An Architectural Multi-Agent System for a Pavement M Recognition in UAV Images

Sensors

20, 6205

DOI: 10.3390/s20216205

Citation Report

#	Article	IF	Citations
1	Singular Spectrum Analysis for Source Separation in Drone-Based Audio Recording. IEEE Access, 2021, 9, 43444-43457.	2.6	6
2	Detection of Road-Surface Anomalies Using a Smartphone Camera and Accelerometer. Sensors, 2021, 21, 561.	2.1	36
3	Rapid Detection and Counting of Wheat Ears in the Field Using YOLOv4 with Attention Module. Agronomy, 2021, 11, 1202.	1.3	66
4	Quantitative circular flow immunoassays with trained object recognition to detect antibodies to SARS-CoV-2 membrane glycoprotein. Biochemical and Biophysical Research Communications, 2021, 565, 8-13.	1.0	3
5	Towards Fully Autonomous UAVs: A Survey. Sensors, 2021, 21, 6223.	2.1	35
6	Application of image technology on pavement distress detection: A review. Measurement: Journal of the International Measurement Confederation, 2021, 184, 109900.	2.5	46
8	Pavement distress detection using convolutional neural networks with images captured via UAV. Automation in Construction, 2022, 133, 103991.	4.8	96
9	Integration of Smart Pavement Data with Decision Support Systems: A Systematic Review. Buildings, 2021, 11, 579.	1.4	6
10	Application of Various YOLO Models for Computer Vision-Based Real-Time Pothole Detection. Applied Sciences (Switzerland), 2021, 11, 11229.	1.3	36
11	Visual Extensions and Anomaly Detection in the Pneuma Experiment with a Swarm of Drones. SSRN Electronic Journal, 0, , .	0.4	О
12	A Novel Road Maintenance Prioritisation System Based on Computer Vision and Crowdsourced Reporting. Journal of Sensor and Actuator Networks, 2022, 11, 15.	2.3	10
13	Road Condition Monitoring Using Smart Sensing and Artificial Intelligence: A Review. Sensors, 2022, 22, 3044.	2.1	48
14	Pothole Detection Using Image Enhancement GAN and Object Detection Network. Electronics (Switzerland), 2022, 11, 1882.	1.8	10
15	Multi-scale feature fusion network for pixel-level pavement distress detection. Automation in Construction, 2022, 141, 104436.	4.8	21
16	A Deep Learning Approach to Detect the Spoiled Fruits. WSEAS Transactions on Computer Research, 2022, 10, 74-87.	0.3	2
17	Efficient Pavement Monitoring for South Korea Using Unmanned Aerial Vehicles. , 2022, , .		2
18	A cross-platform smart drone controller framework $\hat{a} \in \text{``for real-time surveillance and inspection.}$ Journal of Physics: Conference Series, 2022, 2336, 012009.	0.3	2
19	Applications of Artificial Intelligence Enhanced Drones in Distress Pavement, Pothole Detection, and Healthcare Monitoring with Service Delivery. Journal of Engineering (United States), 2022, 2022, 1-16.	0.5	1

#	Article	IF	CITATIONS
20	An Overview of Recent Advances in the Event-Triggered Consensus of Multi-Agent Systems with Actuator Saturations. Mathematics, 2022, 10, 3879.	1.1	4
21	Performance Analysis of the YOLOv4 Algorithm for Pavement Damage Image Detection with Different Embedding Positions of CBAM Modules. Applied Sciences (Switzerland), 2022, 12, 10180.	1.3	8
22	Towards Sustainable Smart Cities: TheÂUse ofÂtheÂViaPPS asÂRoad Monitoring System. Studies in Computational Intelligence, 2023, , 135-153.	0.7	0
23	Automatic bridge crack detection using Unmanned aerial vehicle and Faster R-CNN. Construction and Building Materials, 2023, 362, 129659.	3.2	39
24	Visual extensions and anomaly detection in the pNEUMA experiment with a swarm of drones. Transportation Research Part C: Emerging Technologies, 2023, 147, 103966.	3.9	7
25	Spatiotemporal matching method for tracking pavement distress using highâ€frequency detection data. Computer-Aided Civil and Infrastructure Engineering, 2023, 38, 2257-2278.	6.3	2
26	YOLOv5s-FP: A Novel Method for In-Field Pear Detection Using a Transformer Encoder and Multi-Scale Collaboration Perception. Sensors, 2023, 23, 30.	2.1	6
27	Creation of a Virtual Tour .Exe Utilizing Very High-Resolution RGB UAV Data. International Journal of Environment and Geoinformatics, 2022, 9, 151-160.	0.5	1
28	Active Actions in the Extraction of Urban Objects for Information Quality and Knowledge Recommendation with Machine Learning. Sensors, 2023, 23, 138.	2.1	2
29	Analysis of YOLOv5 and DeepLabv3+ Algorithms for Detecting Illegal Cultivation on Public Land: A Case Study of a Riverside in Korea. International Journal of Environmental Research and Public Health, 2023, 20, 1770.	1.2	2
30	YOLO-Based UAV Technology: A Review of the Research and Its Applications. Drones, 2023, 7, 190.	2.7	21
35	Platform forÂtheÂAnalysis ofÂtheÂDensity ofÂShopping Carts inÂaÂSupermarket. Advances in Intelligent Systems and Computing, 2023, , 335-343.	0.5	0
36	Ldetect, IOT Based Pothole Detector. Advances in Intelligent Systems and Computing, 2023, , 427-437.	0.5	1
37	Real time road defect monitoring from UAV visual data sources. , 2023, , .		0
39	Fault-Tolerant Control of Linear MASs With Dynamic Event-Triggered., 2023,,.		0
40	Lightweight computer vision based asphalt pavement crack visualization detection. , 2023, , .		0
41	Soft Computing based Implementation of Autonomous Drone Vehicle using Fuzzy Logic based Control Systems., 2023,,.		1