Chemical Strategies to Boost Cancer Vaccines

Chemical Reviews 120, 11420-11478 DOI: 10.1021/acs.chemrev.9b00833

Citation Report

#	Article	IF	CITATIONS
1	Pam ₃ CSK ₄ -CDG ^{SF} Augments Antitumor Immunotherapy by Synergistically Activating TLR1/2 and STING. Bioconjugate Chemistry, 2020, 31, 2499-2503.	1.8	14
2	A novel STING agonist for cancer immunotherapy and a SARS-CoV-2 vaccine adjuvant. Chemical Communications, 2021, 57, 504-507.	2.2	36
3	Synthesis and biological evaluation of a lipopeptide-based methamphetamine vaccine. Chinese Chemical Letters, 2021, 32, 1575-1579.	4.8	5
4	Nanomaterial-based delivery vehicles for therapeutic cancer vaccine development. Cancer Biology and Medicine, 2021, 18, 352-371.	1.4	22
5	Full synthesis and bioactivity evaluation of Tn-RC-529 derivative conjugates as self-adjuvanting cancer vaccines. Chinese Chemical Letters, 2021, 32, 3011-3014.	4.8	7
6	Identification of tumor antigens and immune subtypes of cholangiocarcinoma for mRNA vaccine development. Molecular Cancer, 2021, 20, 50.	7.9	83
7	Injectable Adhesive Hydrogel as Photothermalâ€Derived Antigen Reservoir for Enhanced Antiâ€Tumor Immunity. Advanced Functional Materials, 2021, 31, 2010587.	7.8	54
8	Development of α-Selective Glycosylation for the Synthesis of Deoxyfluorinated T _N Antigen Analogues. Journal of Organic Chemistry, 2021, 86, 5073-5090.	1.7	6
9	Recent Advances in Engineered Materials for Immunotherapyâ€Involved Combination Cancer Therapy. Advanced Materials, 2021, 33, e2007630.	11.1	112
10	Black phosphorous nanosheet: A novel immune-potentiating nanoadjuvant for near-infrared-improved immunotherapy. Biomaterials, 2021, 273, 120788.	5.7	40
11	Alum colloid encapsulated inside β-glucan particles enhance humoral and CTL immune responses of MUC1 vaccine. Chinese Chemical Letters, 2021, 32, 1963-1966.	4.8	8
12	Structure-based Design of Anti-cancer Vaccines: The Significance of Antigen Presentation to Boost the Immune Response. Current Medicinal Chemistry, 2022, 29, 1258-1270.	1.2	7
13	Synthesis, properties, and biomedical applications of alginate methacrylate (ALMA)-based hydrogels: Current advances and challenges. Applied Materials Today, 2021, 24, 101150.	2.3	29
15	Enhancing therapeutic performance of personalized cancer vaccine via delivery vectors. Advanced Drug Delivery Reviews, 2021, 177, 113927.	6.6	34
16	Design, synthesis, and initial immunological evaluation of glycoconjugates based on saponin adjuvants and the Tn antigen. Chemical Communications, 2021, 57, 11382-11385.	2.2	5
17	Bioinspired and Biomimetic Delivery Platforms for Cancer Vaccines. Advanced Materials, 2022, 34, e2103790.	11.1	81
18	The Development of Vaccines from Synthetic Tumorâ€Associated Mucin Glycopeptides and their Glycosylationâ€Đependent Immune Response. Chemical Record, 2021, 21, 3313-3331.	2.9	13
19	Revealing Functional Significance of Interleukinâ€2 Glycoproteoforms Enabled by Expressed Serine Ligation. Chinese Journal of Chemistry, 2022, 40, 787-793.	2.6	13

#	Article	IF	CITATIONS
20	RBD conjugate vaccine with a built-in TLR1/2 agonist is highly immunogenic against SARS-CoV-2 and variants of concern. Chemical Communications, 2022, 58, 2120-2123.	2.2	17
21	Overcoming STING Agonists Barriers: Peptide, Protein, and Biomembraneâ€based Biocompatible Delivery Strategies. Chemistry - an Asian Journal, 2022, 17, .	1.7	4
22	Self-Adjuvanting Lipoprotein Conjugate αGalCer-RBD Induces Potent Immunity against SARS-CoV-2 and its Variants of Concern. Journal of Medicinal Chemistry, 2022, 65, 2558-2570.	2.9	23
24	A chitosan-mediated inhalable nanovaccine against SARS-CoV-2. Nano Research, 2022, 15, 4191-4200.	5.8	28
25	MUC1 Specific Immune Responses Enhanced by Coadministration of Liposomal DDA/MPLA and Lipoglycopeptide. Frontiers in Chemistry, 2022, 10, 814880.	1.8	6
26	Peptides for Vaccine Development. ACS Applied Bio Materials, 2022, 5, 905-944.	2.3	26
27	Hyperthermia based individual in situ recombinant vaccine enhances lymph nodes drainage for de novo antitumor immunity. Acta Pharmaceutica Sinica B, 2022, 12, 3398-3409.	5.7	6
28	Doxorubicin and CpG loaded liposomal spherical nucleic acid for enhanced Cancer treatment. Journal of Nanobiotechnology, 2022, 20, 140.	4.2	10
29	Alum Adjuvant and Built-in TLR7 Agonist Synergistically Enhance Anti-MUC1 Immune Responses for Cancer Vaccine. Frontiers in Immunology, 2022, 13, 857779.	2.2	12
30	Synthesis of benzisothiazoles by a three-component reaction using elemental sulfur and ammonium as heteroatom components under transition metal-free conditions. Green Synthesis and Catalysis, 2022, 3, 168-174.	3.7	8
31	Small Molecule Alkoxy Oriented Selectiveness on Human Carbonic Anhydrase II and IX Inhibition. ChemMedChem, 2022, 17, .	1.6	3
32	Physical and chemical advances of synthetic delivery vehicles to enhance mRNA vaccine efficacy. Journal of Controlled Release, 2022, 345, 405-416.	4.8	5
33	A Review on Synthetic and Pharmacological Potential of Compounds Isolated from Garcinia mangostana Linn. Phytomedicine Plus, 2022, 2, 100253.	0.9	4
34	STING and TLR7/8 agonists-based nanovaccines for synergistic antitumor immune activation. Nano Research, 2022, 15, 6328-6339.	5.8	13
35	The Shape of Nanostructures Encodes Immunomodulation of Carbohydrate Antigen and Vaccine Development. ACS Chemical Biology, 2022, 17, 1122-1130.	1.6	13
36	Novel Oxime-Derivatized Synthetic Triterpene Glycosides as Potent Saponin Vaccine Adjuvants. Frontiers in Immunology, 2022, 13, .	2.2	5
37	Synthetic vaccines targeting Mincle through conjugation of trehalose dibehenate. Chemical Communications, 2022, 58, 6890-6893.	2.2	3
38	Fully synthetic Tn-based three-component cancer vaccine using covalently linked TLR4 ligand MPLA and iNKT cell agonist KRN-7000 as built-in adjuvant effectively protects mice from tumor development. Acta Pharmaceutica Sinica B, 2022, 12, 4432-4445.	5.7	8

CITATION REPORT

		CITATION REPORT	
#	Article	IF	CITATIONS
39	Recent Progress on Therapeutic Vaccines for Breast Cancer. Frontiers in Oncology, 0, 12, .	1.3	6
40	Responsive Multivesicular Polymeric Nanovaccines that Codeliver STING Agonists and Neoantigens for Combination Tumor Immunotherapy. Advanced Science, 2022, 9, .	5.6	25
41	Liposome-Based Carbohydrate Vaccine for Simultaneously Eliciting Humoral and Cellular Antitumo Immunity. ACS Macro Letters, 2022, 11, 975-981.	r 2.3	2
43	Colorectal cancer vaccines: The current scenario and future prospects. Frontiers in Immunology, 0, 13, .	2.2	21
44	Protecting group principles suited to late stage functionalization and global deprotection in oligosaccharide synthesis. Carbohydrate Research, 2022, 521, 108644.	1.1	9
45	Autologous whole-cell cancer vaccination: Cryogenic silicified vaccines. Matter, 2022, 5, 2434-243	6. 5.0	1
46	New opportunities for immunomodulation of the tumour microenvironment using chemical tools. Chemical Society Reviews, 2022, 51, 7944-7970.	18.7	15
47	Rational Design of T-Cell- and B-Cell-Based Therapeutic Cancer Vaccines. Accounts of Chemical Research, 2022, 55, 2660-2671.	7.6	12
48	Personalized pancreatic cancer therapy: from the perspective of mRNA vaccine. Military Medical Research, 2022, 9, .	1.9	13
49	Chemical and Synthetic Biology Approaches for Cancer Vaccine Development. Molecules, 2022, 27	7, 6933. 1.7	1
50	Polymeric microneedles for enhanced drug delivery in cancer therapy. , 2022, 142, 213151.		6
51	In situ generation of micrometer-sized tumor cell-derived vesicles as autologous cancer vaccines fo boosting systemic immune responses. Nature Communications, 2022, 13, .	or 5.8	28
52	Deep learning of protein sequence design of protein–protein interactions. Bioinformatics, 2023,	39,. 1.8	6
53	Nanomedicine embraces cancer radio-immunotherapy: mechanism, design, recent advances, and c translation. Chemical Society Reviews, 2023, 52, 47-96.	linical 18.7	19
54	Polymeric nanoparticle-based nanovaccines for cancer immunotherapy. Materials Horizons, 2023, 361-392.	10, 6.4	21
55	Instigation of the epoch of nanovaccines in cancer immunotherapy. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 2023, 15, .	: 3.3	2
56	Stereoselective Synthesis and Immunological Evaluation of Common Oâ€antigen of <i>P. mirabilis</i> <scp>OE</scp> and <i>P. vulgaris</i> <scp>TG103</scp> . Chinese Journal of Chemistr 2023, 41, 535-543.	у, 2.6	6
57	Nanovaccines for cancer immunotherapy: Current knowledge and future perspectives. Chinese Chemical Letters, 2023, 34, 108098.	4.8	6

~	_
	REDUBL
C11/1	

#	Article	IF	CITATIONS
58	Self-Adjuvanting Protein Vaccine Conjugated with a Novel Synthetic TLR4 Agonist on Virus-Like Liposome Induces Potent Immunity against SARS-CoV-2. Journal of Medicinal Chemistry, 2023, 66, 1467-1483.	2.9	3
59	Neoantigens: promising targets for cancer therapy. Signal Transduction and Targeted Therapy, 2023, 8,	7.1	112
60	From design to clinic: Engineered peptide nanomaterials for cancer immunotherapy. Frontiers in Chemistry, 0, 10, .	1.8	1
61	pH-Sensitive and Biodegradable Mn ₃ (PO ₄) ₂ ·3H ₂ O Nanoparticles as an Adjuvant of Protein-Based Bivalent COVID-19 Vaccine to Induce Potent and Broad-Spectrum Immunity. ACS Applied Materials & Interfaces, 2023, 15, 8914-8926.	4.0	2
62	Biomaterial-based platforms for modulating immune components against cancer and cancer stem cells. Acta Biomaterialia, 2023, 161, 1-36.	4.1	5
63	A Cascadeâ€Targeted Enzymeâ€Instructed Peptide Selfâ€Assembly Strategy for Cancer Immunotherapy through Boosting Immunogenic Cell Death. Small Methods, 2023, 7, .	4.6	6
64	Development of synthetic, self-adjuvanting, and self-assembling anticancer vaccines based on a minimal saponin adjuvant and the tumor-associated MUC1 antigen. Chemical Science, 2023, 14, 3501-3513.	3.7	2
65	Progress on the Synthesis and Activity of Cyclic Dinucleotides as Stimulator of Interferon Gene (STING) Agonists. Chinese Journal of Organic Chemistry, 2023, 43, 892.	0.6	0
66	Immunotherapeutic Hydrogel with Photothermal Induced Immunogenic Cell Death and STING Activation for Post‧urgical Treatment. Advanced Functional Materials, 2023, 33, .	7.8	7
73	Regio- and Stereoselective Organocatalyzed Relay Glycosylations To Synthesize 2-Amino-2-deoxy-1,3-dithioglycosides. Organic Letters, 2023, 25, 3611-3617.	2.4	6
85	Revolutionizing cancer treatment: comprehensive insights into immunotherapeutic strategies. , 2024, 41, .		0
94	Rational design of adjuvants boosts cancer vaccines. Progress in Molecular Biology and Translational Science, 2024, , .	0.9	Ο