Ecological risk indices for heavy metal pollution assess Coast in the Red Sea

International Journal of Environmental Analytical Chemistry 102, 4496-4517

DOI: 10.1080/03067319.2020.1784888

Citation Report

#	Article	IF	CITATIONS
1	Benthic Foraminifera as Bio-indicators of Coastal Marine Environmental Contamination in the Red Sea-Gulf of Aqaba, Saudi Arabia. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 1033-1043.	2.7	3
2	A Review of Heavy Metals in Coastal Surface Sediments from the Red Sea: Health-Ecological Risk Assessments. International Journal of Environmental Research and Public Health, 2021, 18, 2798.	2.6	18
3	Contamination Status and Potential Risk of Metals in Marine Sediments of Shalateen Coast, the Red Sea. Soil and Sediment Contamination, 2022, 31, 40-56.	1.9	4
4	Legacy and emerging per- and polyfluorinated alkyl substances (PFASs) in sediment and edible fish from the Eastern Red Sea. Environmental Pollution, 2021, 280, 116935.	7.5	45
5	Spatio-Temporal Variations in Macrobenthic Community Distribution on the Central Red Sea Coast: Role of Heavy Metal Content of the Sediment. Contemporary Problems of Ecology, 2022, 15, 301-313.	0.7	0
6	Radiation Hazard from Natural Radioactivity in the Marine Sediment of Jeddah Coast, Red Sea, Saudi Arabia. Journal of Marine Science and Engineering, 2022, 10, 1145.	2.6	5
7	Benthic foraminifera as bioindicators of anthropogenic pollution in the Red Sea Coast, Saudi Arabia. Journal of King Saud University - Science, 2023, 35, 102383.	3.5	1
8	Various indices to find out pollution and toxicity impact of metals. , 2023, , 21-38.		3
9	Spatial distribution, eco-environmental risks, and source characterization of heavy metals using compositional data analysis in riverine sediments of a Himalayan river, Northern Pakistan. Journal of Soils and Sediments, 2023, 23, 2244-2257.	3.0	8
10	Introduction to the Significant Impact of AVS on Controlling the Metal Toxicity Regarding Sulfur Cycle. Earth and Environmental Sciences Library, 2023, , 1-16.	0.4	0
11	Impact of thermal cooking processes on organochlorine pesticide residues (OCPs) in the edible green seaweed, Ulva lactuca, and associated human health risk assessment. Journal of Food Composition	3.9	5

and Analysis, 2023, 121, 105370.