Core commitments for field trials of gene drive organism

Science 370, 1417-1419 DOI: 10.1126/science.abd1908

Citation Report

#	Article	IF	CITATIONS
1	A Code of Ethics for Gene Drive Research. CRISPR Journal, 2021, 4, 19-24.	2.9	24
2	Exploring the intersections of governance, constituencies, and risk in genetic interventions. Conservation Science and Practice, 2021, 3, e380.	2.0	4
3	A confinable home-and-rescue gene drive for population modification. ELife, 2021, 10, .	6.0	42
4	Experts' moral views on gene drive technologies: a qualitative interview study. BMC Medical Ethics, 2021, 22, 25.	2.4	12
5	Culex quinquefasciatus: status as a threat to island avifauna and options for genetic control. CABI Agriculture and Bioscience, 2021, 2, .	2.4	19
7	Current Effector and Gene-Drive Developments to Engineer Arbovirus-Resistant <i>Aedes aegypti</i> (Diptera: Culicidae) for a Sustainable Population Replacement Strategy in the Field. Journal of Medical Entomology, 2021, 58, 1987-1996.	1.8	8
9	Small-Cage Laboratory Trials of Genetically-Engineered Anopheline Mosquitoes. Journal of Visualized Experiments, 2021, , .	0.3	0
10	Genetic Technologies for Sustainable Management of Insect Pests and Disease Vectors. Sustainability, 2021, 13, 5653.	3.2	4
11	Engineered reproductively isolated species drive reversible population replacement. Nature Communications, 2021, 12, 3281.	12.8	21
12	Potential use of gene drive modified insects against disease vectors, agricultural pests and invasive species poses new challenges for risk assessment. Critical Reviews in Biotechnology, 2022, 42, 254-270.	9.0	15
13	Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field. Nature Communications, 2021, 12, 4589.	12.8	59
14	Combating mosquito-borne diseases using genetic control technologies. Nature Communications, 2021, 12, 4388.	12.8	76
15	Governing Gene Drive Technologies: A Qualitative Interview Study. AJOB Empirical Bioethics, 2022, 13, 107-124.	1.6	9
16	Risk management recommendations for environmental releases of gene drive modified insects. Biotechnology Advances, 2022, 54, 107807.	11.7	14
17	Gene drives gaining speed. Nature Reviews Genetics, 2022, 23, 5-22.	16.3	92
18	Suppressing mosquito populations with precision guided sterile males. Nature Communications, 2021, 12, 5374.	12.8	73
20	Small-scale release of non-gene drive mosquitoes in Burkina Faso: from engagement implementation to assessment, a learning journey. Malaria Journal, 2021, 20, 395.	2.3	11
21	Genetic control of invasive sea lamprey in the Great Lakes. Journal of Great Lakes Research, 2021, 47, S764-S775.	1.9	12

ATION REDO

CITATION REPORT

#	Article	IF	CITATIONS
22	Ethical Considerations for Gene Drive: Challenges of Balancing Inclusion, Power and Perspectives. Frontiers in Bioengineering and Biotechnology, 2022, 10, 826727.	4.1	9
23	iGEM and Gene Drives: A Case Study for Governance. Health Security, 2022, 20, 26-34.	1.8	7
24	Gene drive communication: exploring experts' lived experience of metaphor use. New Genetics and Society, 0, , 1-20.	1.2	1
25	Gene Drives in the U.K., U.S., and Australian Press (2015–2019): How a New Focus on Responsibility Is Shaping Science Communication. Science Communication, 2022, 44, 143-168.	3.3	7
26	Stakeholder engagement to inform the risk assessment and governance of gene drive technology to manage spotted-wing drosophila. Journal of Environmental Management, 2022, 307, 114480.	7.8	4
27	The spore killers, fungal meiotic driver elements. Mycologia, 2022, 114, 1-23.	1.9	10
28	Articulating ethical principles guiding Target Malaria's engagement strategy. Malaria Journal, 2022, 21, 35.	2.3	8
29	Stakeholder Views on Engagement, Trust, Performance, and Risk Considerations About Use of Gene Drive Technology in Agricultural Pest Management. Health Security, 2022, 20, 6-15.	1.8	5
30	Prescribing engagement in environmental risk assessment for gene drive technology. Regulation and Governance, 2023, 17, 411-424.	2.9	3
31	California Residents' Perceptions of Gene Drive Systems to Control Mosquito-Borne Disease. Frontiers in Bioengineering and Biotechnology, 2022, 10, 848707.	4.1	7
32	Exploiting a Y chromosome-linked Cas9 for sex selection and gene drive. Nature Communications, 2021, 12, 7202.	12.8	9
33	Towards Integrated Management of Dengue in Mumbai. Viruses, 2021, 13, 2436.	3.3	4
35	Opening up, closing down, or leaving ajar? How applications are used in engaging with publics about gene drive. Journal of Responsible Innovation, 2022, 9, 151-172.	4.9	6
37	The Effect of Mating Complexity on Gene Drive Dynamics. American Naturalist, 2023, 201, E1-E22.	2.1	3
39	Research progress of CRISPR/Cas9-mediated and HDR-type gene drive technology in mosquito genetic control. Scientia Sinica Vitae, 2022, 52, 1522-1532.	0.3	1
40	Hurdles in responsive community engagement for the development of environmental biotechnologies. Synthetic Biology, 2022, 7, .	2.2	2
41	With great power comes great responsibility: why â€~safe enough' is not good enough in debates on new gene technologies. Agriculture and Human Values, 2023, 40, 533-545.	3.0	7
42	A perspective on the expansion of the genetic technologies to support the control of neglected vector-borne diseases and conservation. Frontiers in Tropical Diseases, 0, 3, .	1.4	3

#	Article	IF	CITATIONS
43	Population Modification Using Gene Drive for Reduction of Malaria Transmission. , 2022, , 243-258.		2
44	Regulation of Transgenic Insects. , 2022, , 493-517.		1
45	Modelling Threshold-Dependent Gene Drives: a Case Study Using Engineered Underdominance. , 2022, , 259-278.		0
46	An Introduction to the Molecular Genetics of Gene Drives and Thoughts on Their Gradual Transition to Field Use. , 2022, , 1-21.		1
47	Leveraging a natural murine meiotic drive to suppress invasive populations. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	17
48	Exploring the value of a global gene drive project registry. Nature Biotechnology, 2023, 41, 9-13.	17.5	5
49	Genetic conversion of a split-drive into a full-drive element. Nature Communications, 2023, 14, .	12.8	2
50	Moving beyond narrow definitions of gene drive: Diverse perspectives and frames enable substantive dialogue among science and humanities teachers in the United States and United Kingdom. Public Understanding of Science, 2023, 32, 727-744.	2.8	1
51	Gene Drive: Past, Present and Future Roads to Vertebrate Biocontrol. , 2023, 2, 52-70.		2
53	Engagement on risk assessment for gene drive mosquitoes by EFSA and Target Malaria. Environmental Science and Policy, 2023, 142, 183-193.	4.9	3
54	Alleviating the burden of malaria with gene drive technologies? A biocentric analysis of the moral permissibility of modifying malaria mosquitoes. Journal of Medical Ethics, 2023, 49, 765-771.	1.8	0
55	The Promise and Challenge of Genetic Biocontrol Approaches for Malaria Elimination. Tropical Medicine and Infectious Disease, 2023, 8, 201.	2.3	2
57	Gene Drives as Interventions into Nature: the Coproduction of Ontology and Morality in the Gene Drive Debate. NanoEthics, 2023, 17, .	0.8	1
58	A confinable female-lethal population suppression system in the malaria vector, <i>Anopheles gambiae</i> . Science Advances, 2023, 9, .	10.3	8
61	Next-generation CRISPR gene-drive systems using Cas12a nuclease. Nature Communications, 2023, 14, .	12.8	2
62	Measuring the Impact of Genetic Heterogeneity and Chromosomal Inversions on the Efficacy of CRISPR-Cas9 Gene Drives in Different Strains of <i>Anopheles gambiae</i> . CRISPR Journal, 2023, 6, 419-429.	2.9	0
63	Manipulating the Destiny of Wild Populations Using CRISPR. Annual Review of Genetics, 2023, 57, 361-390.	7.6	2
64	Situating the social sciences in responsible innovation in the global south: the case of gene drive mosquitoes, Journal of Responsible Innovation, 2023, 10.	4.9	2

CITATION REPORT

#	Article	IF	CITATIONS
65	Benefits and risks of gene drives for invasive plant management - the case for common tansy. Frontiers in Agronomy, 0, 5, .	3.3	0
66	The organizational structure of global gene drive research. Global Environmental Change, 2024, 84, 102802.	7.8	0
67	Taking stock: Is gene drive research delivering on its principles?. Gates Open Research, 0, 8, 14.	1.1	0