Distributed acoustic sensing of microseismic sources an terrain

Nature Communications 11, 2436 DOI: 10.1038/s41467-020-15824-6

Citation Report

#	Article	IF	CITATIONS
2	Rotation, Strain, and Translation Sensors Performance Tests with Active Seismic Sources. Sensors, 2021, 21, 264.	2.1	23
3	Seismic observation and subsurface imaging using an urban telecommunication optic-fiber cable. Chinese Science Bulletin, 2021, 66, 2590-2595.	0.4	16
5	Detection of hydroacoustic signals on a fiber-optic submarine cable. Scientific Reports, 2021, 11, 2797.	1.6	50
7	A Multi-Physics Experiment with a Temporary Dense Seismic Array on the Argentière Glacier, French Alps: The RESOLVE Project. Seismological Research Letters, 2021, 92, 1185-1201.	0.8	11
8	Seismic Applications of Downhole DAS. Sensors, 2021, 21, 2897.	2.1	29
9	Evaluating seismic beamforming capabilities of distributed acoustic sensing arrays. Solid Earth, 2021, 12, 915-934.	1.2	42
10	Changing friction at the base of an Alpine glacier. Scientific Reports, 2021, 11, 10872.	1.6	13
11	Characterizing detection noise in phase-sensitive optical time domain reflectometry. Optics Express, 2021, 29, 18791.	1.7	14
12	Optical Fiber Distributed Acoustic Sensors: A Review. Journal of Lightwave Technology, 2021, 39, 3671-3686.	2.7	117
13	Strain to ground motion conversion of distributed acoustic sensing data for earthquake magnitude and stress drop determination. Solid Earth, 2021, 12, 1421-1442.	1.2	26
14	Downhole distributed acoustic seismic profiling at Skytrain Ice Rise, West Antarctica. Cryosphere, 2021, 15, 3443-3458.	1.5	11
15	Observing the subglacial hydrology network and its dynamics with a dense seismic array. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
16	Protection and Installation of FBG Strain Sensor in Deep Boreholes for Subsurface Faults Behavior Monitoring. Sensors, 2021, 21, 5170.	2.1	6
17	Distributed acoustic sensing for near-surface imaging using submarine telecommunication cable: A case study in the Trondheimsfjord, Norway. Geophysics, 2021, 86, B303-B320.	1.4	21
19	Fiber-Optic Seismology. Annual Review of Earth and Planetary Sciences, 2021, 49, 309-336.	4.6	112
20	Distributed Acoustic Sensing for Vehicle Speed and Traffic Flow Estimation. , 2021, , .		8
21	Deep Neural Networks for Detection and Location of Microseismic Events and Velocity Model Inversion from Microseismic Data Acquired by Distributed Acoustic Sensing Array. Sensors, 2021, 21, 6627.	2.1	20
22	Channel-multiplexing for quasi-distributed acoustic sensing with orthogonal codes. Optics Express, 2021, 29, 36828.	1.7	6

#	Article	IF	CITATIONS
24	Distributed Acoustic Sensing Based on Coherent Microwave Photonics Interferometry. Sensors, 2021, 21, 6784.	2.1	3
25	Phase drift noise suppression for coherent-OTDR sensing based on heterogeneous dual-sideband LFM pulse. Applied Physics Express, 2020, 13, 082002.	1.1	5
26	Fine Structure of Microseismic Glacial Stickâ€5lip. Geophysical Research Letters, 2021, 48, e2021GL096043.	1.5	6
27	Accuracy evaluation of digital elevation models derived from Terrestrial Radar Interferometer over Helheim Glacier, Greenland. Remote Sensing of Environment, 2022, 268, 112759.	4.6	5
28	Distributed Acoustic Sensing in Volcanoâ€Glacial Environments—Mount Meager, British Columbia. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022358.	1.4	30
29	A novel mini-DAS module for submarine application. , 2020, , .		1
31	Microseismic analysis to aid gas reservoir characterization. , 2022, , 219-242.		1
32	Could fiber strains affect DAS amplitude response?. Measurement: Journal of the International Measurement Confederation, 2022, 189, 110428.	2.5	4
33	Demonstration of Fiber-Optic Seismic Sensor With Improved Dynamic Response in Oilfield Application. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-8.	2.4	4
34	Imminent Threat of Rock-Ice Avalanches in High Mountain Asia. SSRN Electronic Journal, 0, , .	0.4	1
35	Seismic Monitoring With Distributed Acoustic Sensing From the Near-Surface to the Deep Oceans. Journal of Lightwave Technology, 2022, 40, 1453-1463.	2.7	35
36	Phase error analysis and unwrapping error suppression in phase-sensitive optical time domain reflectometry. Optics Express, 2022, 30, 6934.	1.7	15
37	Seismic Advances in Process Geomorphology. Annual Review of Earth and Planetary Sciences, 2022, 50, 183-204.	4.6	9
38	Time shifting deviation method enhanced laser interferometry: ultrahigh precision localizing of traffic vibration using an urban fiber link. Photonics Research, 2022, 10, 433.	3.4	12
39	ADE-Net: A Deep Neural Network for DAS Earthquake Detection Trained With a Limited Number of Positive Samples. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	2.7	9
40	Dynamic Range Enlargement of Distributed Acoustic Sensing Based on Temporal Differential and Weighted-Gauge Approach. Journal of Lightwave Technology, 2022, 40, 3038-3045.	2.7	7
41	Scientific Applications of Distributed Acoustic Sensing: State-of-the-Art Review and Perspective. Sensors, 2022, 22, 1033.	2.1	57
42	Array Signal Processing on Distributed Acoustic Sensing Data: Directivity Effects in Slowness Space. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	17

_

#	Article	IF	CITATIONS
43	The seismic wavefield as seen by distributed acoustic sensing arrays: local, regional and teleseismic sources. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, 20210812.	1.0	10
44	Near-Surface Characterization Using High-Speed Train Seismic Data Recorded by a Distributed Acoustic Sensing Array. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	2.7	12
45	Potential seismic precursors and surficial dynamics of a deadly Himalayan disaster: an early warning approach. Scientific Reports, 2022, 12, 3733.	1.6	16
46	Fibre optic distributed acoustic sensing of volcanic events. Nature Communications, 2022, 13, 1753.	5.8	54
47	Sensing Bandwidth Enhancement by Utilizing Negative Frequency Bandwidth in Quasi-distributed Acoustic Sensing System. , 2021, , .		0
49	The Noise Lower-Bound of Rayleigh-Scattering-Pattern-Based Distributed Acoustic Sensing With Coherent Detection. Journal of Lightwave Technology, 2022, 40, 5337-5344.	2.7	4
50	Performance of Seismic Observation by Distributed Acoustic Sensing Technology Using a Seafloor Cable Off Sanriku, Japan. Frontiers in Marine Science, 2022, 9, .	1.2	21
51	Application of Intensity-Based Coherent Optical Time Domain Reflectometry to Bridge Monitoring. Sensors, 2022, 22, 3434.	2.1	5
52	Big Data Seismology. Reviews of Geophysics, 2022, 60, .	9.0	24
53	Imminent threat of rock-ice avalanches in High Mountain Asia. Science of the Total Environment, 2022, 836, 155380.	3.9	16
54	Can DAS be used to monitor mining induced seismicity?. International Journal of Rock Mechanics and Minings Sciences, 2022, 155, 105127.	2.6	3
55	Assessment of Distributed Acoustic Sensing (DAS) performance for geotechnical applications. Engineering Geology, 2022, 306, 106729.	2.9	5
56	Sensitivity kernels for transmission fiber optics. Geophysical Journal International, 0, , .	1.0	3
57	Submarine Optical Fiber Sensing System for the Real-Time Monitoring of Depth, Vibration, and Temperature. Frontiers in Marine Science, 0, 9, .	1.2	5
58	Fault Zone Imaging With Distributed Acoustic Sensing: Surfaceâ€Toâ€Surface Wave Scattering. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	8
59	Epicenter localization using forward-transmission laser interferometry. Optics Express, 2022, 30, 24020.	1.7	3
60	Microseismic Monitoring and Analysis Using Cutting-Edge Technology: A Key Enabler for Reservoir Characterization. Remote Sensing, 2022, 14, 3417.	1.8	2
61	Near-surface characterization using urban traffic noise recorded by fiber-optic distributed acoustic sensing. Frontiers in Earth Science, 0, 10, .	0.8	6

#	Article	IF	CITATIONS
62	Detection of shallow sedimentary structure of Yigong Lake in Tibetan Plateau using distributed acoustic sensing. , 2022, , .		0
63	Railway traffic monitoring with trackside fiber-optic cable by distributed acoustic sensing Technology. Frontiers in Earth Science, 0, 10, .	0.8	4
64	Denoising of distributed acoustic sensing data using supervised deep learning. Geophysics, 2023, 88, WA91-WA104.	1.4	15
65	Mid-infrared photothermal gas sensor enabled by core-cladding mode interference in a hollow-core fiber. Journal of Lightwave Technology, 2022, , 1-8.	2.7	3
66	Seismology in the solar system. Advances in Geophysics, 2022, , 9-64.	1.1	4
67	Deep compressed seismic learning for fast location and moment tensor inferences with natural and induced seismicity. Scientific Reports, 2022, 12, .	1.6	2
68	Distributed Acoustic Sensing: A New Tool or a New Paradigm. Seismic Instruments, 2022, 58, 485-508.	0.0	2
69	Fiber optic strain rate sensor based on a differentiating interferometer. Photonics Research, 2022, 10, 2599.	3.4	5
70	Distributed Acoustic Sensing for Monitoring Linear Infrastructures: Current Status and Trends. Sensors, 2022, 22, 7550.	2.1	21
71	Ensemble empirical mode decomposition and stacking model for filtering borehole distributed acoustic sensing records. Geophysics, 2023, 88, WA319-WA334.	1.4	3
72	Deep Deconvolution for Traffic Analysis With Distributed Acoustic Sensing Data. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 2947-2962.	4.7	4
73	A Small-Scale Tether Management System for Under-Ice Ocean Profiling. , 2022, , .		0
74	Distributed fiber mountain seismic monitoring and steady-state analysis under natural earthquakes. Applied Optics, 2023, 62, 342.	0.9	1
75	Seismic Noise Interferometry and Distributed Acoustic Sensing (DAS): Inverting for the Firn Layer <i>S</i> â€Velocity Structure on Rutford Ice Stream, Antarctica. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	1.0	5
76	Measuring the thickness and Young's modulus of the ice pack with DAS, a test case on a frozen mountain lake. Geophysical Journal International, 2023, 233, 1166-1177.	1.0	1
77	Seismic Monitoring of Machinery through Noise Interferometry of Distributed Acoustic Sensing. Seismological Research Letters, 2023, 94, 637-645.	0.8	3
78	Revealing the shallow soil structure of the Yigong Lake in the Tibetan Plateau using a portable distributed acoustic sensing interrogator. Frontiers in Earth Science, 0, 10, .	0.8	1
79	Integrated sensing and communication in an optical fibre. Light: Science and Applications, 2023, 12, .	7.7	17

#	Article	IF	CITATIONS
80	Glacier Temperature and Structure Variation Observed with Fiber-Optic Sensors on a Tibetan Plateau Glacier. , 2022, , .		0
81	Rapid Surface Deployment of a DAS System for Earthquake Hazard Assessment. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2023, 149, .	1.5	3
82	Investigation of the effects of surrounding media on the distributed acoustic sensing of a helically wound fibre-optic cable with application to the New Afton deposit, British Columbia. Solid Earth, 2023, 14, 89-99.	1.2	1
83	Subsurface Science and Search for Life in Ocean Worlds. Planetary Science Journal, 2023, 4, 22.	1.5	3
84	Icequakes and Large Shear Wave Velocity Drop in the Kuoqionggangri Glacier of Tibetan Plateau Observed with Fiber Optic Seismometer Array. Remote Sensing, 2023, 15, 1282.	1.8	0
85	Innovative Photonic Sensors for Safety and Security, Part I: Fundamentals, Infrastructural and Ground Transportations. Sensors, 2023, 23, 2558.	2.1	5
86	Using Dark Fiber and Distributed Acoustic Sensing to Characterize a Geothermal System in the Imperial Valley, Southern California. Journal of Geophysical Research: Solid Earth, 2023, 128, .	1.4	3
87	Specialty optical fibers for advanced sensing applications. , 2023, 2, 220025-220025.		6
88	FBC-LPFG-Based Sensor to Monitor 3-D Strain in Ice During Freezing–Melting Processes. IEEE Sensors Journal, 2023, 23, 9333-9342.	2.4	1
89	Denoising distributed acoustic sensing data using unsupervised deep learning. Geophysics, 2023, 88, V317-V332.	1.4	2
90	Entanglement-enhanced optomechanical sensing. Nature Photonics, 2023, 17, 470-477.	15.6	8
92	Geophysical Applications of φ-OTDR/DAS. , 2023, , .		0
104	Dual-soliton-microcombs based coherent fiber-optic distributed acoustic sensing. , 2023, , .		0
122	Analytical model on the sensitivity in heterodyne-detection phase-sensitive optical time-domain reflectometry. , 2023, , .		0
123	Distributed Optical Phase-sensitive Reflectometry Based on Continuous FrFT-DC Signal. , 2023, , .		0