Global food system emissions could preclude achieving targets

Science 370, 705-708

DOI: 10.1126/science.aba7357

Citation Report

#	Article	IF	CITATIONS
1	The Role of Citizen Science in Sustainable Agriculture. Sustainability, 2020, 12, 10375.	1.6	11
2	Biomimetics provides lessons from nature for contemporary ways to improve human health. Journal of Clinical and Translational Science, 2021, 5, e128.	0.3	4
3	Use of decisionâ€support tools by students to link crop management practices with greenhouse gas emissions: A case study. Journal of Natural Resources and Life Sciences Education, 2021, 50, e20063.	0.8	3
4	Cost-Effective Mitigation of Greenhouse Gas Emissions in the Agriculture of Aragon, Spain. International Journal of Environmental Research and Public Health, 2021, 18, 1084.	1.2	5
5	Nano beta zeolites catalytic-cracking effect on hydrochlorofluorocarbon molecule for specific detection of Freon. Journal of Materials Chemistry A, 2021, 9, 15321-15328.	5.2	8
6	An Overview of the Problems and Prospects for Circular Agriculture in Sustainable Food Systems in the Anthropocene. Circular Agricultural Systems, 2021, 1, 1-11.	0.5	11
7	Corn Ethanol. Why?. Lecture Notes in Energy, 2021, , 137-143.	0.2	0
8	Is Meat Too Cheap? Towards Optimal Meat Taxation. SSRN Electronic Journal, 0, , .	0.4	11
9	Human-Made Risks and Climate Change with Global Heating. , 2021, , 117-148.		2
10	Agriculture's Contribution to Climate Change and Role in Mitigation Is Distinct From Predominantly Fossil CO2-Emitting Sectors. Frontiers in Sustainable Food Systems, 2021, 4, 518039.	1.8	139
11	Reducing climate impacts of beef production: A synthesis of life cycle assessments across management systems and global regions. Global Change Biology, 2021, 27, 1721-1736.	4.2	38
12	Revamping Ecosystem Services through Agroecology—The Case of Cereals. Agriculture (Switzerland), 2021, 11, 204.	1.4	12
13	Technologies to deliver food and climate security through agriculture. Nature Plants, 2021, 7, 250-255.	4.7	63
14	Integrate health into decision-making to foster climate action. Environmental Research Letters, 2021, 16, 041005.	2.2	5
15	Digitalization and AI in European Agriculture: A Strategy for Achieving Climate and Biodiversity Targets?. Sustainability, 2021, 13, 4652.	1.6	53
16	UN Food Systems Summit 2021: Dismantling Democracy and Resetting Corporate Control of Food Systems. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	96
18	Household Food Metabolism: Losses, Waste and Environmental Pressures of Food Consumption at the Regional Level in Spain. Foods, 2021, 10, 1166.	1.9	2
19	What's the beef?: Debating meat, matters of concern and the emergence of online issue publics. Journal of Rural Studies, 2021, 84, 134-146.	2.1	21

#	ARTICLE	IF	CITATIONS
20	Selecting low-carbon technologies and measures for high agricultural carbon productivity in Taihu Lake Basin, China. Environmental Science and Pollution Research, 2021, 28, 49913-49920.	2.7	20
21	On Farmers Markets as Wicked Opportunities. Sustainability, 2021, 13, 6108.	1.6	8
22	Scenarios for transforming the UK food system to meet global agreements. Nature Food, 2021, 2, 310-312.	6.2	4
23	Lifetime Climate Impacts of Diet Transitions: A Novel Climate Change Accounting Perspective. Sustainability, 2021, 13, 5568.	1.6	10
24	US and UK Consumer Adoption of Cultivated Meat: A Segmentation Study. Foods, 2021, 10, 1050.	1.9	37
25	Political Consumerism and Interpersonal Discussion Patterns. Scandinavian Political Studies, 2021, 44, 392-415.	0.9	8
26	Research on the Relationship between Prices of Agricultural Production Factors, Food Consumption Prices, and Agricultural Carbon Emissions: Evidence from China's Provincial Panel Data. Energies, 2021, 14, 3136.	1.6	7
27	Disproportionate contributions to air quality-related deaths: The latest case against red meat. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3. 3	1
28	Don't Have a Cow, Man: Consumer Acceptance of Animal-Free Dairy Products in Five Countries. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	10
29	Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row-crop production. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	3.3	64
30	Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options. Renewable and Sustainable Energy Reviews, 2021, 143, 110856.	8.2	89
31	Underestimates of methane from intensively raised animals could undermine goals of sustainable development. Environmental Research Letters, 2021, 16, 063006.	2.2	7
32	Emissions from Animal Agriculture—16.5% Is the New Minimum Figure. Sustainability, 2021, 13, 6276.	1.6	32
33	Sustainability Opportunities for Mediterranean Food Products through New Formulations Based on Carob Flour (Ceratonia siliqua L.). Sustainability, 2021, 13, 8026.	1.6	14
34	Bioenergy for climate change mitigation: Scale and sustainability. GCB Bioenergy, 2021, 13, 1346-1371.	2.5	43
35	A Multifunctional Solution for Wicked Problems: Value-Chain Wide Facilitation of Legumes Cultivated at Bioregional Scales Is Necessary to Address the Climate-Biodiversity-Nutrition Nexus. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	17
36	Impact of a College Course on the Sustainability of Student Diets in Terms of the Planetary Boundaries for Climate Change and Land, Water, Nitrogen and Phosphorus Use. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	1
37	Engineering healthy crops: molecular strategies for enhancing the plant immune system. Current Opinion in Biotechnology, 2021, 70, 151-157.	3.3	10

#	ARTICLE	IF	Citations
38	The Role of Food and Beverage Companies in Transforming Food Systems: Building Resilience at Multiple Scales. Current Developments in Nutrition, 2021, 5, nzab110.	0.1	1
39	National climate and biodiversity strategies are hamstrung by a lack of maps. Nature Ecology and Evolution, 2021, 5, 1325-1327.	3.4	20
40	Perceptions of Vegan Food among Organic Food Consumers Following Different Diets. Sustainability, 2021, 13, 9794.	1.6	7
41	Healthier and more sustainable diets: What changes are needed in highâ€income countries?. Nutrition Bulletin, 2021, 46, 279-309.	0.8	46
42	Five Fundamental Trends of Global Energy Sector, European Green Deal as Deterrents to Development of Mining and Energy Sector. Gornaya Promyshlennost, 2021, , 94-100.	0.1	1
43	Can radical innovation mitigate environmental and animal welfare misconduct in global value chains? The case of cell-based tuna. Technological Forecasting and Social Change, 2021, 169, 120845.	6.2	12
44	Food choice drivers of potential lab-grown meat consumers in Australia. British Food Journal, 2021, 123, 3014-3031.	1.6	11
45	Reducing Carbon Footprint Inequality of Household Consumption in Rural Areas: Analysis from Five Representative Provinces in China. Environmental Science & Eamp; Technology, 2021, 55, 11511-11520.	4.6	50
46	Role of the Food Supply Chain Stakeholders in Achieving UN SDGs. Sustainability, 2021, 13, 9095.	1.6	24
47	Policy to Reduce Greenhouse Gas Emissions: Is Agricultural Methane a Special Case?. EuroChoices, 2021, 20, 11-17.	0.6	6
48	A sustainable development pathway for climate action within the UN 2030 Agenda. Nature Climate Change, 2021, 11, 656-664.	8.1	179
49	Decoupling between ammonia emission and crop production in China due to policy interventions. Global Change Biology, 2021, 27, 5877-5888.	4.2	17
50	Improving Consumers' Understanding and Use of Carbon Footprint Labels on Food: Proposal for a Climate Score Label. EuroChoices, 2021, 20, 23-29.	0.6	13
51	Quantifying opportunities for greenhouse gas emissions mitigation using big data from smallholder crop and livestock farmers across Bangladesh. Science of the Total Environment, 2021, 786, 147344.	3.9	15
52	All hat and no cattle: Accountability following the UN food systems summit. Global Food Security, 2021, 30, 100569.	4.0	11
53	Sustainable food systems and nutrition in the 21st century: a report from the 22nd annual Harvard Nutrition Obesity Symposium. American Journal of Clinical Nutrition, 2022, 115, 18-33.	2.2	43
54	How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200452.	1.6	49
55	Global health has a stake in the upcoming UN Food Systems Summit. Lancet, The, 2021, 398, 1027-1029.	6.3	2

#	Article	IF	Citations
56	OsRGA1 optimizes photosynthate allocation for roots to reduce methane emissions and improve yield in paddy ecosystems. Soil Biology and Biochemistry, 2021, 160, 108344.	4.2	14
57	Carbon footprint of Canadian self-selected diets: Comparing intake of foods, nutrients, and diet quality between low- and high-greenhouse gas emission diets. Journal of Cleaner Production, 2021, 316, 128245.	4.6	28
58	Renewing Universities in Our Climate Emergency: Stewarding System Change and Transformation. Frontiers in Sustainability, 2021, 2, .	1.3	8
59	The Role of Small Woody Landscape Features and Agroforestry Systems for National Carbon Budgeting in Germany. Land, 2021, 10, 1028.	1.2	12
60	The overlooked importance of food disadoption for the environmental sustainability of new foods. Environmental Research Letters, 2021, 16, 104022.	2.2	5
61	Mapping the landscape of Consumer Food Waste. Appetite, 2021, 168, 105702.	1.8	4
62	Challenges and opportunities for food systems in a changing climate: A systematic review of climate policy integration. Environmental Science and Policy, 2021, 124, 485-495.	2.4	10
63	How to legally overcome the distinction between organic and conventional farming - Governance approaches for sustainable farming on 100% of the land. Sustainable Production and Consumption, 2021, 28, 716-725.	5.7	19
64	Comparative life cycle assessment of plant and beef-based patties, including carbon opportunity costs. Sustainable Production and Consumption, 2021, 28, 936-952.	5.7	21
65	Operations research for environmental assessment of crop-livestock production systems. Agricultural Systems, 2021, 193, 103208.	3.2	8
66	Viewpoint: Rigorous monitoring is necessary to guide food system transformation in the countdown to the 2030 global goals. Food Policy, 2021, 104, 102163.	2.8	110
67	Sustainability in the food and beverage sector and its impact on the cost of equity. British Food Journal, 2022, 124, 2497-2511.	1.6	2
68	Spatial differentiation identification of influencing factors of agricultural carbon productivity at city level in Taihu lake basin, China. Science of the Total Environment, 2021, 800, 149610.	3.9	29
69	The farmers' dilemma: Meat, means, and morality. Appetite, 2021, 167, 105605.	1.8	14
70	The role of carbon dioxide removal in net-zero emissions pledges. Energy and Climate Change, 2021, 2, 100043.	2.2	28
71	Co-benefits of a flexitarian diet for air quality and human health in Europe. Ecological Economics, 2022, 191, 107232.	2.9	18
72	Global and regional drivers of land-use emissions in 1961–2017. Nature, 2021, 589, 554-561.	13.7	256
74	Desafios para o sistema alimentar global. Ciência E Cultura, 2021, 73, 53-57.	0.5	1

#	Article	IF	CITATIONS
75	The Effects of Policy Design Complexity on Public Support for Climate Policy. SSRN Electronic Journal, 0, , .	0.4	2
76	Social Character of Science and Its Connection to Epistemic Reliability. Science and Education, 2022, 31, 1429-1448.	1.7	3
77	Farmers' action space to adopt sustainable practices: a study of arable farming in Saxony. Regional Environmental Change, 2021, 21, 1.	1.4	7
78	Reconfiguring Food Systems Governance: The UNFSS and the Battle Over Authority and Legitimacy. Development, 2021, 64, 181-191.	0.5	19
79	Waste-to-nutrition: a review of current and emerging conversion pathways. Biotechnology Advances, 2021, 53, 107857.	6.0	36
80	Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nature Food, 2021, 2, 886-893.	6.2	68
81	2050: The Year of Our Carbon-Neutral Food System. Journal of Nutrition Education and Behavior, 2021, 53, 819-820.	0.3	0
82	South African Consumer Adoption of Plant-Based and Cultivated Meat: A Segmentation Study. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	12
83	Investing in early nutrition and food systems for human and planetary health. The Lancet Child and Adolescent Health, 2021, 5, 772-774.	2.7	2
84	Water-Energy-Food system in typical cities of the world and China under zero-waste: Commonalities and asynchronous experiences support sustainable development. Ecological Indicators, 2021, 132, 108221.	2.6	15
85	Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures. Nature Communications, 2021, 12, 6245.	5.8	78
86	Validation of the operation efficiency criteria for geothermal probes in flooded mine workings. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2020, , 100-105.	0.3	O
87	State of Climate Action 2021: Systems Transformations Required to Limit Global Warming to $1.5 {\rm \^{A}^{\circ}C.}$, 0, , .		15
88	What contributes more to life-cycle greenhouse gas emissions of farm produce: Production, transportation, packaging, or food loss?. Resources, Conservation and Recycling, 2022, 176, 105945.	5.3	14
89	Menu design approaches to promote sustainable vegetarian food choices when dining out. Journal of Environmental Psychology, 2022, 79, 101721.	2.3	21
90	Barriers and methodology in transitioning to sustainability: Analysing web news comments concerning animal-based diets. Journal of Cleaner Production, 2022, 330, 129857.	4.6	5
91	"Does it change the nature of food and capitalism?―Exploring expert perspectives on public policies for a transition to †less and better' meat and dairy. Environmental Science and Policy, 2022, 128, 110-120.	2.4	4
92	World scientists' warnings into action, local to global. Science Progress, 2021, 104, 003685042110562.	1.0	13

#	Article	IF	CITATIONS
93	Closing Research Investment Gaps for a Global Food Transformation. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	5
94	Designing Just Transition Pathways: A Methodological Framework to Estimate the Impact of Future Scenarios on Employment in the French Dairy Sector. Agriculture (Switzerland), 2021, 11, 1119.	1.4	4
95	Differences in Environmental Impact between Plant-Based Alternatives to Dairy and Dairy Products: A Systematic Literature Review. Sustainability, 2021, 13, 12599.	1.6	23
96	Horizon scanning and review of the impact of five food and food production models for the global food system in 2050. Trends in Food Science and Technology, 2022, 119, 550-564.	7.8	18
97	Demand-side solutions to climate change mitigation consistent with high levels of well-being. Nature Climate Change, 2022, 12, 36-46.	8.1	133
98	Safety evaluation of transgenic and genome-edited food animals. Trends in Biotechnology, 2021, , .	4.9	4
99	What humanity should eat to stay healthy and save the planet. Nature, 2021, 600, 22-25.	13.7	21
100	Examining the Environmental Impacts of the Dairy and Baby Food Industries: Are First-Food Systems a Crucial Missing Part of the Healthy and Sustainable Food Systems Agenda Now Underway?. International Journal of Environmental Research and Public Health, 2021, 18, 12678.	1.2	21
101	Impacts of supply-side climate change mitigation practices and trade policy regimes under dietary transition: the case of European agriculture. Environmental Research Letters, 2021, 16, 124048.	2.2	15
103	Dietary change in high-income nations alone can lead to substantial double climate dividend. Nature Food, 2022, 3, 29-37.	6.2	70
104	How do we best synergize climate mitigation actions to coâ€benefit biodiversity?. Global Change Biology, 2022, 28, 2555-2577.	4.2	28
105	Electrochemical separation of organic acids and proteins for food and biomanufacturing. Chemical Engineering Research and Design, 2022, 178, 267-288.	2.7	25
106	Predicting field N2O emissions from crop residues based on their biochemical composition: A meta-analytical approach. Science of the Total Environment, 2022, 812, 152532.	3.9	30
107	Production of Sustainable Proteins Through the Conversion of Insects to Proteins Using Beauveria bassiana Cultures. Frontiers in Sustainable Food Systems, 2022, 5, .	1.8	0
108	The horizon of agricultural ethics. , 2022, , 1-15.		0
109	Editorial foreword for "environment, development and sustainability" journal. Environment, Development and Sustainability, 2022, 24, 2983-2985.	2.7	5
110	Extinction, climate change and the ecology of <i>Homo sapiens</i> . Journal of Ecology, 2022, 110, 744-750.	1.9	5
111	Rapid global phaseout of animal agriculture has the potential to stabilize greenhouse gas levels for 30 years and offset 68 percent of CO2 emissions this century. , 2022, 1, e0000010.		62

#	ARTICLE	IF	CITATIONS
112	Influencing mechanism of non-CO2 greenhouse gas emissions and mitigation strategies of livestock sector in developed regions of eastern China: a case study of Jiangsu province. Environmental Science and Pollution Research, 2022, 29, 39937-39947.	2.7	9
114	Bioactive Phytochemicals from Olive (Olea europaea) Processing By-products. Reference Series in Phytochemistry, 2022, , 1-37.	0.2	1
115	ASSESSING STRATEGIES FOR REDUCING THE CARBON FOOTPRINT OF TEXTILE PRODUCTS IN CHINA UNDER THE SHARED SOCIOECONOMIC PATHWAYS FRAMEWORK. Climate Change Economics, 2022, 13, .	2.9	6
116	Isotopic signals in an agricultural watershed suggest denitrification is locally intensive in riparian areas but extensive in upland soils. Biogeochemistry, 2022, 158, 251-268.	1.7	8
117	Methods matter: Improved practices for environmental evaluation of dietary patterns. Global Environmental Change, 2022, 73, 102482.	3.6	4
118	Research on the Adjustment and Optimization of Chemical Fertilizer Consumption Structure Based on Crop Yield, Environment Protection and Greenhouse Gases Emissions Constraints—Taking China as an Example. SSRN Electronic Journal, 0, , .	0.4	0
119	The effects of policy design complexity on public support for climate policy. Behavioural Public Policy, 0, , 1-26.	1.6	13
120	Physicochemical and Functional Modifications of Hemp Protein Concentrate by the Application of Ultrasonication and pH Shifting Treatments. Foods, 2022, 11, 587.	1.9	19
121	Marketplace measurement: farmers, farmers markets and ecosystem services. International Journal of Sociology and Social Policy, 2022, ahead-of-print, .	0.8	0
122	Designing Environmental Messages to Discourage Red Meat Consumption: An Online Experiment. International Journal of Environmental Research and Public Health, 2022, 19, 2919.	1.2	8
123	Extension services can promote pasture restoration: Evidence from Brazil's low carbon agriculture plan. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114913119.	3.3	12
124	Reply to Amundson: Time to go to work. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122842119.	3.3	0
125	Typologies of European farmers: approaches, methods and research gaps. Regional Environmental Change, 2022, 22, 1.	1.4	13
126	Central Persons in Sustainable (Food) Consumption. International Journal of Environmental Research and Public Health, 2022, 19, 3139.	1.2	5
127	Negative emissions in agriculture are improbable in the near future. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118142119.	3.3	1
128	Water-Food-Carbon Nexus Related to the Producer–Consumer Link: A Review. Advances in Nutrition, 2022, 13, 938-952.	2.9	6
129	Deceleration of Cropland-N ₂ O Emissions in China and Future Mitigation Potentials. Environmental Science & Environme	4.6	22
130	Pleasure vs. identity: More eating simulation language in meat posts than plant-based posts on social media #foodtalk. Appetite, 2022, 175, 106024.	1.8	6

#	Article	IF	CITATIONS
131	European Forest Governance: Status Quo and Optimising Options with Regard to the Paris Climate Target. Sustainability, 2022, 14, 4365.	1.6	7
132	Meat, money and messaging: How the environmental and health harms of red and processed meat consumption are framed by the meat industry. Food Policy, 2022, 109, 102234.	2.8	15
133	Energy and greenhouse gas footprints of China households during 1995–2019: A global perspective. Energy Policy, 2022, 164, 112939.	4.2	7
134	Evidentiary function of systematic reviews of scientific literature: Epistemological foundations and methodological derivatives. Scientific and Technical Libraries, 2021, , 25-40.	0.1	0
135	Historical food consumption declines and the role of alternative foods. Environmental Research Letters, 2022, 17, 014020.	2.2	0
136	Carbon Footprint Calculator Customized for Rice Products: Concept and Characterization of Rice Value Chains in Southeast Asia. Sustainability, 2022, 14, 315.	1.6	5
137	Alternative Proteins Offer Climate Opportunities and Mitigate Business Risk. Industrial Biotechnology, 2021, 17, 323-325.	0.5	0
139	Land Use Effects on Climate: Current State, Recent Progress, and Emerging Topics. Current Climate Change Reports, 2021, 7, 99-120.	2.8	51
140	Short- and long-term warming effects of methane may affect the cost-effectiveness of mitigation policies and benefits of low-meat diets. Nature Food, 2021, 2, 970-980.	6.2	21
141	The role of alternative proteins and future foods in sustainable and contextually-adapted flexitarian diets. Trends in Food Science and Technology, 2022, 124, 250-258.	7.8	15
142	Smaller farm size and ruminant animals are associated with increased supply of non-provisioning ecosystem services. Ambio, 2022, 51, 2025-2042.	2.8	9
143	Nitrogen isotopic discrimination as a biomarker of between-cow variation in the efficiency of nitrogen utilization for milk production: A meta-analysis. Journal of Dairy Science, 2022, 105, 5004-5023.	1.4	5
144	Long term impact of residue management on soil organic carbon stocks and nitrous oxide emissions from European croplands. Science of the Total Environment, 2022, 836, 154932.	3.9	17
145	Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems. Earth System Science Data, 2022, 14, 1795-1809.	3.7	53
146	Increasing the Selection of Low-Carbon-Footprint Entrées through the Addition of New Menu Items and a Social Marketing Campaign in University Dining. Journal of the Association for Consumer Research, 2022, 7, 461-470.	1.0	2
147	Modeling Yield, Biogenic Emissions, and Carbon Sequestration in Southeastern Cropping Systems With Winter Carinata. Frontiers in Energy Research, 2022, 10, .	1.2	9
148	Averting wildlife-borne infectious disease epidemics requires a focus on socio-ecological drivers and a redesign of the global food system. EClinicalMedicine, 2022, 47, 101386.	3.2	22
150	The Rise of Plant-Based Foods., 2022,, 1-21.		3

#	Article	IF	Citations
151	Consumer Acceptance of Plant-Based Meat Substitutes: A Narrative Review. Foods, 2022, 11, 1274.	1.9	51
152	Robotics and Autonomous Systems for Net Zero Agriculture. Current Robotics Reports, 2022, 3, 57-64.	5.1	13
153	Meat Consumption and Sustainability. Annual Review of Resource Economics, 2022, 14, 17-41.	1.5	86
154	VTag: a semi-supervised pipeline for tracking pig activity with a single top-view camera. Journal of Animal Science, 2022, 100 , .	0.2	6
155	Factors Affecting Residential End-Use Energy: Multiple Regression Analysis Based on Buildings, Households, Lifestyles, and Equipment. Buildings, 2022, 12, 538.	1.4	7
156	Perspective: Soybeans Can Help Address the Caloric and Protein Needs of a Growing Global Population. Frontiers in Nutrition, 2022, 9, .	1.6	10
157	Activity-Based Approach for Selective Molecular CO ₂ Sensing. Journal of the American Chemical Society, 2022, 144, 8717-8724.	6.6	13
158	We need a food system transformationâ€"In the face of the Russia-Ukraine war, now more than ever. One Earth, 2022, 5, 470-472.	3.6	34
159	Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2111294119.	3.3	77
160	Land-use emissions embodied in international trade. Science, 2022, 376, 597-603.	6.0	61
161	Global climate change and human health: Pathways and possible solutions., 2022, 1, 53-62.		57
162	Coral reef conservation in Bali in light of international best practice, a literature review. Journal for Nature Conservation, 2022, 67, 126190.	0.8	6
163	Demand side options to reduce greenhouse gas emissions and the land footprint of urban food systems: A scenario analysis for the City of Vienna. Journal of Cleaner Production, 2022, 359, 132064.	4.6	10
164	Integrative Sustainability Analysis of European Pig Farms: Development of a Multi-Criteria Assessment Tool. Sustainability, 2022, 14, 5988.	1.6	8
165	Integrating degrowth and efficiency perspectives enables an emission-neutral food system by 2100. Nature Food, 2022, 3, 341-348.	6.2	28
166	Global food-miles account for nearly 20% of total food-systems emissions. Nature Food, 2022, 3, 445-453.	6.2	77
167	The status of corporate greenhouse gas emissions reporting in the food sector: An evaluation of food and beverage manufacturers. Journal of Cleaner Production, 2022, 361, 132279.	4.6	13
168	Exploring Agroecology Transition Scenarios: A Pfaundler's Spectrum Assessment on the Relocation of Agri-Food Flows. Land, 2022, 11, 824.	1.2	1

#	Article	IF	CITATIONS
169	Community Seed Groups: Biological and Especially Social Investigations Can Support Crisis Response Capacity. Citizen Science: Theory and Practice, 2022, 7, .	0.6	1
171	Landâ€based climate solutions for the United States. Global Change Biology, 2022, 28, 4912-4919.	4.2	12
172	Do carbon footprint labels promote climatarian diets? Evidence from a large-scale field experiment. Journal of Environmental Economics and Management, 2022, 114, 102693.	2.1	20
173	Food transport emissions matter. Nature Food, 2022, 3, 406-407.	6.2	4
174	Climate change and the urgency to transform food systems. Science, 2022, 376, 1416-1421.	6.0	62
176	Individual dietary structure changes promote greenhouse gas emission reduction. Journal of Cleaner Production, 2022, , 132787.	4.6	8
177	Black soldier fly, <i>Hermetia illucens</i> as a potential innovative and environmentally friendly tool for organic waste management: A mini-review. Waste Management and Research, 2023, 41, 81-97.	2.2	27
178	Adjusting agricultural emissions for trade matters for climate change mitigation. Nature Communications, 2022, 13, .	5.8	28
179	Formation and analysis of structured solid foam patties based on crosslinked plant cell suspension cultures. LWT - Food Science and Technology, 2022, 164, 113650.	2.5	0
180	Don't put all your eggs in one basket: Testing an integrative model of household food waste. Resources, Conservation and Recycling, 2022, 185, 106442.	5.3	13
181	Identifying the key development areas for small nuclear power plants. Nuclear Energy and Technology, 2022, 8, 115-120.	0.1	0
182	Seaweed proteins are nutritionally valuable components in the human diet. American Journal of Clinical Nutrition, 2022, 116, 855-861.	2.2	4
183	Dietary Change and Global Sustainable Development Goals. Frontiers in Sustainable Food Systems, 0, 6,	1.8	16
184	Crop genetic diversity uncovers metabolites, elements, and gene networks predicted to be associated with high plant biomass yields in maize. , 2022, 1 , .		2
185	Review: Do green defaults reduce meat consumption?. Food Policy, 2022, 110, 102298.	2.8	10
186	Inventory of human-edible products from native Acacia sensu lato in Africa, America, and Asia: Spotlight on Senegalia seeds, overlooked wild legumes in the arid tropics. Food Research International, 2022, 159, 111596.	2.9	7
187	Rotational grazing and multispecies herbal leys increase productivity in temperate pastoral systems – A meta-analysis. Agriculture, Ecosystems and Environment, 2022, 337, 108075.	2.5	11
188	Environmental Issues: Greenhouse Gas Emissions. , 2023, , .		0

#	Article	IF	CITATIONS
189	A gap in nitrous oxide emission reporting complicates long-term climate mitigation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	14
190	Toward Optimal Meat Pricing: Is It Time to Tax Meat Consumption?. Review of Environmental Economics and Policy, 2022, 16, 219-240.	3.1	21
191	Drivers of Global Methane Emissions Embodied in International Beef Trade. Environmental Science & Emp; Technology, 2022, 56, 11256-11265.	4.6	9
192	Cumbre de Sistemas Alimentarios de la ONU 2021: Desmantelando la democracia y restableciendo el control corporativo de los sistemas alimentarios. Magna Scientia UCEVA, 2022, 2, 129-148.	0.1	0
193	Estimating the environmental impacts of $57,000$ food products. Proceedings of the National Academy of Sciences of the United States of America, $2022,119$, .	3.3	95
194	Effects of Various Solvents on Adsorption of Organics for Porous and Nonporous Quartz/CO ₂ /Brine Systems: Implications for CO ₂ Geo-Storage. Energy & Fuels, 2022, 36, 11089-11099.	2.5	17
195	Let them Eat Cultured Meat: Diagnosing the Potential for Meat Alternatives to Increase Inequity. Food Ethics, 2022, 7, .	1.2	1
196	Sustainable agrifood systems for a post-growth world. Nature Sustainability, 2022, 5, 1011-1017.	11.5	63
197	Ultra-processed food: a global problem requiring a global solution. Lancet Diabetes and Endocrinology,the, 2022, 10, 691-694.	5.5	17
198	Healthier foods are better for the planet, mammoth study finds. Nature, 0, , .	13.7	0
199	Regional self-sufficiency: A multi-dimensional analysis relating agricultural production and consumption in the European Union. Sustainable Production and Consumption, 2022, 34, 12-25.	5.7	13
200	Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Scientific Reports, 2022, 12, .	1.6	71
201	Embodied HANPP of feed and animal products: Tracing pressure on ecosystems along trilateral livestock supply chains 1986–2013. Science of the Total Environment, 2022, 851, 158198.	3.9	6
202	Increase consumers' willingness to pay a premium for organic food in restaurants: Explore the role of comparative advertising. Frontiers in Psychology, 0, 13, .	1.1	10
203	Non-farm employment promotes nutritious diet without increasing carbon footprint: Evidence from rural China. Journal of Cleaner Production, 2022, 369, 133273.	4.6	4
204	Manila clam and Mediterranean mussel aquaculture is sustainable and a net carbon sink. Science of the Total Environment, 2022, 848, 157508.	3.9	15
205	Roadmap for achieving net-zero emissions in global food systems by 2050. Scientific Reports, 2022, 12, .	1.6	32
206	Cultured Meat on the Social Network Twitter: Clean, Future and Sustainable Meats. Foods, 2022, 11, 2695.	1.9	9

#	Article	IF	CITATIONS
208	Household cooking in the context of carbon neutrality: A machine-learning-based review. Renewable and Sustainable Energy Reviews, 2022, 168, 112856.	8.2	6
209	Spatial patterns and driving factor analysis of recommended nitrogen application rate for the trade-off between economy and environment for maize in China. Journal of Environmental Management, 2022, 322, 116099.	3.8	2
210	Renewable energy in fisheries and aquaculture: Case studies from the United States. Journal of Cleaner Production, 2022, 376, 134153.	4.6	7
211	The impact of humic acid on hydrogen adsorptive capacity of eagle ford shale: Implications for underground hydrogen storage. Journal of Energy Storage, 2022, 55, 105615.	3.9	24
212	Time for decisive actions to protect freshwater ecosystems from global changes. Knowledge and Management of Aquatic Ecosystems, 2022, , 19.	0.5	8
213	Grounding motivation for behavior change. Advances in Experimental Social Psychology, 2022, , 107-189.	2.0	6
214	Increased Soil N2o Emission During Drainage is Mitigated by Inputs of Labile Carbon and Amplified by Nitrogen. SSRN Electronic Journal, 0, , .	0.4	0
215	Meat alternatives: are we losing our taste for eating animals?. , 2023, , 305-331.		0
218	Australian Generation Z and the Nexus between Climate Change and Alternative Proteins. Animals, 2022, 12, 2512.	1.0	7
220	Spatiotemporal analysis of land use changes and their trade-offs on the northern slope of the Tianshan Mountains, China. Frontiers in Ecology and Evolution, 0, 10, .	1.1	3
221	Consumption Corridors and the Case of Meat. Journal of Consumer Policy, 2022, 45, 619-653.	0.6	3
222	Planetary Health, Nutrition, and Chronic Kidney Disease: Connecting the Dots for a Sustainable Future., 2023, 33, S40-S48.		11
223	IUNS Task Force on Sustainable Diets - LINKING NUTRITION AND FOOD SYSTEMS. Trends in Food Science and Technology, 2022, 130, 42-50.	7.8	3
224	What do Consumers Read About Meat? An Analysis of Media Representations of the Meat-environment Relationship Found in Popular Online News Sites in the UK Environmental Communication, 2023, 17, 947-964.	1.2	4
225	Building cleaner production: How to anchor sustainability in the food production chain?. Environmental Advances, 2022, 9, 100295.	2.2	8
226	Physics-based digital twins for autonomous thermal food processing: Efficient, non-intrusive reduced-order modeling. Innovative Food Science and Emerging Technologies, 2022, 81, 103143.	2.7	10
227	How diet portfolio shifts combined with land-based climate change mitigation strategies could reduce climate burdens in Germany. Journal of Cleaner Production, 2022, 376, 134200.	4.6	6
228	Shepherding Sub-Saharan Africa's Wildlife Through Peak Anthropogenic Pressure Toward a Green Anthropocene. Annual Review of Environment and Resources, 2022, 47, 91-121.	5.6	6

#	Article	IF	CITATIONS
229	The politics of enabling tipping points for sustainable development. One Earth, 2022, 5, 1100-1108.	3.6	15
230	Food waste-Energy-Water-Emissions (FEWE) nexus in the food service sector: Comparing a restaurant meal from imported ingredients versus an imported ready-to-eat meal. Journal of Cleaner Production, 2022, 380, 134871.	4.6	1
231	Nutritional quality and greenhouse gas emissions of vegetarian and non-vegetarian primary school meals: A case study in Dijon, France. Frontiers in Nutrition, 0, 9, .	1.6	4
232	Toward a Socio-Political Approach to Promote the Development of Circular Agriculture: A Critical Review. International Journal of Environmental Research and Public Health, 2022, 19, 13117.	1.2	1
233	Structure and functioning of wild and agricultural grazing ecosystems: A comparative review. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	3
234	Synthesizing the evidence of nitrous oxide mitigation practices in agroecosystems. Environmental Research Letters, 2022, 17, 114024.	2.2	12
235	State of Climate Action 2022., 0, , .		18
236	Learning, playing, and experimenting with critical food futures. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	1
237	The analytic hierarchy process as an innovative way to enable stakeholder engagement for sustainability reporting in the food industry. Environment, Development and Sustainability, 2023, 25, 15025-15042.	2.7	23
238	Transforming a 12,000-year-old technology. Nature Food, 2022, 3, 807-808.	6.2	1
239	Place in legal geography: Agency and application in agriculture research. Geographical Research, 2023, 61, 193-206.	0.9	3
240	An Equality-Based Approach to Analysing the Global Food System's Fair Share, Overshoot, and Responsibility for Exceeding the Climate Change Planetary Boundary. Foods, 2022, 11, 3459.	1.9	2
241	Comparison of environmental impacts of individual meals - Does it really make a difference to choose plant-based meals instead of meat-based ones?. Journal of Cleaner Production, 2022, 379, 134782.	4.6	7
242	Exploring the role of green and Industry 4.0 technologies in achieving sustainable development goals in food sectors. Food Research International, 2022, 162, 112068.	2.9	49
243	Diagnostic, regenerative or fossil-free - exploring stakeholder perceptions of Swedish food system sustainability. Ecological Economics, 2023, 203, 107623.	2.9	2
244	Protein pluralism and food systems transition: A review of sustainable protein meta-narratives. World Development, 2023, 161, 106121.	2.6	7
245	A large share of climate impacts of beef and dairy can be attributed to ecosystem services other than food production. Journal of Environmental Management, 2023, 325, 116400.	3.8	6
246	The effect of optimizing chemical fertilizers consumption structure to promote environmental protection, crop yield and reduce greenhouse gases emission in China. Science of the Total Environment, 2023, 857, 159349.	3.9	7

#	Article	IF	CITATIONS
247	Carbon sequestration via shellfish farming: A potential negative emissions technology. Renewable and Sustainable Energy Reviews, 2023, 171, 113018.	8.2	8
248	Electric field-driven fabrication of anisotropic hydrogels from plant proteins: Microstructure, gel performance and formation mechanism. Food Hydrocolloids, 2023, 136, 108297.	5.6	9
249	City or hinterland $\hat{a} \in \hat{s}$ site potentials for upscaled aquaponics in a Berlin case study. Npj Urban Sustainability, 2022, 2, .	3.7	3
250	Plant-based default nudges effectively increase the sustainability of catered meals on college campuses: Three randomized controlled trials. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	0
251	Ratcheting of climate pledges needed to limit peak global warming. Nature Climate Change, 2022, 12, 1129-1135.	8.1	35
252	Determining organic versus conventional food emissions to foster the transition to sustainable food systems and diets: Insights from a systematic review. Journal of Cleaner Production, 2022, 380, 134937.	4.6	10
253	The climate crisis is here: a primer and call to action for public health nutrition researchers and practitioners in high-income countries. Public Health Nutrition, 2023, 26, 496-502.	1.1	2
254	How Compatible Are Western European Dietary Patterns to Climate Targets? Accounting for Uncertainty of Life Cycle Assessments by Applying a Probabilistic Approach. Sustainability, 2022, 14, 14449.	1.6	4
255	Towards an agroecological transition in the Mediterranean: A bioeconomic assessment of viticulture farming. Journal of Cleaner Production, 2022, 380, 134999.	4.6	2
256	Highly Exposed NH ₂ Edge on Fragmented g ₃ N ₄ Framework with Integrated Molybdenum Atoms for Catalytic CO ₂ Cycloaddition: DFT and Technoâ€Economic Assessment. Small, 2023, 19, .	5.2	1
257	A scientific transition to support the 21st century dietary transition. Trends in Food Science and Technology, 2023, 131, 139-150.	7.8	4
258	Understanding food sustainability from a consumer perspective: A cross cultural exploration. International Journal of Gastronomy and Food Science, 2023, 31, 100646.	1.3	9
259	Seasonality of nutrition., 2022,,.		0
260	Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment. Land, 2022, 11, 2153.	1.2	10
261	Putting permanent grassland at the heart of a European agroecological transition: Findings and questions arising from the †Ten Years for Agroecology' (<scp>TYFA</scp>) scenario. Grass and Forage Science, 0, , .	1.2	3
262	Energy and food security implications of transitioning synthetic nitrogen fertilizers to net-zero emissions. Environmental Research Letters, 2023, 18, 014008.	2.2	21
263	The carbon emission reduction effect of digital agriculture in China. Environmental Science and Pollution Research, 0, , .	2.7	7
264	Coming out the egg: Assessing the benefits of circular economy strategies in agri-food industry. Journal of Cleaner Production, 2023, 385, 135665.	4.6	24

#	Article	IF	CITATIONS
265	Climate-friendly and nutrition-sensitive interventions can close the global dietary nutrient gap while reducing GHG emissions. Nature Food, 2023, 4, 61-73.	6.2	8
266	Navigating sustainability and health trade-offs in global seafood systems. Environmental Research Letters, 2022, 17, 124042.	2.2	4
267	Improving crop yield potential: Underlying biological processes and future prospects. Food and Energy Security, 2023, 12, .	2.0	18
268	Comparing the environmental impacts of nuclear and renewable energy in top 10 nuclear-generating countries: evidence from STIRPAT model. Environmental Science and Pollution Research, 2023, 30, 31791-31805.	2.7	3
269	Integrated crop–livestock–bioenergy system brings co-benefits and trade-offs in mitigating the environmental impacts of Chinese agriculture. Nature Food, 2022, 3, 1052-1064.	6.2	14
270	Arable soil nitrogen dynamics reflect organic inputs via the extended composite phenotype. Nature Food, 2023, 4, 51-60.	6.2	3
272	Climate Change and Food Systems. , 2023, , 511-529.		3
273	Peak and fall of China's agricultural GHG emissions. Journal of Cleaner Production, 2023, 389, 136035.	4.6	16
274	Perceptual blindless in nutrition: We are in a critical time to be connected. Obesity, 0, , .	1.5	1
275	Data-driven decarbonisation pathways for reducing life cycle GHG emissions from food waste in the hospitality and food service sectors. Scientific Reports, 2023, 13, .	1.6	0
276	The Consequences for Climate of Meat Consumption. , 2023, , 17-56.		0
277	Five U.S. Dietary Patterns and Their Relationship to Land Use, Water Use, and Greenhouse Gas Emissions: Implications for Future Food Security. Nutrients, 2023, 15, 215.	1.7	7
278	A Whole Earth Approach to Nature-Positive Food: Biodiversity and Agriculture., 2023,, 469-496.		4
279	Livestock and Sustainable Food Systems: Status, Trends, and Priority Actions. , 2023, , 375-399.		2
280	Influence of hydrogen energy on the development of the coal industry of the world and Russia. AIP Conference Proceedings, 2023, , .	0.3	0
281	Political Conceptions of Human and Animal Rights: Principled and Prudential Reasons. SpringerBriefs in Law, 2023, , 49-90.	0.0	0
282	The Role of Science, Technology, and Innovation for Transforming Food Systems in Europe. , 2023, , 763-777.		0
283	Real-Scale Study on Methane and Carbon Dioxide Emission Reduction from Dairy Liquid Manure with the Commercial Additive SOP LAGOON. Sustainability, 2023, 15, 1803.	1.6	0

#	Article	IF	CITATIONS
284	Differential carbon utilization enables co-existence of recently speciated Campylobacteraceae in the cow rumen epithelial microbiome. Nature Microbiology, 2023, 8, 309-320.	5.9	4
285	Organic agriculture in a low-emission world: exploring combined measures to deliver a sustainable food system in Sweden. Sustainability Science, 2023, 18, 501-519.	2.5	12
286	Agricultural restructuring for reducing carbon emissions from residents' dietary consumption in China. Journal of Cleaner Production, 2023, 387, 135948.	4.6	10
287	What's to Eat and Drink on Campus? Public and Planetary Health, Public Higher Education, and the Public Good. Nutrients, 2023, 15, 196.	1.7	2
288	Unâ€yielding: Evidence for the agriculture transformation we need. Annals of the New York Academy of Sciences, 2023, 1520, 89-104.	1.8	5
290	Traffic-light front-of-pack environmental labelling across food categories triggers more environmentally friendly food choices: a randomised controlled trial in virtual reality supermarket. International Journal of Behavioral Nutrition and Physical Activity, 2023, 20, .	2.0	4
291	Ensuring Zero Agricultural Land Expansion into High-Carbon Ecosystems. , 2023, , 32-40.		0
292	An Overview of Poultry Greenhouse Gas Emissions in the Mediterranean Area. Sustainability, 2023, 15, 1941.	1.6	4
293	Biochar combined with N fertilization and straw return in wheat-maize agroecosystem: Key practices to enhance crop yields and minimize carbon and nitrogen footprints. Agriculture, Ecosystems and Environment, 2023, 347, 108366.	2.5	16
294	Bioactive Phytochemicals from Olive (Olea europaea) Processing By-products. Reference Series in Phytochemistry, 2023, , 197-233.	0.2	0
295	The Triple Challenge: synergies, trade-offs and integrated responses for climate, biodiversity, and human wellbeing goals. Climate Policy, 2023, 23, 782-799.	2.6	11
296	Effect of grassland cutting frequency, species mixture, wilting and fermentation pattern of grass silages on in vitro methane yield. Scientific Reports, 2023, 13, .	1.6	1
297	Green Public Procurement as a Tool for Sustainable and Secure Food Policy: Evidence from Poland. Journal of Security and Sustainability Issues, 2023, 13, 85-96.	0.1	1
298	Transition of household cooking energy in China since the 1980s. Energy, 2023, 270, 126925.	4.5	7
299	Harnessing the connectivity of climate change, food systems and diets: Taking action to improve human and planetary health. Anthropocene, 2023, 42, 100381.	1.6	4
300	It is just wrong: Moral foundations and food waste. Journal of Environmental Psychology, 2023, 88, 102021.	2.3	4
301	Potential impacts of Fukushima nuclear wastewater discharge on nutrient supply and greenhouse gas emissions of food systems. Resources, Conservation and Recycling, 2023, 193, 106985.	5.3	2
302	Mapping of the digital climate nudges in Nordic online grocery stores. Sustainable Production and Consumption, 2023, 37, 202-212.	5.7	5

#	Article	IF	CITATIONS
303	Exploring the environmental impact associated with the abandonment of the Mediterranean Diet, and how to reduce it with alternative sustainable diets. Ecological Economics, 2023, 209, 107818.	2.9	3
304	A large share of Berlin's vegetable consumption can be produced within the city. Sustainable Cities and Society, 2023, 91, 104362.	5.1	3
305	Modelling land use planning: Socioecological integrated analysis of metropolitan green infrastructures. Land Use Policy, 2023, 126, 106558.	2.5	2
306	Invisible (bio)economies: a framework to assess the â€~blind spots' of dominant bioeconomy models. Sustainability Science, 2023, 18, 689-706.	2.5	10
307	Greenhouse gas emissions from nitrogen fertilizers could be reduced by up to one-fifth of current levels by 2050 with combined interventions. Nature Food, 2023, 4, 170-178.	6.2	43
308	From fork to farm: Impacts of more sustainable diets in the <scp>EU</scp> â€27 on the agricultural sector. Journal of Agricultural Economics, 2023, 74, 764-784.	1.6	4
310	åŸºäºŽé€æ¯Žæ´»æ€§å±,的髯效柔性åŠé€æ¯Žæœ‰æœºå毳能ç"μæ±. Science China Materials, 2023, 6	6, 1. 719-1	72 % .
311	An econometric analysis of Greenhouse gas emissions from different agricultural factors in Bangladesh. Energy Nexus, 2023, 9, 100179.	3.3	34
312	Can knowledge-based practices achieve high yields with lower input and GHG emissions in the Chinese orchard system?. Ecosystem Health and Sustainability, 0, , .	0.0	0
313	Cropland displacement contributed 60% of the increase in carbon emissions of grain transport in China over 1990–2015. Nature Food, 2023, 4, 223-235.	6.2	17
314	A functional trait framework for integrating nitrogenâ€fixing cover crops into shortâ€rotation woody crop systems. GCB Bioenergy, 2023, 15, 663-679.	2.5	0
315	Sustainable nitrogen management strategies based on nitrogen flow in urban human system. Environmental Science and Pollution Research, 2023, 30, 52410-52420.	2.7	1
316	Effects on rumen microbiome and milk quality of dairy cows fed a grass silage-based diet supplemented with the macroalga Asparagopsis taxiformis. Frontiers in Animal Science, 0, 4, .	0.8	7
317	The EU sustainable food systems framework - potential for climate action. , 2023, 2, .		2
318	Future warming from global food consumption. Nature Climate Change, 2023, 13, 297-302.	8.1	37
319	Increased N2O emission due to paddy soil drainage is regulated by carbon and nitrogen availability. Geoderma, 2023, 432, 116422.	2.3	8
320	Analysis of the Scale of Global Human Needs and Opportunities for Sustainable Catalytic Technologies. Topics in Catalysis, 2023, 66, 338-374.	1.3	6
321	On-chip CO2 sensor integrated with MEMS emitter and pyroelectric detector. , 2023, , .		0

#	ARTICLE	IF	Citations
322	The Dietary Carbon Footprint of Portuguese Adults: Defining and Assessing Mitigation Scenarios for Greenhouse Gas Emissions. Sustainability, 2023, 15, 5278.	1.6	0
323	Climate Change Peace and Conflict. Rethinking Peace and Conflict Studies, 2023, , 109-138.	0.2	1
324	Going through changes: A longitudinal study of meat reduction over time in the UK. Food Quality and Preference, 2023, 107, 104854.	2.3	3
325	Healthy diets for sustainable food systems: a narrative review. Environmental Science Advances, 0, , .	1.0	0
326	Integrated enterprise input-output and carbon emission pinch analysis for carbon intensity reduction in edible oil refinery. Chemical Engineering Research and Design, 2023, 193, 826-842.	2.7	2
327	Animal board invited review: Opportunities and challenges in using GWP* to report the impact of ruminant livestock on global temperature change. Animal, 2023, 17, 100790.	1.3	3
328	Strategies for reducing meat consumption within college and university settings: A systematic review and meta-analysis. Frontiers in Sustainable Food Systems, 0, 7, .	1.8	4
329	Comparative analysis of macroalgae supplementation on the rumen microbial community: Asparagopsis taxiformis inhibits major ruminal methanogenic, fibrolytic, and volatile fatty acid-producing microbes in vitro. Frontiers in Microbiology, 0, 14, .	1.5	3
330	Research needs for a food system transition. Climatic Change, 2023, 176, .	1.7	3
331	Changes in greenhouse gas emissions from food supply in the United Kingdom. Journal of Cleaner Production, 2023, 410, 137273.	4.6	3
332	Overviewing Global Surface Temperature Changes Regarding CO2 Emission, Population Density, and Energy Consumption in the Industry: Policy Suggestions. Sustainability, 2023, 15, 7013.	1.6	2
333	How information, social norms, and experience with novel meat substitutes can create positive political feedback and demand-side policy change. Food Policy, 2023, 117, 102445.	2.8	3
334	Declines in nutrient losses from China's rice paddies jointly driven by fertilizer application and extreme rainfall. Agriculture, Ecosystems and Environment, 2023, 353, 108537.	2.5	6
352	Tracking emissions from food systems. Nature Food, 2023, 4, 454-455.	6.2	0
353	Novel plant-based meat alternatives: Implications and opportunities for consumer nutrition and health. Advances in Food and Nutrition Research, 2023, , 241-274.	1.5	1
390	Population and food systems: what does the future hold?. Population and Environment, 2023, 45, .	1.3	3
392	Levelling foods for priority micronutrient value can provide more meaningful environmental footprint comparisons. Communications Earth & Environment, 2023, 4, .	2.6	5
437	Modern Agronomic Measurement for Climate-Resilient Agriculture. , 2023, , 81-105.		0

#	Article	IF	CITATIONS
455	Protein From Oat: Structure, Processes, Functionality, and Nutrition., 2024, , 121-141.		0
486	Climate Change Concerns and the Role of Research and Innovation in the Agricultural Sector: The European Union Context. United Nations University Series on Regionalism, 2024, , 135-151.	0.2	O
487	Sustainable Farming through Precision Agriculture: Enhancing Nitrogen Use and Weed Management. , 0, , .		0