Cuprate superconductors as viewed through a striped lens. Advances in Physics, 2020, 69, 437-509.	35.9	43
82	Superconductivity in graphene induced by the rotated layer. Journal of Physics Condensed Matter, 2020, 32, 475603.	0.7	1
83	A review of experimental advances in twisted graphene moiré superlattice*. Chinese Physics B, 2020, 29, 128104.	0.7	12
84	Josephson effect in graphene bilayers with adjustable relative displacement. Physical Review Research, 2020, 2, .	1.3	12
85	Duality between atomic configurations and Bloch states in twistronic materials. Physical Review Research, 2020, 2, .	1.3	14
86	Transport across twist angle domains in moir $ ilde{A}$ © graphene. Physical Review Research, 2020, 2, .	1.3	30
87	Transparent mirror effect in twist-angle-disordered bilayer graphene. Physical Review Research, 2020, 2, .	1.3	5
88	Correlated Insulating States and Transport Signature of Superconductivity in Twisted Trilayer Graphene Superlattices. Physical Review Letters, 2021, 127, 166802.	2.9	44
89	Geometric origins of topological insulation in twisted layered semiconductors. Physical Review B, 2021, 104, .	1.1	13
90	Interlayer polarizability in twisted bilayer graphene quantum dots. Physical Review B, 2021, 104, .	1.1	5
91	Atomic Insights into Fracture Characteristics of Twisted Tri-Layer Graphene. Crystals, 2021, 11, 1202.	1.0	7
92	2D Bi2Se3 materials for optoelectronics. IScience, 2021, 24, 103291.	1.9	16

#	Article	IF	CITATIONS
93	Graphene Superconductivity at Roomâ€Temperature of a Wide Range and Standard Atmosphere, Based on Vacuum Channels and White‣ight Interferometry. Advanced Electronic Materials, 0, , 2100595.	2.6	0
94	Developing Grapheneâ€Based Moiré Heterostructures for Twistronics. Advanced Science, 2022, 9, e2103170.	5.6	21
95	Identification of abrupt intense rhombohedral stacking-transitions in dense-staircase-sublattices created by manual exfoliation of highly oriented pyrolytic graphite. Carbon Trends, 2021, 5, 100128.	1.4	1
96	Weak-Field Hall Resistivity and Spin-Valley Flavor Symmetry Breaking in Magic-Angle Twisted Bilayer Graphene. Physical Review Letters, 2021, 127, 196401.	2.9	38
97	Twistronics in graphene-based van der Waals structures. Chinese Physics B, 2020, 29, 117303.	0.7	23
98	Visualizing dissipative charge-carrier dynamics at the nanoscale with superconducting-charge-qubit microscopy. Physical Review Research, 2020, 2, .	1.3	2
99	Moiré circuits: Engineering magic-angle behavior. Physical Review B, 2021, 104, .	1.1	10
100	Evidence for increased metallicity arising from carbon-sulfur bonding and amorphization effects in sulfur-doped pyrolytic graphite. Diamond and Related Materials, 2022, 121, 108729.	1.8	2
101	Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science, 2021, 374, 1140-1144.	6.0	144
102	Interlayer Interactions in 1D Van der Waals Moir $ ilde{A}$ © Superlattices. Advanced Science, 2022, 9, e2103460.	5.6	11
103	Imaging moir $ ilde{A}$ © deformation and dynamics in twisted bilayer graphene. Nature Communications, 2022, 13, 70.	5.8	16
104	(DSF) _{<i>n</i>} -graphene: a carbon semimetal with double stacking faults. Journal of Materials Chemistry C, 2022, 10, 2103-2108.	2.7	1
105	Twist-angle two-dimensional superlattices and their application in (opto)electronics. Journal of Semiconductors, 2022, 43, 011001.	2.0	10
106	Cooper-pair condensates with nonclassical long-range order on quantum devices. Physical Review Research, 2022, 4, .	1.3	14
107	Moiré patterns and carbon nanotube sorting. Nano Futures, 2022, 6, 015005.	1.0	1
108	Machine Learning Determination of the Twist Angle of Bilayer Graphene by Raman Spectroscopy: Implications for van der Waals Heterostructures. ACS Applied Nano Materials, 2022, 5, 1356-1366.	2.4	22
109	Spin-orbit–driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science, 2022, 375, 437-441.	6.0	61
110	Spiral Growth of Adlayer Graphene. Advanced Materials, 2022, 34, e2107587.	11.1	10

#	Article	IF	CITATIONS
111	Reproducibility in the fabrication and physics of moir $ ilde{A}$ © materials. Nature, 2022, 602, 41-50.	13.7	97
112	Raman spectra of twisted bilayer graphene close to the magic angle. 2D Materials, 2022, 9, 025007.	2.0	12
113	Anomalous vortex-shaped ferrimagnetic hysteresis in exfoliated highly oriented pyrolytic graphite with distorted moiré superlattices. Carbon Trends, 2022, 7, 100160.	1.4	2
114	Paramagnetic transitions and weak-diamagnetism in sulfur-doped buckypapers and graphene-oxide composites. Diamond and Related Materials, 2022, 123, 108853.	1.8	3
115	Degradation of Phonons in Disordered Moiré Superlattices. Physical Review Letters, 2022, 128, 065901.	2.9	15
116	Defects in graphene-based heterostructures: topological and geometrical effects. RSC Advances, 2022, 12, 6772-6782.	1.7	16
117	Detection of dielectric screening effect by excitons in two-dimensional semiconductors and its application. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 127102.	0.2	2
118	Ultrafast Nanoscopy of High-Density Exciton Phases in WSe ₂ . Nano Letters, 2022, 22, 2561-2568.	4.5	27
119	High pressure induced secondary and tertiary gaps in relaxed graphene on hexagonal boron nitride. Physical Review B, 2022, 105, .	1.1	2
120	Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nature Nanotechnology, 2022, 17, 390-395.	15.6	115
121	Twisted photovoltaics at terahertz frequencies from momentum shift current. Physical Review Research, 2022, 4, .	1.3	15
122	Theoretical study of broadband near-field optical spectrum of twisted bilayer graphene. Frontiers of Physics, 2022, 17, 1.	2.4	0
123	Why the first magic-angle is different from others in twisted graphene bilayers: Interlayer currents, kinetic and confinement energy, and wave-function localization. Physical Review B, 2022, 105, .	1.1	10
124	Spectroscopic Visualization of Flat Bands in Magic-Angle Twisted Monolayer-Bilayer Graphene: Coexistence of Localization and Delocalization. Physical Review Letters, 2022, 128, 126401.	2.9	15
125	In-plane orbital magnetization as a probe for symmetry breaking in strained twisted bilayer graphene. Physical Review B, 2022, 105, .	1.1	4
126	Interior and Edge Magnetization in Thin Exfoliated CrGeTe ₃ Films. Nano Letters, 2022, 22, 3165-3172.	4.5	12
127	Studying Quantum Materials with Scanning SQUID Microscopy. Annual Review of Condensed Matter Physics, 2022, 13, 385-405.	5.2	17
128	Magnetic, Thermal, and Topographic Imaging with a Nanometer-Scale SQUID-On-Lever Scanning Probe. Physical Review Applied, 2022, 17, .	1.5	20

TION R

#	Article	IF	Citations
129	Entangled phase of simultaneous fermion and exciton condensations realized. Physical Review B, 2022, 105, .	1.1	5
130	Dynamics of Interfacial Bubble Controls Adhesion Mechanics in Van der Waals Heterostructure. Nano Letters, 2022, 22, 3612-3619.	4.5	4
131	Correlated States in Strained Twisted Bilayer Graphenes Away from the Magic Angle. Nano Letters, 2022, 22, 3204-3211.	4.5	15
132	Topological charge density waves at half-integer filling of a moiré superlattice. Nature Physics, 2022, 18, 42-47.	6.5	34
133	Cryogen-free scanning gate microscope for the characterization of Si/Si0.7Ge0.3 quantum devices at milli-Kelvin temperatures. AIP Advances, 2021, 11, .	0.6	5
134	Global Phase Diagram of the Normal State of Twisted Bilayer Graphene. Physical Review Letters, 2022, 128, 156401.	2.9	42
135	Domain Formation Driven by the Entropy of Topological Edge Modes. Physical Review Letters, 2022, 128, 156801.	2.9	2
136	The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS Nano, 2022, 16, 6960-7079.	7.3	149
137	Tunable exchange bias in the magnetic Weyl semimetal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Co</mml:mi><mml:m mathvariant="normal">S<mml:mn>2</mml:mn></mml:m </mml:msub></mml:mrow>. Physical Review B. 2022. 105.</mml:math 	1,1×3 <td>ıl:mn> 10</td>	ıl:mn> 10
138	Recent experimental progresses on 2D van der Waals semiconductor moiré superlattices. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
139	Correlated Hofstadter spectrum and flavour phase diagram in magic-angle twisted bilayer graphene. Nature Physics, 2022, 18, 825-831.	6.5	26
140	Origami-controlled strain engineering of tunable flat bands and correlated states in folded graphene. Physical Review Materials, 2022, 6, .	0.9	9
141	Interaction-driven giant thermopower in magic-angle twisted bilayer graphene. Nature Physics, 2022, 18, 691-698.	6.5	16
142	Imaging of Submicroampere Currents in Bilayer Graphene Using a Scanning Diamond Magnetometer. Physical Review Applied, 2022, 17, .	1.5	12
143	Observation of Reentrant Correlated Insulators and Interaction-Driven Fermi-Surface Reconstructions at One Magnetic Flux Quantum per Moiré Unit Cell in Magic-Angle Twisted Bilayer Graphene. Physical Review Letters, 2022, 128, .	2.9	17
144	Moir $ ilde{A}$ © Quasibound States in the Continuum. Physical Review Letters, 2022, 128, .	2.9	34
145	Exploring Interfaces Through Synchrotron Radiation Characterization Techniques: A Graphene Case. Advanced Functional Materials, 2022, 32, .	7.8	3
146	Generalized Peierls substitution for the tight-binding model of twisted graphene systems in a magnetic field. Physical Review B, 2022, 105, .	1.1	6

#	Article	IF	Citations
147	MoirÃ $m{O}$ disorder effect in twisted bilayer graphene. Physical Review B, 2022, 105, .	1.1	9
148	Unusual magnetic transition and enhanced diamagnetism in highly oriented pyrolytic graphite with long-range stacking-order. Diamond and Related Materials, 2022, 127, 109163.	1.8	Ο
149	Chern mosaic and Berry-curvature magnetism in magic-angle graphene. Nature Physics, 2022, 18, 885-892.	6.5	37
150	Raman imaging of twist angle variations in twisted bilayer graphene at intermediate angles. 2D Materials, 2022, 9, 045009.	2.0	8
151	Magnetic moir \tilde{A} \odot surface states and flat Chern bands in topological insulators. Physical Review B, 2022, 106, .	1.1	6
152	Direct Measurement of Atomic Reconstruction, Strain, and Disorder in Moiré Materials using 4D-STEM. Microscopy and Microanalysis, 2022, 28, 1764-1766.	0.2	1
153	Graphene bilayer and trilayer moiré lattice with Rashba spin-orbit coupling. Physical Review B, 2022, 106, .	1.1	2
154	Skyrmions in Twisted Bilayer Graphene: Stability, Pairing, and Crystallization. Physical Review X, 2022, 12, .	2.8	15
155	Reentrant Correlated Insulators in Twisted Bilayer Graphene at 25ÂT (<mml:math) 0="" etqq0="" overlock<="" rgbt="" td="" tj=""><td>10 Tf 50 4 2.9</td><td>32 Td (xmlns: 25</td></mml:math)>	10 Tf 50 4 2.9	32 Td (xmlns: 25
156	Energetic stability and spatial inhomogeneity in the local electronic structure of relaxed twisted trilayer graphene. Physical Review B, 2022, 106, .	1.1	7
157	Coexistence of crystalline rhombohedral stacking and hexagonal moiré superlattices in exfoliated highly oriented pyrolytic graphite. Materials Today Communications, 2022, 32, 104152.	0.9	3
158	Recent Advances of Preparation and Application of Two-Dimension van der Waals Heterostructure. Coatings, 2022, 12, 1152.	1.2	6
159	Twist angle controlled collinear Edelstein effect in van der Waals heterostructures. Physical Review B, 2022, 106, .	1.1	14
160	Fast proton and water transport in ceramic membrane-based magic-angle graphene. Water Research, 2022, 225, 119076.	5.3	1
161	Optical Sensing of Fractional Quantum Hall Effect in Graphene. Nano Letters, 2022, 22, 7363-7369.	4.5	11
162	Weak localization on moiré superlattice in twisted double bilayer graphene. Japanese Journal of Applied Physics, 2022, 61, 100907.	0.8	2
163	Electromagnetic Analog to Magic Angles in Twisted Bilayers of Two-Dimensional Media. Physical Review Applied, 2022, 18, .	1.5	4
164	Probing the interlayer mechanical coupling of 2D layered materials - A review. Progress in Natural Science: Materials International, 2022, 32, 528-537.	1.8	5

#	Article	IF	CITATIONS
165	Corrugation-driven symmetry breaking in magic-angle twisted bilayer graphene. Communications Physics, 2022, 5, .	2.0	7
166	Recent Advances in Ultrathin Chiral Metasurfaces by Twisted Stacking. Advanced Materials, 2023, 35, .	11.1	38
167	A tunable monolithic SQUID in twisted bilayer graphene. Nature Nanotechnology, 2022, 17, 1159-1164.	15.6	19
168	The shapes of synthesized twoâ€dimensional materials. SmartMat, 2023, 4, .	6.4	5
169	Tuning Band Gaps in Twisted Bilayer Borophene. Journal of Physical Chemistry C, 2022, 126, 17769-17776.	1.5	4
170	Infrared photoresistance as a sensitive probe of electronic transport in twisted bilayer graphene. 2D Materials, 2023, 10, 015005.	2.0	3
171	Nanoscale View of Engineered Massive Dirac Quasiparticles in Lithographic Superstructures. ACS Nano, 2022, 16, 19354-19362.	7.3	2
172	Interfacial engineering of halide perovskites and two-dimensional materials. Chemical Society Reviews, 2023, 52, 212-247.	18.7	13
173	Single crystal growth of topological semimetals and magnetic topological materials. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 038103.	0.2	2
174	Local Kekul \tilde{A} distortion turns twisted bilayer graphene into topological Mott insulators and superconductors. Physical Review B, 2022, 106, .	1.1	10
175	Strong Structural and Electronic Coupling in Metavalent PbS Moiré Superlattices. Journal of the American Chemical Society, 2022, 144, 23474-23482.	6.6	1
176	Strongly overdoped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>La</mml:mi><mml:m : Evidence for Josephson-coupled grains of strongly correlated superconductor. Physical Review B, 2022-106</mml:m </mml:msub></mml:mrow></mml:math 	row> <mn 1.1</mn 	nl:mn>2
177	Single crystal growth of topological semimetals and magnetic topological materials. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 038101.	0.2	0
178	High-angular-momentum topological superconductivities in twisted bilayer quasicrystal systems. Physical Review B, 2023, 107, .	1.1	7
179	Chemical vapor deposition for fewâ€layer twoâ€dimensional materials. SmartMat, 2023, 4, .	6.4	9
180	Commensurate and incommensurate double moiré interference in twisted trilayer graphene. Physical Review B, 2023, 107, .	1.1	5
181	A twist in the bid to probe electrons in solids. Nature, 2023, 614, 628-629.	13.7	0
182	Continuum effective Hamiltonian for graphene bilayers for an arbitrary smooth lattice deformation from microscopic theories. Physical Review B, 2023, 107, .	1.1	10

#	Article	IF	CITATIONS
183	Functional Renormalization Group Study of Superconductivity in Rhombohedral Trilayer Graphene. Physical Review Letters, 2023, 130, .	2.9	9
184	Efficient Chebyshev polynomial approach to quantum conductance calculations: Application to twisted bilayer graphene. Physical Review B, 2023, 107, .	1.1	3
185	A primer on twistronics: a massless Dirac fermion's journey to moiré patterns and flat bands in twisted bilayer graphene. Journal of Physics Condensed Matter, 2023, 35, 143001.	0.7	2
186	Pseudomagnetic fields, particle-hole asymmetry, and microscopic effective continuum Hamiltonians of twisted bilayer graphene. Physical Review B, 2023, 107, .	1.1	16
187	Strain disorder and gapless intervalley coherent phase in twisted bilayer graphene. Physical Review B, 2023, 107, .	1.1	1
188	Wrinkles, Ridges, Miura-Ori, and Moiré Patterns in MoSe ₂ Using Neural Networks. Journal of Physical Chemistry Letters, 2023, 14, 1732-1739.	2.1	2
189	Formation of Artificial Fermi Surfaces with a Triangular Superlattice on a Conventional Two-Dimensional Electron Gas. Nano Letters, 2023, 23, 1705-1710.	4.5	3
190	Anderson's Theorem for Correlated Insulating States in Twisted Bilayer Graphene. Physical Review Letters, 2023, 130, .	2.9	4
191	A Superconducting Microâ€Magnetometer for Quantum Vortex in Superconducting Nanoflakes. Advanced Materials, 2023, 35, .	11.1	0
192	Large Valley Nernst Effect in Twisted Multilayer Graphene Systems. Chinese Physics B, 0, , .	0.7	0
193	Preparation and Raman spectroscopy of low-angle twisted trilayer graphene. , 2023, , .		0
194	Exciton insulator in a moir $ ilde{A}$ © lattice. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 067101.	0.2	0
195	Intrinsic spin Hall torque in a moir $ ilde{A}$ © Chern magnet. Nature Physics, 2023, 19, 807-813.	6.5	8
196	Topological nature of dislocation networks in two-dimensional moiré materials. Physical Review B, 2023, 107, .	1.1	11
197	First-principles study on the optoelectronic properties of the quasi-one-dimensional flexible semiconductor K2PdPS4I. Results in Physics, 2023, 47, 106396.	2.0	3
198	Tuning Multiple Landau Quantization in Transition-Metal Dichalcogenide with Strain. Nano Letters, 0,	4.5	1
199	Characteristic nanoscale deformation on a large-area coherent graphite moiré pattern. Physical Review B, 2023, 107, .	1.1	0
200	Superconductivity from electronic interactions and spin-orbit enhancement in bilayer and trilayer graphene. Physical Review B, 2023, 107, .	1.1	13

#	Article	IF	CITATIONS
201	Superconductivity and correlated phases in non-twisted bilayer and trilayer graphene. Nature Reviews Physics, 2023, 5, 304-315.	11.9	15
202	Equilibrium current distributions and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>W</mml:mi><mml:mi>â^žgauge theory in quantum Hall systems of conventional electrons and Dirac electrons. Physical Review B. 2023. 107</mml:mi></mml:msub></mml:math 	i> <i><[</i> mml:n 1.1	nsub>
203	Two-dimensional Mg2Si-111: A direct bandgap semiconductor with excellent optical response properties predicted by first-principles calculations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2023, 475, 128849.	0.9	1
204	Electric backaction on moir $ ilde{A}$ ${\mathbb O}$ mechanics. Physical Review B, 2023, 107, .	1.1	0
210	Fast Twist Angle Mapping of Bilayer Graphene Using Spectroscopic Ellipsometric Contrast Microscopy. Nano Letters, 2023, 23, 5506-5513.	4.5	2
216	Atomic Resolution Imaging of Highly Air-Sensitive Monolayer and Twisted-Bilayer WTe ₂ . Nano Letters, 2023, 23, 6868-6874.	4.5	3
226	Spintronics in 2D graphene-based van der Waals heterostructures. , 2024, , 205-222.		0