Progress in the Development of Chitosan Based Insulin Literature Review

Polymers 12, 2499 DOI: 10.3390/polym12112499

Citation Report

#	Article	IF	CITATIONS
1	Chitosan for biomedical applications, promising antidiabetic drug delivery system, and new diabetes mellitus treatment based on stem cell. International Journal of Biological Macromolecules, 2021, 190, 417-432.	3.6	25
2	Biological macromolecules: sources, properties, and functions. , 2022, , 3-22.		3
3	Applications of Chitosan-Alginate-Based Nanoparticles—An Up-to-Date Review. Nanomaterials, 2022, 12, 186.	1.9	67
4	Critical material designs for mucus- and mucosa-penetrating oral insulin nanoparticle development. International Materials Reviews, 2023, 68, 121-139.	9.4	11
5	Influence of Amidation on the Release Profiles of Insulin Drug from Chitosan-Based Matrices. Coatings, 2022, 12, 465.	1.2	4
6	Non-invasive ways of administering insulin. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2022, 16, 102478.	1.8	7
7	In Vitro Comparative Study of Solid Lipid and PLGA Nanoparticles Designed to Facilitate Nose-to-Brain Delivery of Insulin. International Journal of Molecular Sciences, 2021, 22, 13258.	1.8	21
8	Reactive Oxygen Species Scavenging Nanomedicine for the Treatment of Ischemic Heart Disease. Advanced Materials, 2022, 34, e2202169.	11.1	49
9	Natural Polysaccharide-Based Nanodrug Delivery Systems for Treatment of Diabetes. Polymers, 2022, 14, 3217.	2.0	28
10	Composites Based on Chitosan and Inorganic Materials for Biomedical Applications. Engineering Materials, 2023, , 119-139.	0.3	1
11	Interactions between Soybean Trypsin Inhibitor and Chitosan in an Aqueous Solution. Polymers, 2023, 15, 1594.	2.0	4