Detection of large-scale X-ray bubbles in the Milky Way

Nature

588, 227-231

DOI: 10.1038/s41586-020-2979-0

Citation Report

#	Article	IF	CITATIONS
1	Activity bubbling up. Nature Astronomy, 2021, 5, 11-12.	10.1	0
2	Origin of Galactic Spurs: New Insight from Radio/X-Ray All-sky Maps. Astrophysical Journal, 2021, 908, 14.	4.5	10
3	Supervirial Temperature or Neon Overabundance? Suzaku Observations of the Milky Way Circumgalactic Medium. Astrophysical Journal, 2021, 909, 164.	4.5	17
4	Hoinga: a supernova remnant discovered in the SRG/eROSITA All-Sky Survey eRASS1. Astronomy and Astrophysics, 2021, 648, A30.	5.1	15
5	StellarICS: inverse Compton emission from the quiet Sun and stars from keV to TeV. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 004.	5.4	13
6	A Supernova-driven, Magnetically Collimated Outflow as the Origin of the Galactic Center Radio Bubbles. Astrophysical Journal, 2021, 913, 68.	4.5	9
7	Giant Cosmic-Ray Halos around M31 and the Milky Way. Astrophysical Journal, 2021, 914, 135.	4.5	16
8	Searches for sterile neutrinos and axionlike particles from the Galactic halo with eROSITA. Physical Review D, 2021, 104, .	4.7	18
9	Interaction of the galactic-centre super bubbles with the gaseous disc. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2170-2180.	4.4	12
10	Probing the Halo Gas Distribution in the Inner Galaxy with Fermi Bubble Observations. Astrophysical Journal, 2021, 915, 85.	4.5	5
11	The cold circumgalactic medium in emission: Mg <scp>ii</scp> haloes in TNG50. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4445-4463.	4.4	29
12	<i>SRG</i> /eROSITA discovery of a large circular SNR candidate G116.6â^26.1: SNÂla explosion probing the gas of the Milky Way halo?. Monthly Notices of the Royal Astronomical Society, 2021, 507, 971-982.	4.4	10
13	Signatures of Recent Cosmic-Ray Acceleration in the High-latitude Gamma-Ray Sky. Astrophysical Journal, 2021, 917, 30.	4. 5	5
14	Predictions for anisotropic X-ray signatures in the circumgalactic medium: imprints of supermassive black hole driven outflows. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1563-1581.	4.4	21
15	SRG X-ray orbital observatory. Astronomy and Astrophysics, 2021, 656, A132.	5.1	134
16	Prospects for a polarimetric mapping of the Sgr A molecular cloud complex with IXPE. Astronomy and Astrophysics, 2021, 655, A108.	5.1	3
17	The Hot Circumgalactic Medium of the Milky Way: Evidence for Supervirial, Virial, and Subvirial Temperatures; Nonsolar Chemical Composition; and Nonthermal Line Broadening. Astrophysical Journal, 2021, 918, 83.	4.5	20
18	X-ray bubbles in the circumgalactic medium of TNG50 Milky Way- and M31-like galaxies: signposts of supermassive black hole activity. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4667-4695.	4.4	36

#	ARTICLE	IF	CITATIONS
19	The time-dependent Rayleigh–Taylor instability in interstellar shells and supershells, including the <i>eROSITA</i> bubbles. Monthly Notices of the Royal Astronomical Society, 2021, 509, 716-737.	4.4	4
20	Turbulent Magnetic Dynamos with Halo Lags, Winds, and Jets. Astrophysical Journal, 2021, 920, 133.	4.5	2
21	Far-UV and Optical Emissions from Three Very Large Supernova Remnants Located at Unusually High Galactic Latitudes. Astrophysical Journal, 2021, 920, 90.	4.5	12
22	Dust Destruction in Hot Gas Dynamic Flows. Bulletin of the Lebedev Physics Institute, 2021, 48, 327-331.	0.6	1
23	Gamma Rays from Fast Black-hole Winds. Astrophysical Journal, 2021, 921, 144.	4.5	14
24	A GeV-TeV particle component and the barrier of cosmic-ray sea in the Central Molecular Zone. Nature Communications, 2021, 12, 6169.	12.8	5
25	Revisiting the Distance to Radio Loops I and IV Using Gaia and Radio/Optical Polarization Data. Astrophysical Journal, 2021, 922, 210.	4.5	20
26	The Warm Gas in the Milky Way: The Kinematical Model of C iv and Its Connection to Si iv. Astrophysical Journal, 2022, 924, 86.	4.5	1
27	Driving Galactic Outflows with Magnetic Fields at Low and High Redshift. Astrophysical Journal, 2022, 924, 26.	4.5	4
28	Multiwavelength emission from leptonic processes in ageing galaxy bubbles. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5834-5853.	4.4	2
29	Tracing the Milky Way's Vestigial Nuclear Jet. Astrophysical Journal, 2021, 922, 254.	4.5	14
30	Molecular Gas within the Milky Way's Nuclear Wind. Astrophysical Journal Letters, 2021, 923, L11.	8.3	8
32	North Polar Spur/Loop I: gigantic outskirt of the Northern Fermi bubble or nearby hot gas cavity blown by supernovae?. Comptes Rendus Physique, 2022, 23, 1-24.	0.9	2
33	Unveiling the Origin of the Fermi Bubbles with MeV Photon Telescopes. Astrophysical Journal, 2022, 927, 225.	4.5	3
34	CMB as thermal radiation from cosmic dust grains in equilibrium with the redshifted starlight. Journal of Physics: Conference Series, 2022, 2197, 012026.	0.4	0
35	Fermi and eROSITA bubbles as relics of the past activity of the Galaxy's central black hole. Nature Astronomy, 2022, 6, 584-591.	10.1	26
36	Discovery of non-equilibrium ionization plasma associated with the North Polar Spur and Loop I. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2034-2043.	4.4	3
37	On the Mass Loading of AGN-driven Outflows in Elliptical Galaxies and Clusters. Astrophysical Journal, 2021, 923, 256.	4.5	4

#	ARTICLE	IF	CITATIONS
38	A Unified Model for the Fan Region and the North Polar Spur: A Bundle of Filaments in the Local Galaxy. Astrophysical Journal, 2021, 923, 58.	4.5	7
39	Multi-scale feedback and feeding in the closest radio galaxy Centaurus A. Nature Astronomy, 2022, 6, 109-120.	10.1	16
40	Fermi bubbles: the collimated outburst needed to explain forward-shock edges. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2581-2598.	4.4	5
41	Spinning black holes magnetically connected to a Keplerian disk. Astronomy and Astrophysics, 2022, 663, A169.	5.1	10
42	Astrospheres of Planet-Hosting Cool Stars and Beyond \hat{a} When Modeling Meets Observations. Space Science Reviews, 2022, 218, 1.	8.1	12
43	The Solar Cycle Temporal Variation of the Solar Wind Charge Exchange X-Ray Lines. Astrophysical Journal, 2022, 930, 21.	4.5	5
44	CO Emission Delineating the Interface between the Milky Way Nuclear Wind Cavity and the Gaseous Disk. Astrophysical Journal, 2022, 930, 112.	4.5	0
45	A deep near-infrared view of the Ophiuchus galaxy cluster. Astronomy and Astrophysics, 2022, 663, A158.	5.1	4
46	ASTRI Mini-Array core science at the Observatorio del Teide. Journal of High Energy Astrophysics, 2022, 35, 1-42.	6.7	18
47	Return of the templates: Revisiting the Galactic Center excess with multimessenger observations. Physical Review D, 2022, 105, .	4.7	30
48	Diverse metallicities of Fermi bubble clouds indicate dual origins in the disk and halo. Nature Astronomy, 2022, 6, 968-975.	10.1	6
49	The eROSITA extragalactic CalPV serendipitous catalog. Astronomy and Astrophysics, 2022, 664, A126.	5.1	1
50	Exploring the MeV sky with a combined coded mask and Compton telescope: the Galactic Explorer with a Coded aperture mask Compton telescope (GECCO). Journal of Cosmology and Astroparticle Physics, 2022, 2022, 036.	5.4	19
51	Predictions for the X-ray circumgalactic medium of edge-on discs and spheroids. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	3
52	Emission from hadronic and leptonic processes in galactic jet-driven bubbles. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	2
54	Improving Black Hole Accretion Treatment in Hydrodynamical Simulations. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	0
55	High-energy Gamma Rays from Magnetically Arrested Disks in Nearby Radio Galaxies. Astrophysical Journal, 2022, 935, 159.	4.5	2
56	Galactic Winds and Bubbles from Nuclear Starburst Rings. Astrophysical Journal Letters, 2022, 935, L24.	8.3	6

#	Article	IF	CITATIONS
57	Galactic halo bubble magnetic fields and UHECR deflections. Monthly Notices of the Royal Astronomical Society, 2022, 517, 2534-2545.	4.4	2
58	Supernova-remnant origin of the Galactic-Centre filaments. Monthly Notices of the Royal Astronomical Society, 2022, 518, 6273-6292.	4.4	2
59	Diffuse Hot Plasma in the Interstellar Medium and Galactic Outflows. , 2022, , 1-31.		0
60	Evidence for powerful winds and the associated reverse shock as the origin of the Fermi bubbles. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	O
61	Ultra high energy cosmic rays from past activity of Andromeda galaxy. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 519, L5-L9.	3.3	4
62	Inverse Compton emission from heavy WIMP annihilations in the Galactic Centre. Physics of the Dark Universe, 2023, 39, 101157.	4.9	3
63	The Hot Interstellar Medium. , 2022, , 1-48.		2
64	How did the Stellar Winds of Massive Stars influence the Surrounding Environment in the Galactic Center?. Proceedings of the International Astronomical Union, 2020, 16, 57-62.	0.0	0
65	The circumgalactic medium of Milky Way-like galaxies in the TNG50 simulation – I: halo gas properties and the role of SMBH feedback. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5754-5777.	4.4	18
66	A galactic breeze origin for the Fermi bubbles emission. Monthly Notices of the Royal Astronomical Society, 2022, 518, 6083-6091.	4.4	1
67	QUIJOTE scientific results – VI. The Haze as seen by QUIJOTE. Monthly Notices of the Royal Astronomical Society, 2023, 519, 3460-3480.	4.4	4
68	Study of the excess Fe XXV line emission in the central degrees of the Galactic centre using <i>XMM-Newton</i> data. Astronomy and Astrophysics, 2023, 671, A55.	5.1	2
69	Disc-halo gas outflows driven by stellar clusters as seen in multiwavelength tracers. Monthly Notices of the Royal Astronomical Society, 2023, 520, 2655-2667.	4.4	0
70	The Interaction of the Active Nucleus with the Host Galaxy Interstellar Medium. , 2023, , 1-46.		3
71	NOEMA spatially resolved view of the multiphase outflow in IRAS17020+4544: a shocked wind in action?. Monthly Notices of the Royal Astronomical Society, 2023, 521, 2134-2148.	4.4	2
72	Dusty plasma in active galactic nuclei. European Physical Journal D, 2023, 77, .	1.3	5
73	Abundance and temperature of the outer hot circumgalactic medium. Astronomy and Astrophysics, 2023, 674, A195.	5.1	9
74	Galactic population synthesis of radioactive nucleosynthesis ejecta. Astronomy and Astrophysics, 2023, 672, A54.	5.1	2

#	Article	IF	Citations
75	Asymmetric eROSITA bubbles as the evidence of a circumgalactic medium wind. Nature Communications, 2023, 14 , .	12.8	4
76	Active galactic nuclei jets simulated with smoothed particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2023, 520, 5090-5109.	4.4	3
77	Caught in the Act: A Metal-rich High-velocity Cloud in the Inner Galaxy. Astrophysical Journal, 2023, 944, 65.	4.5	3
78	Jet Feedback in Star-Forming Galaxies. Galaxies, 2023, 11, 29.	3.0	2
79	<i>SRG</i> /eROSITA discovery of a radio-faint X-ray candidate supernova remnant SRGe J003602.3+605421Â=ÂG121.1â~1.9. Monthly Notices of the Royal Astronomical Society, 2023, 521, 5536-5556.	4.4	3
80	Detection of a Supervirial Hot Component in the Milky Way Circumgalactic Medium Along Multiple Sight Lines by Using the Stacking Technique. Astrophysical Journal, 2023, 946, 55.	4.5	4
81	SRG/eROSITA X-ray shadowing study of giant molecular clouds. Astronomy and Astrophysics, 2023, 676, A3.	5.1	7
82	A CO funnel in the Galactic centre: Molecular counterpart of the northern Galactic chimney. Astronomy and Astrophysics, 2023, 674, L15.	5.1	О
83	Possible Counterpart Signal of the Fermi Bubbles at the Cosmic-Ray Positrons. Astrophysical Journal, 2023, 950, 120.	4.5	0
84	VICTORIA project: The LOFAR HBA Virgo Cluster Survey. Astronomy and Astrophysics, 2023, 676, A24.	5.1	4
85	Thermal and chemical properties of the eROSITA bubbles from Suzaku observations. Nature Astronomy, 2023, 7, 799-804.	10.1	7
86	致å⁻†å®ä½"è¾å°"特å¾ä¸Žç‰©ç†æ€§è*. Chinese Science Bulletin, 2023, , .	0.7	1
87	Misaligned Jets from Sgr A* and the Origin of Fermi/eROSITA Bubbles. Astrophysical Journal, 2023, 951, 36.	4.5	1
88	On the $H\hat{l}\pm$ faintness of the North Polar Spur. Monthly Notices of the Royal Astronomical Society, 2023, 524, 4212-4218.	4.4	0
89	Discovery of spectacular quasar-driven superbubbles in red quasars. Science Advances, 2023, 9, .	10.3	2
90	The Hot Circumgalactic Medium of the Milky Way: New Insights from XMM-Newton Observations. Astrophysical Journal, 2023, 952, 41.	4.5	3
91	Cosmic-ray electrons and the magnetic field of the North Polar Spur. Astronomy and Astrophysics, 2023, 676, L3.	5.1	1
92	X-ray metal line emission from the hot circumgalactic medium: probing the effects of supermassive black hole feedback. Monthly Notices of the Royal Astronomical Society, 2023, 525, 1976-1997.	4.4	3

#	Article	IF	CITATIONS
93	Reconnection-driven flares in 3D black hole magnetospheres. Astronomy and Astrophysics, 2023, 677, A67.	5.1	4
94	X-ray surface brightness and gas density profiles of galaxy clusters up to $3\text{\AA}-\text{R500c}$ with <i>SRG/eROSITA</i> . Monthly Notices of the Royal Astronomical Society, 2023, 525, 898-907.	4.4	1
95	Constraining the Thickness of the Galactic Halo through Cosmic-Ray Anisotropy Using the Spatial-Dependent-Propagation Model. Universe, 2023, 9, 363.	2.5	0
96	Key Physical Processes in the Circumgalactic Medium. Annual Review of Astronomy and Astrophysics, 2023, 61, 131-195.	24.3	15
97	Scientific objectives of the Hot Universe Baryon Surveyor (HUBS) mission. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	5.1	6
98	The Signature of the Northern Galactic Center Region in Low-velocity UV Absorption. Astrophysical Journal, 2023, 954, 64.	4.5	0
99	Formation and Evolution of Transient Jets and Their Cavities in Black Hole X-Ray Binaries. Astrophysical Journal Letters, 2023, 954, L30.	8.3	0
100	Tracing the energetic outflows from galactic nuclei: observational evidence for a large-scale bipolar radio and X-ray-emitting bubble-like structure in M106. Monthly Notices of the Royal Astronomical Society, 2023, 526, 483-498.	4.4	O
101	Multicomponent imaging of the Fermi gamma-ray sky in the spatio-spectral domain. Astronomy and Astrophysics, 0 , , .	5.1	0
102	Azimuthal anisotropy of magnetic fields in the circumgalactic medium driven by galactic feedback processes. Monthly Notices of the Royal Astronomical Society, 2023, 526, 5483-5493.	4.4	3
103	Broadband Radio Study of the North Polar Spur: Origin of the Spectral Turnover with Insights into the X-Ray and Gamma-Ray Spectra. Astrophysical Journal, 2023, 958, 83.	4.5	0
104	"Fermi―bubbles are bursting from our galaxy. Their origins remain a mystery. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	0
105	Not gone with the wind: survival of high-velocity molecular clouds in the galactic centre. Monthly Notices of the Royal Astronomical Society, 2023, 527, 3418-3435.	4.4	0
106	AGN radiation imprints on the circumgalactic medium of massive galaxies. Monthly Notices of the Royal Astronomical Society, 0 , , .	4.4	0
107	Line Emission Mapper: an X-ray probe mission concept to study the cosmic ecosystems and the physics of galaxy formation. Journal of Astronomical Telescopes, Instruments, and Systems, 2023, 9, .	1.8	2
108	The soft X-ray background with Suzaku. II. Supervirial temperature bubbles?. Publication of the Astronomical Society of Japan, 2023, 75, 1324-1336.	2.5	0
109	Broadband maps of eROSITA and their comparison with the ROSAT survey. Astronomy and Astrophysics, 0 , 0	5.1	2
110	The Milky Way revealed to be a neutrino desert by the IceCube Galactic plane observation. Nature Astronomy, 2024, 8, 241-246.	10.1	1

#	Article	IF	CITATIONS
111	Cosmic ray feedback in galaxies and galaxy clusters. Astronomy and Astrophysics Review, 2023, 31, .	25.5	4
112	Bipolar outflows out to 10 kpc for massive galaxies at redshift z ≈ 1. Nature, 2023, 624, 53-56.	27.8	0
113	An Observationally Driven Multifield Approach for Probing the Circum-Galactic Medium with Convolutional Neural Networks. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	0
114	Ionizing Spotlight of Active Galactic Nucleus. Galaxies, 2023, 11, 118.	3.0	0
115	The history of the Milky Way: The evolution of star formation, cosmic rays, metallicity, and stellar dynamics over cosmic time. Publication of the Astronomical Society of Japan, 2024, 76, 81-97.	2.5	0
116	Zooming in on the circumgalactic medium with GIBLE: Resolving small-scale gas structure in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2024, 528, 3320-3339.	4.4	0
117	X-Ray Constraints on the Hot Gaseous Corona of Edge-on Late-type Galaxies in Virgo. Astrophysical Journal, 2024, 961, 249.	4.5	0
118	The SRG/eROSITA all-sky survey. Astronomy and Astrophysics, 2024, 682, A34.	5.1	3
119	Deep Chandra Observation of the Remarkable Ionization Cones of NGC 5252. Astrophysical Journal, 2024, 962, 188.	4.5	0
120	The Interaction of the Active Nucleus with the Host Galaxy Interstellar Medium. , 2024, , 4399-4444.		0
121	Diffuse Hot Plasma in the Interstellar Medium and Galactic Outflows. , 2024, , 3583-3613.		0
122	The Hot Interstellar Medium. , 2024, , 4321-4368.		0