Treatment of infarcted heart tissue via the capture and exosomes through antibody-conjugated magnetic nano

Nature Biomedical Engineering 4, 1063-1075

DOI: 10.1038/s41551-020-00637-1

Citation Report

#	Article	IF	CITATIONS
1	Facile and simple purification method for small extracellular vesicles obtained from a culture medium through cationic particle capture. Analytical and Bioanalytical Chemistry, 2021, 413, 2523-2528.	1.9	2
2	Extracellular Vesicle-Based Therapeutics for Heart Repair. Nanomaterials, 2021, 11, 570.	1.9	25
3	Progress in cardiac research: from rebooting cardiac regeneration to a complete cell atlas of the heart. Cardiovascular Research, 2021, 117, 2161-2174.	1.8	23
4	Lipid membrane-based therapeutics and diagnostics. Archives of Biochemistry and Biophysics, 2021, 704, 108858.	1.4	4
5	SiRNA in MSC-derived exosomes silences CTGF gene for locomotor recovery in spinal cord injury rats. Stem Cell Research and Therapy, 2021, 12, 334.	2.4	29
6	PEI modified orange emissive carbon dots with excitation-independent fluorescence emission for cellular imaging and siRNA delivery. Carbon, 2021, 177, 403-411.	5.4	57
7	Manipulating endogenous exosome biodistribution for therapy. SmartMat, 2021, 2, 127-130.	6.4	17
8	Targeted extracellular vesicle delivery systems employing superparamagnetic iron oxide nanoparticles. Acta Biomaterialia, 2021, 134, 13-31.	4.1	35
9	Hydrogel Loaded with VEGF/TFEBâ€Engineered Extracellular Vesicles for Rescuing Critical Limb Ischemia by a Dualâ€Pathway Activation Strategy. Advanced Healthcare Materials, 2022, 11, e2100334.	3.9	18
10	Advances in Nanomaterials for Injured Heart Repair. Frontiers in Bioengineering and Biotechnology, 2021, 9, 686684.	2.0	O
11	Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 36, 102433.	1.7	24
12	Oriented immobilization of antibodies onto sensing platforms - A critical review. Analytica Chimica Acta, 2022, 1189, 338907.	2.6	88
14	Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. Nanomaterials, 2021, 11, 2337.	1.9	48
15	De novo Drug Delivery Modalities for Treating Damaged Hearts: Current Challenges and Emerging Solutions. Frontiers in Cardiovascular Medicine, 2021, 8, 742315.	1.1	2
16	Nanoparticles: Promising Tools for the Treatment and Prevention of Myocardial Infarction. International Journal of Nanomedicine, 2021, Volume 16, 6719-6747.	3.3	19
17	An electroactive and thermo-responsive material for the capture and release of cells. Biosensors and Bioelectronics, 2021, 191, 113405.	5.3	4
18	Ischemic Microenvironmentâ€Responsive Therapeutics for Cardiovascular Diseases. Advanced Materials, 2021, 33, e2105348.	11.1	20
19	Roles of Exosomes in Cardiac Fibroblast Activation and Fibrosis. Cells, 2021, 10, 2933.	1.8	9

#	Article	IF	Citations
20	Superparamagnetic iron oxide loaded chitosan coated bilosomes for magnetic nose to brain targeting of resveratrol. International Journal of Pharmaceutics, 2021, 610, 121244.	2.6	16
21	Preparation of Nano Electrospinning Covered Stent and Its Application in the Treatment of Intracranial Aneurysm with CT Diagnosis. Science of Advanced Materials, 2021, 13, 1584-1593.	0.1	1
22	Little things make big things happen. Science Translational Medicine, 2020, 12, .	5.8	0
23	Tetraspanins: Physiology, Colorectal Cancer Development, and Nanomediated Applications. Cancers, 2021, 13, 5662.	1.7	6
24	Tango of dual nanoparticles: Interplays between exosomes and nanomedicine. Bioengineering and Translational Medicine, 2022, 7, e10269.	3.9	6
25	Exosome based miRNA delivery strategy for disease treatment. Chinese Chemical Letters, 2022, 33, 1693-1704.	4.8	32
26	Aptamer decorated magnetic graphene oxide nanoparticles for effective capture of exosomes. Chemical Engineering Journal, 2022, 431, 133849.	6.6	19
27	Engineered exosomes as a natural nanoplatform for cancer targeted delivery of metal-based drugs. Coordination Chemistry Reviews, 2022, 454, 214325.	9.5	9
28	Opportunities and Challenges of Nanoparticles in Digestive Tumours as Anti-Angiogenic Therapies. Frontiers in Oncology, 2021, 11, 789330.	1.3	8
29	Review on Strategies and Technologies for Exosome Isolation and Purification. Frontiers in Bioengineering and Biotechnology, 2021, 9, 811971.	2.0	180
30	Integrated therapy platform of exosomal system: hybrid inorganic/organic nanoparticles with exosomes for cancer treatment. Nanoscale Horizons, 2022, 7, 352-367.	4.1	30
31	Bioresponsive nanoplatforms for imaging and therapy of cardiovascular diseases. View, 2022, 3, .	2.7	24
32	Fabrication of \hat{T}^2 4-Exosome-releasing artificial stem cells for myocardial infarction therapy by improving coronary collateralization. Bioactive Materials, 2022, 14, 416-429.	8.6	16
33	Harnessing the Therapeutic Potential of Extracellular Vesicles for Biomedical Applications Using Multifunctional Magnetic Nanomaterials. Small, 2022, 18, e2104783.	5.2	31
34	Nanogels loading curcumin <i>in situ</i> through microemulsion photopolymerization for enhancement of antitumor effects. Journal of Materials Chemistry B, 2022, 10, 3293-3302.	2.9	13
35	Nanomaterials: A Promising Therapeutic Approach for Cardiovascular Diseases. Journal of Nanomaterials, 2022, 2022, 1-25.	1.5	24
36	Progress in Stimuliâ€Responsive Biomaterials for Treating Cardiovascular and Cerebrovascular Diseases. Small, 2022, 18, e2200291.	5.2	20
37	Exosomes Derived from Gold Nanorod Engineered Vascular Endothelial Cells Inhibit Tumor Growth via Disrupting the TGF \hat{I}^2 Pathway. Journal of Nanomaterials, 2022, 2022, 1-11.	1.5	3

#	ARTICLE	IF	Citations
38	Noncoding RNA in Extracellular Vesicles Regulate Differentiation of Mesenchymal Stem Cells. Frontiers in Dental Medicine, 2022, 2, .	0.5	1
39	Xenogenic Neural Stem Cellâ€Derived Extracellular Nanovesicles Modulate Human Mesenchymal Stem Cell Fate and Reconstruct Metabolomic Structure. Advanced Biology, 2022, 6, e2101317.	1.4	5
40	Merging data curation and machine learning to improve nanomedicines. Advanced Drug Delivery Reviews, 2022, 183, 114172.	6.6	34
41	Application of magnetic nanoparticles in cell therapy. Stem Cell Research and Therapy, 2022, 13, 135.	2.4	26
42	Engineering Pollenâ€Derived Microstructures to Reveal Material Morphoâ€Performance Paradigm. Small, 2022, 18, e2200037.	5.2	4
43	Therapeutic Applications of Extracellular Vesicles for Myocardial Repair. Frontiers in Cardiovascular Medicine, 2021, 8, 758050.	1.1	25
44	Potential Applications and Functional Roles of Exosomes in Cardiometabolic Disease. Pharmaceutics, 2021, 13, 2056.	2.0	4
45	Facile pH-responsive injectable polyphenol-europium assembly coordination complex with enhanced antioxidation and angiogenesis for myocardial infarction treatment. Chemical Engineering Journal, 2022, 446, 136835.	6.6	11
46	Preservation of cardiac functions post myocardial infarction in vivo by a phenylboric acid-grafted hyaluronic hydrogel with anti-oxidation and accelerated degradation under oxidative microenvironment. Composites Part B: Engineering, 2022, 238, 109941.	5.9	10
47	Silica nanoparticles: Biomedical applications and toxicity. Biomedicine and Pharmacotherapy, 2022, 151, 113053.	2.5	77
48	Engineered extracellular vesicles as intelligent nanosystems for next-generation nanomedicine. Nanoscale Horizons, 2022, 7, 682-714.	4.1	37
49	Modulation of Tissue Microenvironment Following Myocardial Infarction. Advanced NanoBiomed Research, 0, , 2200005.	1.7	2
50	CD44 Promotes Myocardial Infarction Angiogenesis Through Regulating Plasma Exosome Uptake and Enhancing FGFR2 Signaling. SSRN Electronic Journal, 0, , .	0.4	0
51	Recent advances in mechanical force-responsive drug delivery systems. Nanoscale Advances, 2022, 4, 3462-3478.	2.2	15
52	Extracellular vesicles as bioactive nanotherapeutics: An emerging paradigm for regenerative medicine. Theranostics, 2022, 12, 4879-4903.	4.6	33
53	Nanomaterials-Mediated Therapeutics and Diagnosis Strategies for Myocardial Infarction. Frontiers in Chemistry, 0, 10 , .	1.8	4
54	Nano-Messengers of the Heart: Promising Theranostic Candidates for Cardiovascular Maladies. Frontiers in Physiology, 0, 13 , .	1.3	1
55	Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	22

#	ARTICLE	IF	CITATIONS
56	In Situ Surfaceâ€Directed Assembly of 2D Metal Nanoplatelets for Drugâ€Free Treatment of Antibioticâ€Resistant Bacteria. Advanced Healthcare Materials, 2022, 11, .	3.9	2
57	Tailored Extracellular Vesicles: Novel Tool for Tissue Regeneration. Stem Cells International, 2022, 2022, 1-27.	1.2	3
58	Advances in extracellular vesicle functionalization strategies for tissue regeneration. Bioactive Materials, 2023, 25, 500-526.	8.6	17
59	Greasing wheels of cell-free therapies for cardiovascular diseases: Integrated devices of exosomes/exosome-like nanovectors with bioinspired materials. , 2022, 1, 100010.		4
60	Targeted delivery of nanomedicines for promoting vascular regeneration in ischemic diseases. Theranostics, 2022, 12, 6223-6241.	4.6	9
61	Global research trends in extracellular vesicles based on stem cells from 1991 to 2021: A bibliometric and visualized study. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
62	Advanced Drug Delivery Micro- and Nanosystems for Cardiovascular Diseases. Molecules, 2022, 27, 5843.	1.7	9
63	Multifunctional Magnetic Nanoparticles for Dynamic Imaging and Therapy. Advanced NanoBiomed Research, 2022, 2, .	1.7	11
64	Extracellular vesicles derived from bone marrow mesenchymal stem cells loaded on magnetic nanoparticles delay the progression of diabetic osteoporosis via delivery of miR-150-5p. Cell Biology and Toxicology, 2023, 39, 1257-1274.	2.4	4
65	Development and Evaluation of Novel Leflunomide SPION Bioemulsomes for the Intra-Articular Treatment of Arthritis. Pharmaceutics, 2022, 14, 2005.	2.0	9
67	Extracellular Vesicles: A New Frontier for Cardiac Repair. Pharmaceutics, 2022, 14, 1848.	2.0	8
68	Multifunctional biomaterial platforms for blocking the fibrosis process and promoting cellular restoring effects in myocardial fibrosis therapy. Frontiers in Bioengineering and Biotechnology, 0, 10,	2.0	3
69	Regeneration of infarcted hearts by myocardial infarction-responsive injectable hydrogels with combined anti-apoptosis, anti-inflammatory and pro-angiogenesis properties. Biomaterials, 2022, 290, 121849.	5.7	29
70	Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis. Acta Pharmaceutica Sinica B, 2023, 13, 916-941.	5.7	50
71	Nano drugs delivery system: A novel promise for the treatment of atrial fibrillation. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	1
72	Untethered: using remote magnetic fields for regenerative medicine. Trends in Biotechnology, 2023, 41, 615-631.	4.9	6
73	Advances of engineered extracellular vesicles-based therapeutics strategy. Science and Technology of Advanced Materials, 2022, 23, 655-681.	2.8	11
74	Cancer photodynamic therapy with chlorin e6-loaded, goat milk-derived extracellular vesicles: [18F]FDG lights up the way. European Journal of Nuclear Medicine and Molecular Imaging, 0, , .	3.3	0

#	ARTICLE	IF	Citations
75	Engineered extracellular vesicles as drug delivery systems for the next generation of nanomedicine. , $2023, 105-128$.		0
76	Mechanical stimuli-driven cancer therapeutics. Chemical Society Reviews, 2023, 52, 30-46.	18.7	31
78	CD44 promotes angiogenesis in myocardial infarction through regulating plasma exosome uptake and further enhancing FGFR2 signaling transduction. Molecular Medicine, 2022, 28, .	1.9	9
79	Edible plant extracellular vesicles: An emerging tool for bioactives delivery. Frontiers in Immunology, 0, 13 , .	2.2	7
80	Magnesium hexacyanoferrate nanocatalysts attenuate chemodrug-induced cardiotoxicity through an anti-apoptosis mechanism driven by modulation of ferrous iron. Nature Communications, 2022, 13 , .	5.8	5
81	Thrombus-specific/responsive biomimetic nanomedicine for spatiotemporal thrombolysis and alleviation of myocardial ischemia/reperfusion injury. Journal of Nanobiotechnology, 2022, 20, .	4.2	7
82	Application of Nanomaterials in Stem Cellâ€Based Therapeutics for Cardiac Repair and Regeneration. Small, 2023, 19, .	5.2	5
83	Nanoparticle Based Cardiac Specific Drug Delivery. Biology, 2023, 12, 82.	1.3	4
84	Extracellular vesicles: Targeting the heart. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	5
85	Nanoparticle-based Drug Delivery System for Post Myocardial Infarction Management. , 0, , 11.		2
86	Can Extracellular Vesicles as Drug Delivery Systems Be a Game Changer in Cardiac Disease?. Pharmaceutical Research, 2023, 40, 889-908.	1.7	11
87	Humoral regulation of iron metabolism by extracellular vesicles drives antibacterial response. Nature Metabolism, 2023, 5, 111-128.	5.1	10
88	Silica-Based Advanced Nanoparticles For Treating Ischemic Disease. Tissue Engineering and Regenerative Medicine, 2023, 20, 177-198.	1.6	2
89	Nanoparticle: A Promising Player in Nanomedicine and its Theranostic Applications for the Treatment of Cardiovascular Diseases. Current Problems in Cardiology, 2023, 48, 101599.	1.1	18
90	Advanced micro-/nanotechnologies for exosome encapsulation and targeting in regenerative medicine. Clinical and Experimental Medicine, 2023, 23, 1845-1866.	1.9	1
91	Manipulation and elimination of circulating tumor cells using multi-responsive nanosheet for malignant tumor therapy. Biomaterials Science, 2023, 11, 2590-2602.	2.6	2
92	Colorimetric aptasensor based on spherical nucleic acid-induced hybridization chain reaction for sensitive detection of exosomes. Talanta, 2023, 258, 124453.	2.9	5
93	Surface engineering of colloidal nanoparticles. Materials Horizons, 2023, 10, 1185-1209.	6.4	7

#	Article	IF	CITATIONS
94	Hierarchy of hybrid materials. Part-II: The place of organics-on-inorganics in it, their composition and applications. Frontiers in Chemistry, $0,11,.$	1.8	6
95	Superfluorinated Extracellular Vesicles for In Vivo Imaging by ¹⁹ F-MRI. ACS Applied Materials & Lamp; Interfaces, 2023, 15, 8974-8985.	4.0	3
96	Therapeutic angiogenesis and tissue revascularization in ischemic vascular disease. Journal of Biological Engineering, 2023, 17, .	2.0	2
97	Multiplex and Ultrasensitive Detection of Severe Acute Respiratory Syndrome Coronavirus 2 and Influenza A/B Nucleocapsid Proteins Based on Nanometer-Sized Core–Shell Superparamagnetic Antifouling Probes. ACS Applied Nano Materials, 2023, 6, 3344-3356.	2.4	2
98	Mesenchymal stem/stromal cells-derived exosomes for osteoporosis treatment. World Journal of Stem Cells, 0, 15, 83-89.	1.3	0
99	Intravascularly Deliverable Biomaterial Platforms for Tissue Repair and Regeneration Postâ€myocardial Infarction. Advanced Materials, 0, , .	11.1	0
100	Nanomedicine for Cardiac Diseases. SpringerBriefs in Applied Sciences and Technology, 2023, , 57-67.	0.2	0
102	Introduction to Nanomedicine. SpringerBriefs in Applied Sciences and Technology, 2023, , 1-15.	0.2	0
108	Recent progress in the effect of magnetic iron oxide nanoparticles on cells and extracellular vesicles. Cell Death Discovery, 2023, 9, .	2.0	6
122	Exploring Cutting-Edge Approaches to Potentiate Mesenchymal Stem Cell and Exosome Therapy for Myocardial Infarction. Journal of Cardiovascular Translational Research, 0, , .	1.1	1
155	Nanomaterials in theranostics. , 2024, , 1-27.		0