Utilization of machine-learning models to accurately pr

Internal and Emergency Medicine 15, 1435-1443 DOI: 10.1007/s11739-020-02475-0

Citation Report

#	Article	IF	CITATIONS
1	Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review. Computational and Structural Biotechnology Journal, 2021, 19, 2833-2850.	4.1	58
2	Performance of prediction models for short-term outcome in COVID-19 patients in the emergency department: a retrospective study. Annals of Medicine, 2021, 53, 402-409.	3.8	29
3	Translating evidence into practice during the COVID-19 pandemic: pitfalls and mileages. Therapeutic Advances in Drug Safety, 2021, 12, 204209862199887.	2.4	5
4	Machine Learning in Healthcare Communication. Encyclopedia, 2021, 1, 220-239.	4.5	69
5	The prediction of mortality influential variables in an intensive care unit: a case study. Personal and Ubiquitous Computing, 2023, 27, 203-219.	2.8	4
6	A Machine Learning Prediction Model of Respiratory Failure Within 48 Hours of Patient Admission for COVID-19: Model Development and Validation. Journal of Medical Internet Research, 2021, 23, e24246.	4.3	77
10	Early Warning Scores in Patients with Suspected COVID-19 Infection in Emergency Departments. Journal of Personalized Medicine, 2021, 11, 170.	2.5	16
11	Artificial Intelligence Applications for COVID-19 in Intensive Care and Emergency Settings: A Systematic Review. International Journal of Environmental Research and Public Health, 2021, 18, 4749.	2.6	23
12	Predictability of COVID-19 Hospitalizations, Intensive Care Unit Admissions, and Respiratory Assistance in Portugal: Longitudinal Cohort Study. Journal of Medical Internet Research, 2021, 23, e26075.	4.3	11
13	A Survey on Machine Learning and Internet of Things for COVID-19. , 2021, , .		4
14	Coronavirus disease (COVID-19) cases analysis using machine-learning applications. Applied Nanoscience (Switzerland), 2023, 13, 2013-2025.	3.1	242
15	Explaining machine learning based diagnosis of COVID-19 from routine blood tests with decision trees and criteria graphs. Computers in Biology and Medicine, 2021, 132, 104335.	7.0	58
16	Symptom Prediction and Mortality Risk Calculation for COVID-19 Using Machine Learning. Frontiers in Artificial Intelligence, 2021, 4, 673527.	3.4	12
17	ICU Admission Prediction Using Machine Learning for Covid-19 Patients. , 2021, , .		2
18	Contrasting factors associated with COVID-19-related ICU admission and death outcomes in hospitalised patients by means of Shapley values. PLoS Computational Biology, 2021, 17, e1009121.	3.2	10
19	Identification of the high-risk area for schistosomiasis transmission in China based on information value and machine learning: a newly data-driven modeling attempt. Infectious Diseases of Poverty, 2021, 10, 88.	3.7	16
20	Machine Learning Algorithms are Superior to Conventional Regression Models in Predicting Risk Stratification of COVID-19 Patients. Risk Management and Healthcare Policy, 2021, Volume 14, 3159-3166.	2.5	9
21	Automated machine learning optimizes and accelerates predictive modeling from COVID-19 high throughput datasets. Scientific Reports, 2021, 11, 15107.	3.3	20

#	Article	IF	CITATIONS
22	Routine Hematological Parameters May Be Predictors of COVID-19 Severity. Frontiers in Medicine, 2021, 8, 682843.	2.6	13
24	A systematic review on AI/ML approaches against COVID-19 outbreak. Complex & Intelligent Systems, 2021, 7, 2655-2678.	6.5	48
25	COVID-19 Death Risk Assessment in Iran using Artificial Neural Network. Journal of Physics: Conference Series, 2021, 1964, 062117.	0.4	2
26	Process Improvement Approaches for Increasing the Response of Emergency Departments against the COVID-19 Pandemic: A Systematic Review. International Journal of Environmental Research and Public Health, 2021, 18, 8814.	2.6	6
27	A Preliminary Analysis of Hospitalized Covid-19 Patients in Alessandria Area: a machine learning approach. , 2021, , .		1
29	Applications of laboratory findings in the prevention, diagnosis, treatment, and monitoring of COVID-19. Signal Transduction and Targeted Therapy, 2021, 6, 316.	17.1	17
30	Identifying mortality factors from Machine Learning using Shapley values – a case of COVID19. Expert Systems With Applications, 2021, 176, 114832.	7.6	35
31	Improvement of APACHE II score system for disease severity based on XGBoost algorithm. BMC Medical Informatics and Decision Making, 2021, 21, 237.	3.0	9
32	Comparison of machine learning techniques to handle imbalanced COVID-19 CBC datasets. PeerJ Computer Science, 2021, 7, e670.	4.5	10
33	Personalized stratification of hospitalization risk amidst COVID-19: A machine learning approach. Health Policy and Technology, 2021, 10, 100554.	2.5	7
34	Artificial Intelligence for COVID-19: A Systematic Review. Frontiers in Medicine, 2021, 8, 704256.	2.6	67
35	Identification of high-risk COVID-19 patients using machine learning. PLoS ONE, 2021, 16, e0257234.	2.5	34
36	Putative mechanism of neurological damage in COVID-19 infection. Acta Neurobiologiae Experimentalis, 2021, 81, 69-79.	0.7	8
37	Intelligent system for COVID-19 prognosis: a state-of-the-art survey. Applied Intelligence, 2021, 51, 2908-2938.	5.3	83
40	A Systematic Review on the Use of AI and ML for Fighting the COVID-19 Pandemic. IEEE Transactions on Artificial Intelligence, 2020, 1, 258-270.	4.7	50
41	A Continuously Benchmarked and Crowdsourced Challenge for Rapid Development and Evaluation of Models to Predict COVID-19 Diagnosis and Hospitalization. JAMA Network Open, 2021, 4, e2124946.	5.9	8
42	Establishment of prediction models for COVID-19 patients in different age groups based on random Forest algorithm. QJM - Monthly Journal of the Association of Physicians, 2021, , .	0.5	6
44	Robotics and artificial intelligence in healthcare during COVID-19 pandemic: A systematic review. Robotics and Autonomous Systems, 2021, 146, 103902.	5.1	68

#	Article	IF	CITATIONS
45	Clinical prognosis evaluation of COVID-19 patients: An interpretable hybrid machine learning approach. Current Research in Translational Medicine, 2022, 70, 103319.	1.8	11
46	An Adaptable LSTM Network Predicting COVID-19 Occurrence Using Time Series Data. , 2021, , .		1
47	Individual outcome prediction models for patients with COVID-19 based on their first day of admission to the intensive care unit. Clinical Biochemistry, 2022, 100, 13-21.	1.9	3
48	Predicting the duration of inpatient treatment for COVID-19 patients. Meditsinskiy Sovet, 2020, , 82-90.	0.5	3
51	COVID-19 $\hat{a} \in $ What are drugs and strategies now?. Acta Biomedica, 2021, 92, e2021096.	0.3	0
53	Comparative Study Based on Analysis of Coronavirus Disease (COVID-19) Detection and Prediction Using Machine Learning Models. SN Computer Science, 2022, 3, 79.	3.6	7
54	Remote Health Support for a Person with Probable High Risk of COVID-19 Under Machine Learning Framework. Studies in Autonomic, Data-driven and Industrial Computing, 2022, , 225-229.	0.5	0
55	A deep learning approach for predicting severity of COVID-19 patients using a parsimonious set of laboratory markers. IScience, 2021, 24, 103523.	4.1	15
56	Early Stage Identification of COVID-19 Patients in Mexico Using Machine Learning: A Case Study for the Tijuana General Hospital. Information (Switzerland), 2021, 12, 490.	2.9	2
57	Potential applications and performance of machine learning techniques and algorithms in clinical practice: A systematic review. International Journal of Medical Informatics, 2022, 159, 104679.	3.3	40
58	Radiomics applied to pulmonary infection: A review. Radiology of Infectious Diseases, 2021, 8, 77.	0.0	0
59	Gulf Area COVID-19 Cases Prediction Using Deep Learning. Lecture Notes in Networks and Systems, 2022, , 521-530.	0.7	1
60	Machine Learning Techniques for Extracting Relevant Features from Clinical Data for COVID-19 Mortality Prediction. , 2021, , .		0
62	A new COVID-19 intubation prediction strategy using an intelligent feature selection and K-NN method. Informatics in Medicine Unlocked, 2022, 28, 100825.	3.4	14
63	Comparing machine learning algorithms for predicting COVID-19 mortality. BMC Medical Informatics and Decision Making, 2022, 22, 2.	3.0	58
64	A Review of the Machine Learning Algorithms for Covid-19 Case Analysis. IEEE Transactions on Artificial Intelligence, 2023, 4, 44-59.	4.7	27
65	Data Science Trends Relevant to Nursing Practice: A Rapid Review of the 2020 Literature. Applied Clinical Informatics, 2022, 13, 161-179.	1.7	2
66	Comparison of Machine Learning Tools for the Prediction of ICU Admission in COVID-19 Hospitalized Patients. Shiraz E Medical Journal, 2022, In Press, .	0.3	1

#	Article	IF	CITATIONS
67	Utilization of Machine Learning Techniques for Prediction of COVID-19 Epidemic. Lecture Notes in Electrical Engineering, 2022, , 735-747.	0.4	0
68	Using decision tree algorithms for estimating ICU admission of COVID-19 patients. Informatics in Medicine Unlocked, 2022, 30, 100919.	3.4	8
70	Clinical and laboratory predictors of poor outcome in COVID-19 patients. Epidemiology and Infectious Diseases (Russian Journal), 2022, 27, 5-14.	0.1	1
71	A machine learning model for predicting deterioration of COVID-19 inpatients. Scientific Reports, 2022, 12, 2630.	3.3	21
72	Comparison of Two Statistical Models for Predicting Mortality in COVID-19 Patients in Iran. Shiraz E Medical Journal, 2022, 23, .	0.3	5
73	Predicting the Need for Intubation among COVID-19 Patients Using Machine Learning Algorithms: A Single-Center Study. Medical Journal of the Islamic Republic of Iran, 0, , .	0.9	1
74	Application of Machine Learning to Study the Association between Environmental Factors and COVID-19 Cases in Mississippi, USA. Mathematics, 2022, 10, 850.	2.2	0
75	Biserial targeted feature projection based radial kernel regressive deep belief neural learning for covid-19 prediction. Soft Computing, 2022, , 1-12.	3.6	0
76	Possibilities of information systems for prediction of outcomes of new coronavirus infection COVID-19. Meditsinskiy Sovet, 2022, , 42-50.	0.5	0
77	Decoding clinical biomarker space of COVID-19: Exploring matrix factorization-based feature selection methods. Computers in Biology and Medicine, 2022, 146, 105426.	7.0	45
78	Machine learning model from a Spanish cohort for prediction of SARS-COV-2 mortality risk and critical patients. Scientific Reports, 2022, 12, 5723.	3.3	12
79	Artificial intelligence for forecasting and diagnosing COVID-19 pandemic: A focused review. Artificial Intelligence in Medicine, 2022, 128, 102286.	6.5	53
80	COVID-19 Infection Detection Using Machine Learning. , 2021, , .		2
81	A Multimodal Approach for the Risk Prediction of Intensive Care and Mortality in Patients with COVID-19. Diagnostics, 2022, 12, 56.	2.6	5
82	MFDNN: multi-channel feature deep neural network algorithm to identify COVID19 chest X-ray images. Health Information Science and Systems, 2022, 10, 4.	5.2	9
83	The medical and societal impact of big data analytics and artificial intelligence applications in combating pandemics: A review focused on Covid-19. Social Science and Medicine, 2022, 301, 114973.	3.8	13
85	When Patients Recover From COVID-19: Data-Driven Insights From Wearable Technologies. Frontiers in Big Data, 2022, 5, 801998.	2.9	0
86	Smart Diagnostics of COVID-19 With Data-Driven Approaches. Advances in Data Mining and Database Management Book Series, 2022, , 199-231.	0.5	Ο

#	Article	IF	CITATIONS
87	Statistical analysis of blood characteristics of COVID-19 patients and their survival or death prediction using machine learning algorithms. Neural Computing and Applications, 2022, 34, 14729-14743.	5.6	3
88	Deep Spatiotemporal Model for COVID-19 Forecasting. Sensors, 2022, 22, 3519.	3.8	7
89	LHSPred: A web based application for predicting lung health severity. Biomedical Signal Processing and Control, 2022, 77, 103745.	5.7	2
90	â€~Exploring socioeconomic status as a global determinant of COVID-19 prevalence, using statistical, exploratory data analytic, and supervised machine learning techniques.' (Preprint). JMIR Formative Research, 0, , .	1.4	2
91	ISW-LM: An intensive symptom weight learning mechanism for early COVID-19 diagnosis. Computers in Biology and Medicine, 2022, 146, 105615.	7.0	6
92	Design of an artificial neural network to predict mortality among COVID-19 patients. Informatics in Medicine Unlocked, 2022, 31, 100983.	3.4	12
93	Diagnosis and prognosis of COVID-19 employing analysis of patients' plasma and serum via LC-MS and machine learning. Computers in Biology and Medicine, 2022, 146, 105659.	7.0	12
94	Weather Conditions and COVID-19 Cases: Insights from the GCC Countries. Intelligent Systems With Applications, 2022, , 200093.	3.0	3
95	Early Oxygen Treatment Measurements Can Predict COVID-19 Mortality: A Preliminary Study. Healthcare (Switzerland), 2022, 10, 1146.	2.0	0
96	Rule Extraction for Screening of COVID-19 Disease Using Granular Computing Approach. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-10.	1.3	2
98	Machine Learning Approaches to Analyze MALDI-TOF Mass Spectrometry Protein Profiles. Methods in Molecular Biology, 2022, , 375-394.	0.9	1
99	Predicting Change in Emotion through Ordinal Patterns and Simple Symbolic Expressions. Mathematics, 2022, 10, 2253.	2.2	5
100	Analyzing the research trends of COVID-19 using topic modeling approach. Journal of Modelling in Management, 2023, 18, 1204-1227.	1.9	4
101	Review of ML techniques for analyzing Novel Corona Virus. , 2022, , .		0
102	Identifying the High-Risk Population for COVID-19 Transmission in Hong Kong Leveraging Explainable Machine Learning. Healthcare (Switzerland), 2022, 10, 1624.	2.0	1
103	A comparison of machine learning algorithms in predicting COVID-19 prognostics. Internal and Emergency Medicine, 2023, 18, 229-239.	2.0	15
104	Machine learning techniques for CT imaging diagnosis of novel coronavirus pneumonia: a review. Neural Computing and Applications, 2024, 36, 181-199.	5.6	4
105	Empirical Analysis of Machine Learning and Deep Learning Techniques for COVID-19 Detection Using Chest X-rays. Lecture Notes on Data Engineering and Communications Technologies, 2022, , 399-408.	0.7	4

#	Article	IF	CITATIONS
106	Estimating the Category of Districts in a State Based on COVID Test Positivity Rate (TPR): A Study Using Supervised Machine Learning Approach. Lecture Notes in Networks and Systems, 2022, , 469-478.	0.7	2
107	Risk assessment in COVID-19 patients: A multiclass classification approach. Informatics in Medicine Unlocked, 2022, 32, 101023.	3.4	0
108	A Review on the Detection of the Post COVID-19 Symptoms for Long Term Diseased Patients using Machine Learning Algorithms. Journal of Physics: Conference Series, 2022, 2327, 012073.	0.4	0
109	Prediction of hospital mortality in intensive care unit patients from clinical and laboratory data: A machine learning approach. World Journal of Critical Care Medicine, 2022, 11, 317-329.	1.8	4
111	Towards Machine Learning Algorithms in Predicting the Clinical Evolution of Patients Diagnosed with COVID-19. Applied Sciences (Switzerland), 2022, 12, 8939.	2.5	6
113	Artificial intelligence-based model for COVID-19 prognosis incorporating chest radiographs and clinical data; a retrospective model development and validation study. British Journal of Radiology, 2022, 95, .	2.2	2
114	Violation of expectations is correlated with satisfaction following hip arthroscopy. Knee Surgery, Sports Traumatology, Arthroscopy, 2023, 31, 2023-2029.	4.2	1
115	Neural-Symbolic Ensemble Learning for early-stage prediction of critical state of Covid-19 patients. Medical and Biological Engineering and Computing, 2022, 60, 3461-3474.	2.8	2
116	Direct Detection of Glycated Human Serum Albumin and Hyperglycosylated IgG3 in Serum, by MALDI-ToF Mass Spectrometry, as a Predictor of COVID-19 Severity. Diagnostics, 2022, 12, 2521.	2.6	9
117	Predictive models for COVID-19 detection using routine blood tests and machine learning. Heliyon, 2022, 8, e11185.	3.2	7
118	RetainEXT: Enhancing Rare Event Detection and Improving Interpretability of Health Records using Temporal Neural Networks. , 2022, , .		1
119	"What is Your Envisioned Future?": Toward Human-Al Enrichment in Data Work of Asthma Care. Proceedings of the ACM on Human-Computer Interaction, 2022, 6, 1-28.	3.3	4
120	COVID-19 machine learning model predicts outcomes in older patients from various European countries, between pandemic waves, and in a cohort of Asian, African, and American patients. , 2022, 1, e0000136.		4
121	Prognostic Model of COVID-19 Severity and Survival among Hospitalized Patients Using Machine Learning Techniques. Diagnostics, 2022, 12, 2728.	2.6	2
122	A Catalogue of Machine Learning Algorithms for Healthcare Risk Predictions. Sensors, 2022, 22, 8615.	3.8	9
123	Assessing Hospitalization forÂSARS-CoV-2 Confirmed Cases byÂaÂCross-Entropy Weighted Ensemble Classifier. Springer Proceedings in Mathematics and Statistics, 2022, , 65-80.	0.2	0
124	COVID-19 Data Analysis and Appropriate Vaccine Prediction using Machine Learning. , 2022, , .		4
126	Social Media Mining and Analysis to support authorities in COVID-19 pandemic preparedness. , 2022, , .		0

#	Article	IF	CITATIONS
128	Machine learning methods and approaches for predicting Covid19. AIP Conference Proceedings, 2023, , .	0.4	0
129	Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study. Journal of Business Research, 2023, 160, 113806.	10.2	6
130	Utilizing CNN-LSTM techniques for the enhancement of medical systems. AEJ - Alexandria Engineering Journal, 2023, 72, 323-338.	6.4	6
131	Predicting intubation risk among COVID-19 hospitalized patients using artificial neural networks. Journal of Education and Health Promotion, 2023, 12, 16.	0.6	2
132	SARS-CoV-2 Diagnosis Using Transcriptome Data: A Machine Learning Approach. SN Computer Science, 2023, 4, .	3.6	5
133	Artificial Intelligence Functionalities During the COVID-19 Pandemic. Disaster Medicine and Public Health Preparedness, 2023, 17, .	1.3	2
134	Supervised Machine Learning Strategy for detection of covid19 patients. , 2023, , .		0
135	Artificial intelligence in precision medicine. , 2023, , 531-569.		1
136	Accurate Machine Learning Algorithm for Monkey Pox Based on Covid-19. , 2023, , .		0
137	Prognostic significance of chest CT severity score in mortality prediction of COVID-19 patients, a machine learning study. Egyptian Journal of Radiology and Nuclear Medicine, 2023, 54, .	0.6	2
138	Making the Improbable Possible: Generalizing Models Designed for a Syndrome-Based, Heterogeneous Patient Landscape. Critical Care Clinics, 2023, , .	2.6	0
139	A machine learning and explainable artificial intelligence triage-prediction system for COVID-19. Decision Analytics Journal, 2023, 7, 100246.	4.8	5
140	Predicting the negative conversion time of nonsevere COVIDâ€19 patients using machine learning methods. Journal of Medical Virology, 2023, 95, .	5.0	1
141	Spatiotemporal transmission of infectious particles in environment: A case study of Covid-19. Chemosphere, 2023, 335, 139065.	8.2	1
142	The role of social media in the battle against COVID-19. , 2023, , 105-124.		1
143	Use of Machine Learning Models for Analyzing the Accuracy of Predicting the Cancerous Diseases. Advances in Intelligent Systems and Computing, 2023, , 169-180.	0.6	0
144	Prediction of mortality risk and duration of hospitalization of COVID-19 patients with chronic comorbidities based on machine learning algorithms. Digital Health, 2023, 9, 205520762311704.	1.8	2
145	Deep learning for deterioration prediction of COVID-19 patients based on time-series of three vital signs. Scientific Reports, 2023, 13, .	3.3	1

#	Article	IF	CITATIONS
146	Improving prediction of COVID-19 mortality using machine learning in the Spanish SEMI-COVID-19 registry. Internal and Emergency Medicine, 0, , .	2.0	2
147	Multifactor data analysis to forecast an individual's severity over novel COVIDâ€19 pandemic using extreme gradient boosting and random forest classifier algorithms. Engineering Reports, 2023, 5, .	1.7	1
148	Predicting Mortality in Hospitalized COVID-19 Patients in Zambia: An Application of Machine Learning. Global Health, Epidemiology and Genomics, 2023, 2023, 1-19.	0.8	0
149	COVID 19 post-vaccination adverse effects prediction with supervised machine learning models. , 2023, , .		1
150	Rapid Triage of Children with Suspected COVID-19 Using Laboratory-Based Machine-Learning Algorithms. Viruses, 2023, 15, 1522.	3.3	2
151	Comparing machine learning algorithms to predict COVID†19 mortality using a dataset including chest computed tomography severity score data. Scientific Reports, 2023, 13, .	3.3	1
152	Money talks, happiness walks: dissecting the secrets of global bliss with machine learning. Journal of Chinese Economic and Business Studies, 2024, 22, 111-158.	2.8	2
153	Designing Expert-Augmented Clinical Decision Support Systems to Predict Mortality Risk in ICUs. KI - Kunstliche Intelligenz, 0, , .	3.2	0
154	Unveiling herd behavior in financial markets. Journal of Statistical Mechanics: Theory and Experiment, 2023, 2023, 083407.	2.3	2
155	Predicting intensive care need for COVID-19 patients using deep learning on chest radiography. Journal of Medical Imaging, 2023, 10, .	1.5	0
156	Machine learning: Predicting hospital length of stay in patients admitted for lupus flares. Lupus, 2023, 32, 1418-1429.	1.6	2
157	Big data in cardiovascular population health research. , 2024, , 261-264.		0
158	Using Traffic Sensors in Smart Cities to Enhance a Spatio-Temporal Deep Learning Model for COVID-19 Forecasting. Mathematics, 2023, 11, 3904.	2.2	0
160	Multidimensional dynamic prediction model for hospitalized patients with the omicron variant in China. Infectious Disease Modelling, 2023, 8, 1097-1107.	1.9	0
161	Analyzing distributed Spark MLlib regression algorithms for accuracy, execution efficiency and scalability using best subset selection approach. Multimedia Tools and Applications, 0, , .	3.9	0
162	Early and fair COVID-19 outcome risk assessment using robust feature selection. Scientific Reports, 2023, 13, .	3.3	0
163	Reproduction number projection for the COVID-19 pandemic. , 2023, 2023, .		0
164	Severity prediction in COVID-19 patients using clinical markers and explainable artificial intelligence: A stacked ensemble machine learning approach. Intelligent Decision Technologies, 2023, 17, 959-982.	0.9	2

#	Article	IF	CITATIONS
165	Toward artificial intelligence (AI) applications in the determination of COVID-19 infection severity: considering AI as a disease control strategy in future pandemics. , 2023, 15, 93-111.		4
166	Developing an interpretable machine learning model for predicting COVID-19 patients deteriorating prior to intensive care unit admission using laboratory markers. Heliyon, 2023, 9, e22878.	3.2	0
167	Machine and deep learning methods for clinical outcome prediction based on physiological data of COVID-19 patients: a scoping review. International Journal of Medical Informatics, 2024, 182, 105308.	3.3	1
168	Machine Learning-Based Prediction of COVID-19 Prognosis Using Clinical and Hematologic Data. Cureus, 2023, , .	0.5	0
169	Prediction in the Context of Viral Pandemics: A Special Emphasis on SARS-CoV-2. Handbook of Environmental Chemistry, 2023, , .	0.4	0
170	Exploring the opportunities and challenges of implementing artificial intelligence in healthcare: A systematic literature review. Urologic Oncology: Seminars and Original Investigations, 2024, 42, 48-56.	1.6	0
171	Hybrid grey assisted whale optimization based machine learning for the COVID-19 prediction. Computer Methods in Biomechanics and Biomedical Engineering, 0, , 1-10.	1.6	0
172	Protective effects of IL18-105GÂ>ÂA and IL18-137CÂ>ÂG genetic variants on severity of COVID-19. Cytokine, 2024, 174, 156476.	3.2	0
173	MachineÂLearningÂModelsÂforÂEarlyÂPredictionÂofÂCOVID-19ÂInfectionsÂBasedÂonÂClinicalÂSigns. SN Compu Science, 2024, 5, .	iter 3.6	0
174	Convolutional Neural Network Based Identification of Respiratory Disease (CNN-IRD). , 2023, , .		0
175	Clinical Decision Support System to Managing Beds in ICU. IFMBE Proceedings, 2024, , 67-77.	0.3	0
176	Video Surveillance-Based Intrusion Detection System in Edge Cloud Environment. Lecture Notes in Electrical Engineering, 2024, , 705-714.	0.4	0
177	Is it possible to estimate the number of patients with COVID-19 admitted to intensive care units and general wards using clinical and telemedicine data?. Einstein (Sao Paulo, Brazil), 2024, 22, .	0.7	0
178	Automated and Optimised Machine Learning Algorithms for Healthcare Informatics. Studies in Computational Intelligence, 2024, , 465-477.	0.9	0