Per- and Polyfluoroalkyl Substances in Dust Collected f Stations in North America

Environmental Science & amp; Technology 54, 14558-14567

DOI: 10.1021/acs.est.0c04869

Citation Report

	ρωρτ	
Article	IF	CITATIONS
Impact of kidney hyperfiltration on concentrations of selected perfluoroalkyl acids among US adults for various disease groups. Environmental Science and Pollution Research, 2021, 28, 21499-21515.	5.3	4
Per- and polyfluoroalkyl substances (PFAS) and total fluorine in fire station dust. Journal of Exposure Science and Environmental Epidemiology, 2021, 31, 930-942.	3.9	40
Per- and Polyfluoroalkyl Substances in Outdoor and Indoor Dust from Mainland China: Contributions of Unknown Precursors and Implications for Human Exposure. Environmental Science & Technology, 2022, 56, 6036-6045.	10.0	24
Per- and Polyfluoroalkyl Substances (PFAS) in Street Sweepings. Environmental Science & Technology, 2022, 56, 6069-6077.	10.0	13
External and internal human exposure to PFOA and HFPOs around a mega fluorochemical industrial park, China: Differences and implications. Environment International, 2021, 157, 106824.	10.0	32
Per-and polyfluoroalkyl substances (PFAS) and persistent chemical mixtures in dust from U.S. colleges. Environmental Research, 2022, 206, 112530.	7.5	8
Mixed effects of perfluoroalkyl and polyfluoroalkyl substances exposure on cognitive function among people over 60Âyears old from NHANES. Environmental Science and Pollution Research, 2022, 29, 32093-32104.	5.3	8
Understanding semi-volatile organic compounds in indoor dust. Indoor and Built Environment, 2022, 31, 291-298.	2.8	9
Perfluorooctane sulfonate and perfluorooctanoic acid. , 2022, , 815-831.		0

10	Widening the Lens on PFASs: Direct Human Exposure to Perfluoroalkyl Acid Precursors (pre-PFAAs). Environmental Science & Technology, 2022, 56, 6004-6013.	10.0	31
11	Characterization of organophosphate esters (OPEs) and polyfluoralkyl substances (PFASs) in settled dust in specific workplaces. Environmental Science and Pollution Research, 2022, 29, 52302-52316.	5.3	7
12	Characterizing firefighter's exposure to over 130 SVOCs using silicone wristbands: A pilot study comparing on-duty and off-duty exposures. Science of the Total Environment, 2022, 834, 155237.	8.0	14
13	Racial disparities in liver cancer: Evidence for a role of environmental contaminants and the epigenome. Frontiers in Oncology, 0, 12, .	2.8	1
14	Food grown on fire stations as a potential pathway for firefighters' exposure to per- and poly-fluoroalkyl substances (PFAS). Environment International, 2022, 168, 107455.	10.0	8
15	Evaluation of iodide chemical ionization mass spectrometry for gas and aerosol-phase per- and polyfluoroalkyl substances (PFAS) analysis. Environmental Sciences: Processes and Impacts, 2023, 25, 277-287.	3.5	3
16	Swimming with PFAS in public and private pools. Chemosphere, 2023, 310, 136765.	8.2	2

18	Organic Fluorine as an Indicator of Per- and Polyfluoroalkyl Substances in Dust from Buildings with Healthier versus Conventional Materials. Environmental Science & Technology, 2022, 56, 17090-17099.	10.0	7	
----	---	------	---	--

#

1

3

5

7

9

#	Article	IF	Citations
19	The vitamin D receptor as a potential target for the toxic effects of per- and polyfluoroalkyl substances (PFASs): An in-silico study. Environmental Research, 2023, 217, 114832.	7.5	4
20	Maternal exposure to perfluorobutane sulfonate (PFBS) during pregnancy: evidence of adverse maternal and fetoplacental effects in New Zealand White (NZW) rabbits. Toxicological Sciences, 2023, 191, 239-252.	3.1	3
21	Contamination of UK firefighters personal protective equipment and workplaces. Scientific Reports, 2023, 13, .	3.3	6
22	Mental health of UK firefighters. Scientific Reports, 2023, 13, .	3.3	3
23	Perfluoroalkyl substances exposure in firefighters: Sources and implications. Environmental Research, 2023, 220, 115164.	7.5	11
24	Occupational exposures to airborne per―and polyfluoroalkyl substances (PFAS)—A review. American Journal of Industrial Medicine, 2023, 66, 393-410.	2.1	3
25	Environmental and health impacts of PFAS: Sources, distribution and sustainable management in North Carolina (USA). Science of the Total Environment, 2023, 878, 163123.	8.0	21
26	Up in the air: Polyfluoroalkyl phosphate esters (PAPs) in airborne dust captured by air conditioning (AC) filters. Chemosphere, 2023, 325, 138307.	8.2	5
27	Electronic-waste-associated pollution of per- and polyfluoroalkyl substances: Environmental occurrence and human exposure. Journal of Hazardous Materials, 2023, 451, 131204.	12.4	6
28	Endocrine disrupting chemicals in indoor dust: A review of temporal and spatial trends, and human exposure. Science of the Total Environment, 2023, 874, 162374.	8.0	14
29	Occupational exposure to PFAS: Research and protection needed. American Journal of Industrial Medicine, 2023, 66, 424-426.	2.1	0
30	Systematic Evidence Mapping of Potential Exposure Pathways for Per- and Polyfluoroalkyl Substances Based on Measured Occurrence in Multiple Media. Environmental Science & Technology, 2023, 57, 5107-5116.	10.0	5
31	Firefighters' exposure to per-and polyfluoroalkyl substances (PFAS) as an occupational hazard: A review. Frontiers in Materials, 0, 10, .	2.4	5
32	Occupational exposure to per- and polyfluoroalkyl substances: a scope review of the literature from 1980–2021. Journal of Exposure Science and Environmental Epidemiology, 2023, 33, 673-686.	3.9	3
33	Sources, Fate, and Detection of Dust-Associated Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS): A Review. Toxics, 2023, 11, 335.	3.7	2
34	Impact of precursors and bioaccessibility on childhood PFAS exposure from house dust. Science of the Total Environment, 2023, 889, 164306.	8.0	0
35	Domestic Dogs and Horses as Sentinels of Per- and Polyfluoroalkyl Substance Exposure and Associated Health Biomarkers in Gray's Creek North Carolina. Environmental Science & Technology, 2023, 57, 9567-9579.	10.0	4
36	Non-extractable PFAS in functional textiles â^ Characterization by complementary methods: oxidation, hydrolysis, and fluorine sum parameters. Environmental Sciences: Processes and Impacts, 0, , .	3.5	0

CITATION REPORT

#	Article	IF	CITATIONS
37	Translating community-based participatory research into broadscale sociopolitical change: insights from a coalition of women firefighters, scientists, and environmental health advocates. Environmental Health, 2023, 22, .	4.0	0
38	Physical exercise and persistent organic pollutants. Heliyon, 2023, 9, e19661.	3.2	0
39	Further Insight into Extractable (Organo)fluorine Mass Balance Analysis of Tap Water from Shanghai, China. Environmental Science & Technology, 2023, 57, 14330-14339.	10.0	1
40	Characterizing azobenzene disperse dyes and related compounds in house dust and their correlations with other organic contaminant classes. Environmental Pollution, 2023, 337, 122491.	7.5	0
41	<i>In vitro</i> modeling of the post-ingestion bioaccessibility of per- and polyfluoroalkyl substances sorbed to soil and house dust. Toxicological Sciences, 0, , .	3.1	0
42	Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People. Environmental Science & Technology, 2023, 57, 15782-15793.	10.0	7
43	Ultrasonic assisted activation of persulfate for the treatment of spent porous biochar: Degradation of adsorbed PFOA and adsorbent regeneration. Journal of Environmental Chemical Engineering, 2023, 11, 111146.	6.7	2
45	Semi-volatile Organic Compounds (SVOC). , 2023, , 157-330.		0
46	Polyfluoroalkyl phosphate esters (PAPs) as PFAS substitutes and precursors: An overview. Journal of Hazardous Materials, 2024, 464, 133018.	12.4	1
47	A Critical Review on PFAS Removal from Water: Removal Mechanism and Future Challenges. Sustainability, 2023, 15, 16173.	3.2	0
48	Air pollution inside fire stations: State-of-the-art and future challenges. International Journal of Hygiene and Environmental Health, 2024, 255, 114289.	4.3	0
49	Evaluating the toxicokinetics of some metabolites of a C6 polyfluorinated compound, 6:2 fluorotelomer alcohol in pregnant and nonpregnant rats after oral exposure to the parent compound. Food and Chemical Toxicology, 2024, 183, 114333.	3.6	0
50	Volatile Organic Compounds and Very Volatile Organic Compounds. , 2023, , 93-156.		0
51	Factors affecting the occurrence and accumulation of perfluoroalkyl acids in indoor dust in Tainan, Taiwan. Chemosphere, 2024, 349, 140882.	8.2	0
52	Assessment of perfluoroalkyl substances concentration levels in wild bat guano samples. Scientific Reports, 2023, 13, .	3.3	0
54	Substitution and Orientation Effects on the Crystallinity and PFAS Adsorption of Olefin-Linked 2D COFs. ACS Applied Materials & amp; Interfaces, 2024, 16, 9483-9494.	8.0	0
55	A source-based framework to estimate the annual load of PFAS in municipal wastewater. Science of the Total Environment, 2024, 920, 170997.	8.0	0
56	PFAS promotes disinfection byproduct formation through triggering particle-bound organic matter release in drinking water pipes. Water Research, 2024, 254, 121339.	11.3	0

#	Article	IF	CITATIONS
57	Prediction of the Interactions of a Large Number of Per- and Poly-Fluoroalkyl Substances with Ten Nuclear Receptors. Environmental Science & Technology, 2024, 58, 4487-4499.	10.0	0
58	Personal Wearable Sampler for Per- and Polyfluoroalkyl Substances Exposure Assessment. Environmental Science and Technology Letters, 2024, 11, 301-307.	8.7	0

CITATION REPORT