Type I Interferon Susceptibility Distinguishes SARS-Co

Journal of Virology 94, DOI: 10.1128/jvi.01410-20

Citation Report

#	Article	IF	CITATIONS
1	Evasion of Type I Interferon by SARS-CoV-2. Cell Reports, 2020, 33, 108234.	6.4	742
2	SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses. Cell, 2020, 183, 1325-1339.e21.	28.9	442
3	Exploring the role of triazole functionalized heteroatom co-doped carbon quantum dots against human coronaviruses. Nano Today, 2020, 35, 101001.	11.9	52
4	Immunology of COVIDâ€19 and diseaseâ€modifying therapies: the good, the bad and the unknown. European Journal of Neurology, 2020, 28, 3503-3516.	3.3	20
5	Pathophysiology and Potential Therapeutic Candidates for COVID-19: A Poorly Understood Arena. Frontiers in Pharmacology, 2020, 11, 585888.	3.5	11
6	Lessons for COVID-19 Immunity from Other Coronavirus Infections. Immunity, 2020, 53, 248-263.	14.3	281
7	Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sciences, 2020, 257, 118102.	4.3	248
8	Emerging pharmacological therapies for ARDS: COVID-19 and beyond. Intensive Care Medicine, 2020, 46, 2265-2283.	8.2	52
9	Direct Exposure to SARS-CoV-2 and Cigarette Smoke Increases Infection Severity and Alters the Stem Cell-Derived Airway Repair Response. Cell Stem Cell, 2020, 27, 869-875.e4.	11.1	74
10	COVID-19: The Emerging Immunopathological Determinants for Recovery or Death. Frontiers in Microbiology, 2020, 11, 588409.	3.5	19
11	The immune system as a target for therapy of SARS-CoV-2: A systematic review of the current immunotherapies for COVID-19. Life Sciences, 2020, 258, 118185.	4.3	70
12	The potential similarities of COVID-19 and autoimmune disease pathogenesis and therapeutic options: new insights approach. Clinical Rheumatology, 2020, 39, 3223-3235.	2.2	29
13	COVID-19: Infection or Autoimmunity. Frontiers in Immunology, 2020, 11, 2055.	4.8	41
14	Antagonism of Type I Interferon by Severe Acute Respiratory Syndrome Coronavirus 2. Journal of Interferon and Cytokine Research, 2020, 40, 543-548.	1.2	31
15	In-line treatments and clinical initiatives to fight against COVID-19 outbreak. Respiratory Medicine, 2022, 191, 106192.	2.9	15
16	Potential role of interferons in treating COVID-19 patients. International Immunopharmacology, 2021, 90, 107171.	3.8	55
17	Proteomics in the COVIDâ€19 Battlefield: First Semester Checkâ€Up. Proteomics, 2021, 21, 2000198.	2.2	18
18	Randomized controlled open label trial on the use of favipiravir combined with inhaled interferon beta-1b in hospitalized patients with moderate to severe COVID-19 pneumonia. International Journal of Infectious Diseases, 2021, 102, 538-543.	3.3	72

ITATION REDOD

#	Article	IF	CITATIONS
19	Azithromycin in viral infections. Reviews in Medical Virology, 2021, 31, e2163.	8.3	89
20	Single cell resolution of SARS-CoV-2 tropism, antiviral responses, and susceptibility to therapies in primary human airway epithelium. PLoS Pathogens, 2021, 17, e1009292.	4.7	76
21	Therapeutics and Vaccines: Strengthening Our Fight Against the Global Pandemic COVID-19. Current Microbiology, 2021, 78, 435-448.	2.2	9
22	The roles of signaling pathways in SARS-CoV-2 infection; lessons learned from SARS-CoV and MERS-CoV. Archives of Virology, 2021, 166, 675-696.	2.1	66
23	A single-cell mathematical model of SARS-CoV-2 induced pyroptosis and the effects of anti-inflammatory intervention. AIMS Mathematics, 2021, 6, 6050-6086.	1.6	2
24	Can SARS-CoV-2 Virus Use Multiple Receptors to Enter Host Cells?. International Journal of Molecular Sciences, 2021, 22, 992.	4.1	106
26	Severe Acute Respiratory Syndrome Coronavirus 2: Manifestations of Disease and Approaches to Treatment and Prevention in Humans. Comparative Medicine, 2021, 71, 342-358.	1.0	3
27	Innate immune evasion mediated by picornaviral 3C protease: Possible lessons for coronaviral 3Câ€like protease?. Reviews in Medical Virology, 2021, 31, 1-22.	8.3	18
28	Roles of Type I and III Interferons in COVID-19. Yonsei Medical Journal, 2021, 62, 381.	2.2	17
29	Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free Fatty Acid Pocket of the SARS oVâ€⊋ Spike Protein**. Angewandte Chemie - International Edition, 2021, 60, 7098-7110.	13.8	77
30	Coinfection with influenza A virus enhances SARS-CoV-2 infectivity. Cell Research, 2021, 31, 395-403.	12.0	164
31	COVID-19: Molecular and Cellular Response. Frontiers in Cellular and Infection Microbiology, 2021, 11, 563085.	3.9	31
33	Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free Fatty Acid Pocket of the SARSâ€CoVâ€⊋ Spike Protein**. Angewandte Chemie, 2021, 133, 7174-7186.	2.0	6
34	Differentially conserved amino acid positions may reflect differences in SARS-CoV-2 and SARS-CoV behaviour. Bioinformatics, 2021, 37, 2282-2288.	4.1	9
35	A Comprehensive Review of Viral Characteristics, Transmission, Pathophysiology, Immune Response, and Management of SARS-CoV-2 and COVID-19 as a Basis for Controlling the Pandemic. Frontiers in Immunology, 2021, 12, 631139.	4.8	117
36	Chemokine Regulation During Epidemic Coronavirus Infection. Frontiers in Pharmacology, 2020, 11, 600369.	3.5	15
39	SARS-CoV-2 Triggers an MDA-5-Dependent Interferon Response Which Is Unable To Control Replication in Lung Epithelial Cells. Journal of Virology, 2021, 95, .	3.4	168
40	Systemic diseases and the cornea. Experimental Eye Research, 2021, 204, 108455.	2.6	46

#	Article	IF	CITATIONS
41	Inhibition of coronavirus infection by a synthetic STING agonist in primary human airway system. Antiviral Research, 2021, 187, 105015.	4.1	33
42	Mesenchymal Stem Cells in the Treatment of New Coronavirus Pandemic: A Novel Promising Therapeutic Approach. Advanced Pharmaceutical Bulletin, 2021, , .	1.4	5
43	Ribosome-Profiling Reveals Restricted Post Transcriptional Expression of Antiviral Cytokines and Transcription Factors during SARS-CoV-2 Infection. International Journal of Molecular Sciences, 2021, 22, 3392.	4.1	22
44	A novel cell culture system modeling the SARS-CoV-2 life cycle. PLoS Pathogens, 2021, 17, e1009439.	4.7	102
45	A review of potential suggested drugs for coronavirus disease (COVID-19) treatment. European Journal of Pharmacology, 2021, 895, 173890.	3.5	86
47	Drugs used in the treatment of multiple sclerosis during COVID-19 pandemic: a critical viewpoint. Current Neuropharmacology, 2021, 19, .	2.9	5
48	An Overview of Current Knowledge of Deadly CoVs and Their Interface with Innate Immunity. Viruses, 2021, 13, 560.	3.3	15
49	Transcriptome network analyses in human coronavirus infections suggest a rational use of immunomodulatory drugs for COVID-19 therapy. Genomics, 2021, 113, 564-575.	2.9	12
50	Transnasal endoscopic skull base surgery in the COVID-19 era: Recommendations for increasing the safety of the method. Advances in Medical Sciences, 2021, 66, 221-230.	2.1	10
51	Endogenously Produced SARS-CoV-2 Specific IgG Antibodies May Have a Limited Impact on Clearing Nasal Shedding of Virus during Primary Infection in Humans. Viruses, 2021, 13, 516.	3.3	5
54	Disparate temperature-dependent virus–host dynamics for SARS-CoV-2 and SARS-CoV in the human respiratory epithelium. PLoS Biology, 2021, 19, e3001158.	5.6	79
55	Inflammation, immunity and potential target therapy of SARS-COV-2: A total scale analysis review. Food and Chemical Toxicology, 2021, 150, 112087.	3.6	17
56	Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19. Nature Medicine, 2021, 27, 668-676.	30.7	120
57	The Polybasic Cleavage Site in SARS-CoV-2 Spike Modulates Viral Sensitivity to Type I Interferon and IFITM2. Journal of Virology, 2021, 95, .	3.4	121
58	Efficacy and safety of pegylated interferon alfa-2b in moderate COVID-19: A phase II, randomized, controlled, open-label study. International Journal of Infectious Diseases, 2021, 105, 516-521.	3.3	54
59	Type I and III IFN-mediated antiviral actions counteracted by SARS-CoV-2 proteins and host inherited factors. Cytokine and Growth Factor Reviews, 2021, 58, 55-65.	7.2	11
60	Novel mutations in NSP-1 and PLPro of SARS-CoV-2 NIB-1 genome mount for effective therapeutics. Journal of Genetic Engineering and Biotechnology, 2021, 19, 52.	3.3	26
61	SARS-CoV-2 vaccines: a triumph of science and collaboration. JCI Insight, 2021, 6, .	5.0	72

#	Article	IF	CITATIONS
62	Disease-modifying therapies and SARS-CoV-2 vaccination in multiple sclerosis: an expert consensus. Journal of Neurology, 2021, 268, 3961-3968.	3.6	47
64	SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial-derived cells and cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	159
66	An open-label randomized controlled trial of the effect of lopinavir/ritonavir, lopinavir/ritonavir plus IFN-β-1a and hydroxychloroquine in hospitalized patients with COVID-19. Clinical Microbiology and Infection, 2021, 27, 1826-1837.	6.0	77
67	Experimental and natural evidence of SARS-CoV-2-infection-induced activation of type I interferon responses. IScience, 2021, 24, 102477.	4.1	49
68	Type I and III interferon responses in SARS-CoV-2 infection. Experimental and Molecular Medicine, 2021, 53, 750-760.	7.7	187
69	Pharmacological activation of STING blocks SARS-CoV-2 infection. Science Immunology, 2021, 6, .	11.9	123
70	Fat-Soluble Vitamins and the Current Global Pandemic of COVID-19: Evidence-Based Efficacy from Literature Review. Journal of Inflammation Research, 2021, Volume 14, 2091-2110.	3.5	14
71	Promising Immunotherapies against COVIDâ€19. Advanced Therapeutics, 2021, 4, 2100044.	3.2	4
72	SARSâ€CoVâ€2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIGâ€I/MDAâ€5–MAVS, TLR3–TRIF, and cGAS–STING signaling pathways. Journal of Medical Virology, 2021 5376-5389.	, 93)	153
74	Type-I interferon signatures in SARS-CoV-2 infected Huh7 cells. Cell Death Discovery, 2021, 7, 114.	4.7	23
75	Nasopharyngeal Type-I Interferon for Immediately Available Prophylaxis Against Emerging Respiratory Viral Infections. Frontiers in Immunology, 2021, 12, 660298.	4.8	8
77	A brief molecular insight of COVID-19: epidemiology, clinical manifestation, molecular mechanism, cellular tropism and immuno-pathogenesis. Molecular and Cellular Biochemistry, 2021, 476, 3987-4002.	3.1	6
78	Variants in ACE2; potential influences on virus infection and COVID-19 severity. Infection, Genetics and Evolution, 2021, 90, 104773.	2.3	72
81	SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms, 2021, 9, 1389.	3.6	4
82	I(nsp1)ecting SARS-CoV-2–ribosome interactions. Communications Biology, 2021, 4, 715.	4.4	29
83	Critical Determinants of Cytokine Storm and Type I Interferon Response in COVID-19 Pathogenesis. Clinical Microbiology Reviews, 2021, 34, .	13.6	141
85	A Hepatitis B Virus-Derived Peptide Can Inhibit Infection of Human Lung Cells with SARS-CoV-2 in a Type-1 Interferon-Dependent Manner. Viruses, 2021, 13, 1227.	3.3	3
86	Functional landscape of SARS-CoV-2 cellular restriction. Molecular Cell, 2021, 81, 2656-2668.e8.	9.7	137

#	Article	IF	CITATIONS
87	Conflicting and ambiguous names of overlapping ORFs in the SARS-CoV-2 genome: A homology-based resolution. Virology, 2021, 558, 145-151.	2.4	40
88	Dynamic innate immune response determines susceptibility to SARS-CoV-2 infection and early replication kinetics. Journal of Experimental Medicine, 2021, 218, .	8.5	139
89	SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon Expression in Primary Cells From Macaque Lung Bronchoalveolar Lavage. Frontiers in Immunology, 2021, 12, 658428.	4.8	30
90	Human Kidney Spheroids and Monolayers Provide Insights into SARS-CoV-2 Renal Interactions. Journal of the American Society of Nephrology: JASN, 2021, 32, 2242-2254.	6.1	24
91	SARS-CoV-2 Antiviral Therapy. Clinical Microbiology Reviews, 2021, 34, e0010921.	13.6	64
92	Impact of COVID-19 on patients with atopic dermatitis. Clinics in Dermatology, 2021, 39, 1083-1087.	1.6	7
93	IFN-β reduces NRP-1 expression on human cord blood monocytes and inhibits VEGF-induced chemotaxis. Cytokine, 2021, 143, 155519.	3.2	0
94	Long noncoding RNAs in respiratory viruses: A review. Reviews in Medical Virology, 2022, 32, e2275.	8.3	13
95	Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19. Cell Host and Microbe, 2021, 29, 1052-1062.	11.0	185
96	SARS-CoV-2 infection in the Syrian hamster model causes inflammation as well as type I interferon dysregulation in both respiratory and non-respiratory tissues including the heart and kidney. PLoS Pathogens, 2021, 17, e1009705.	4.7	60
98	Pharmacotherapy in Coronavirus Disease 2019 and Risk of Secondary Infections: A Single-Center Case Series and Narrative Review. , 2021, 3, e0492.		6
99	COVID-19 virtual patient cohort suggests immune mechanisms driving disease outcomes. PLoS Pathogens, 2021, 17, e1009753.	4.7	61
101	The Pathogenic Features of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Possible Mechanisms for Immune Evasion?. Frontiers in Immunology, 2021, 12, 693579.	4.8	2
102	Targeting liquid–liquid phase separation of SARS-CoV-2 nucleocapsid protein promotes innate antiviral immunity by elevating MAVS activity. Nature Cell Biology, 2021, 23, 718-732.	10.3	156
103	Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell. Cell Reports, 2021, 36, 109364.	6.4	109
104	Lack of active SARS-CoV-2 virus in a subset of PCR-positive COVID-19 congregate care patients. Journal of Clinical Virology, 2021, 141, 104879.	3.1	3
105	Endothelial Dysfunction, Inflammation, and Oxidative Stress in COVID-19—Mechanisms and Therapeutic Targets. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-15.	4.0	66
106	Intranasal type I interferon treatment is beneficial only when administered before clinical signs onset in the SARS-CoV-2 hamster model. PLoS Pathogens, 2021, 17, e1009427.	4.7	38

#	Article	IF	CITATIONS
107	SARSâ€CoVâ€2 pseudovirus infectivity and expression of viral entryâ€related factors ACE2, TMPRSS2, Kimâ€1, and NRPâ€1 in human cells from the respiratory, urinary, digestive, reproductive, and immune systems. Journal of Medical Virology, 2021, 93, 6671-6685.	5.0	26
109	Type I Interferons in COVID-19 Pathogenesis. Biology, 2021, 10, 829.	2.8	32
110	Interferon and Toll-Like Receptor 7 Response in COVID-19: Implications of Topical Imiquimod for Prophylaxis and Treatment. Dermatology, 2021, 237, 847-856.	2.1	5
111	Transcriptomic Signatures of Airway Epithelium Infected With SARS-CoV-2: A Balance Between Anti-infection and Virus Load. Frontiers in Cell and Developmental Biology, 2021, 9, 735307.	3.7	3
112	SARS-CoV-2 suppresses IFNβ production mediated by NSP1, 5, 6, 15, ORF6 and ORF7b but does not suppress the effects of added interferon. PLoS Pathogens, 2021, 17, e1009800.	4.7	74
113	A robust SARS-CoV-2 replication model in primary human epithelial cells at the air liquid interface to assess antiviral agents. Antiviral Research, 2021, 192, 105122.	4.1	47
114	Intracellular Life Cycle Kinetics of SARS-CoV-2 Predicted Using Mathematical Modelling. Viruses, 2021, 13, 1735.	3.3	15
115	Induction of interferon response by high viral loads at early stage infection may protect against severe outcomes in COVID-19 patients. Scientific Reports, 2021, 11, 15715.	3.3	15
116	Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. Nature Biotechnology, 2022, 40, 319-324.	17.5	229
118	The role of type I interferon in the treatment of COVIDâ€19. Journal of Medical Virology, 2022, 94, 63-81.	5.0	52
119	Multiple Sclerosis and SARS-CoV-2: Has the Interplay Started?. Frontiers in Immunology, 2021, 12, 755333.	4.8	33
120	Immunisation of ferrets and mice with recombinant SARS-CoV-2 spike protein formulated with Advax-SM adjuvant protects against COVID-19 infection. Vaccine, 2021, 39, 5940-5953.	3.8	44
121	Immunobiotic Lactobacilli Improve Resistance of Respiratory Epithelial Cells to SARS-CoV-2 Infection. Pathogens, 2021, 10, 1197.	2.8	11
122	Interferon β, an enhancer of the innate immune response against SARS-CoV-2 infection. Microbial Pathogenesis, 2021, 158, 105105.	2.9	6
123	Mechanisms of Antiviral Immune Evasion of SARS-CoV-2. Journal of Molecular Biology, 2022, 434, 167265.	4.2	72
124	Inhibition of IRGM establishes a robust antiviral immune state to restrict pathogenic viruses. EMBO Reports, 2021, 22, e52948.	4.5	17
125	The NF-κB Transcriptional Footprint Is Essential for SARS-CoV-2 Replication. Journal of Virology, 2021, 95, e0125721.	3.4	69
126	A Role of Variance in Interferon Genes to Disease Severity in COVID-19 Patients. Frontiers in Genetics, 2021, 12, 709388.	2.3	9

#	Article	IF	CITATIONS
127	Severe Acute Respiratory Syndrome Coronavirus 2: The Role of the Main Components of the Innate Immune System. Inflammation, 2021, 44, 2151-2169.	3.8	11
128	Beyond Vaccines: Clinical Status of Prospective COVID-19 Therapeutics. Frontiers in Immunology, 2021, 12, 752227.	4.8	25
129	Efficacy and safety of pegylated interferon-α2b in moderate COVID-19: a phase 3, randomized, comparator-controlled, open-label study. International Journal of Infectious Diseases, 2021, 111, 281-287.	3.3	21
130	An overview of human proteins and genes involved in SARS-CoV-2 infection. Gene, 2022, 808, 145963.	2.2	22
131	Antiviral Activity of Azithromycin (A Synthetic Macrolide) for Next Step of COVID-19. Asian Journal of Chemistry, 2021, 33, 1594-1602.	0.3	0
132	SARS-CoV-2 Infection of Airway Epithelial Cells. Immune Network, 2021, 21, e3.	3.6	43
133	Architectured Therapeutic and Diagnostic Nanoplatforms for Combating SARS-CoV-2: Role of Inorganic, Organic, and Radioactive Materials. ACS Biomaterials Science and Engineering, 2021, 7, 31-54.	5.2	19
134	Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling. Signal Transduction and Targeted Therapy, 2020, 5, 299.	17.1	232
138	A Guide to COVIDâ€19: a global pandemic caused by the novel coronavirus SARS oVâ€2. FEBS Journal, 2020, 287, 3633-3650.	4.7	192
139	Endothelium Infection and Dysregulation by SARS-CoV-2: Evidence and Caveats in COVID-19. Viruses, 2021, 13, 29.	3.3	118
140	Towards a more effective strategy for COVID‑19 prevention (Review). Experimental and Therapeutic Medicine, 2020, 21, 1-1.	1.8	4
141	Dynamically evolving novel overlapping gene as a factor in the SARS-CoV-2 pandemic. ELife, 2020, 9, .	6.0	74
142	Immunology of SARS-CoV-2 infections and vaccines. Advances in Immunology, 2021, 151, 49-97.	2.2	12
143	A review: Antibody-dependent enhancement in COVID-19: The not so friendly side of antibodies. International Journal of Immunopathology and Pharmacology, 2021, 35, 205873842110501.	2.1	26
144	Multicellular spatial model of RNA virus replication and interferon responses reveals factors controlling plaque growth dynamics. PLoS Computational Biology, 2021, 17, e1008874.	3.2	8
145	Differential roles of interferons in innate responses to mucosal viral infections. Trends in Immunology, 2021, 42, 1009-1023.	6.8	39
146	Risk and Impact of Severe Acute Respiratory Syndrome Coronavirus 2 Infection on Corneal Transplantation: A Case–Control Study. Cornea, 2022, 41, 224-231.	1.7	1
147	Clash of the titans: interferons and SARS-CoV-2. Trends in Immunology, 2021, 42, 1069-1072.	6.8	10

#	Article	IF	CITATIONS
148	Efficacy of interferon beta-1a plus remdesivir compared with remdesivir alone in hospitalised adults with COVID-19: a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Respiratory Medicine,the, 2021, 9, 1365-1376.	10.7	119
149	Cancer and Covid-19: Collectively catastrophic. Cytokine and Growth Factor Reviews, 2022, 63, 78-89.	7.2	10
150	Efficacy of Interferon- \hat{I}^2 in Moderate-to-Severe Hospitalised Cases of COVID-19: A Systematic Review and Meta-analysis. Clinical Drug Investigation, 2021, 41, 1037-1046.	2.2	7
151	Hamster organotypic modeling of SARS-CoV-2 lung and brainstem infection. Nature Communications, 2021, 12, 5809.	12.8	37
152	Comparing the outcomes of treatment with INF-β 1-a (interferon beta-1a) and IFN-β 1-b (interferon beta-1b) among COVID-19 inpatients. International Immunopharmacology, 2021, 101, 108241.	3.8	1
154	Untapping host-targeting cross-protective efficacy of anticoagulants against SARS-CoV-2. , 2022, 233, 108027.		2
156	Immunopathology and Immunopathogenesis of COVID-19, what we know and what we should learn. Gene Reports, 2021, 25, 101417.	0.8	15
157	Impaired innate antiviral defenses in COVID-19: Causes, consequences and therapeutic opportunities. Seminars in Immunology, 2021, 55, 101522.	5.6	12
159	Bovine Interferon Lambda Is a Potent Antiviral Against SARS-CoV-2 Infection in vitro. Frontiers in Veterinary Science, 2020, 7, 603622.	2.2	5
160	Generation of a Novel SARS-CoV-2 Sub-genomic RNA Due to the R203K/G204R Variant in Nucleocapsid: Homologous Recombination has Potential to Change SARS-CoV-2 at Both Protein and RNA Level. Pathogens and Immunity, 2021, 6, 27-49.	3.1	10
161	Devil's tools: SARS-CoV-2 antagonists against innate immunity. Current Research in Virological Science, 2021, 2, 100013.	3.5	19
162	Host cell-intrinsic innate immune recognition of SARS-CoV-2. Current Opinion in Virology, 2022, 52, 30-38.	5.4	32
163	Generation of a Novel SARS-CoV-2 Sub-genomic RNA Due to the R2O3K/G2O4R Variant in Nucleocapsid: Homologous Recombination has Potential to Change SARS-CoV-2 at Both Protein and RNA Level. Pathogens and Immunity, 2021, 6, 27-49.	3.1	46
164	TLRs in COVID-19: How they drive immunopathology and the rationale for modulation. Innate Immunity, 2021, 27, 503-513.	2.4	32
165	Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses — are we our own worst enemy?. Nature Reviews Immunology, 2022, 22, 47-56.	22.7	118
167	ORAI1 Limits SARS-CoV-2 Infection by Regulating Tonic Type I IFN Signaling. Journal of Immunology, 2022, 208, 74-84.	0.8	12
168	TMPRSS2 promotes SARS-CoV-2 evasion from NCOA7-mediated restriction. PLoS Pathogens, 2021, 17, e1009820.	4.7	13
169	Why Females Do Better: The X Chromosomal TLR7 Gene-Dose Effect in COVID-19. Frontiers in Immunology, 2021, 12, 756262.	4.8	35

#	Article	IF	CITATIONS
170	A Narrative Review of Existing Options for COVID-19-Specific Treatments. Advances in Virology, 2021, 2021, 1-13.	1.1	0
171	Deep Time Course Proteomics of SARS-CoV- and SARS-CoV-2-Infected Human Lung Epithelial Cells (Calu-3) Reveals Strong Induction of Interferon-Stimulated Gene Expression by SARS-CoV-2 in Contrast to SARS-CoV. Journal of Proteome Research, 2022, 21, 459-469.	3.7	16
172	All hands on deck: SARS-CoV-2 proteins that block early anti-viral interferon responses. Current Research in Virological Science, 2021, 2, 100015.	3.5	26
173	Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature, 2022, 603, 587-598.	27.8	216
175	Immune-Guided Therapy of COVID-19. Cancer Immunology Research, 2022, 10, 384-402.	3.4	20
176	Elimination of Aicardi–GoutiÔres syndrome protein SAMHD1 activates cellular innate immunity and suppresses SARS-CoV-2 replication. Journal of Biological Chemistry, 2022, 298, 101635.	3.4	9
177	The Inhibition of RNA Viruses by <i>Amaryllidaceae</i> Alkaloids: Opportunities for the Development of Broad‧pectrum Anti oronavirus Drugs. Chemistry - an Asian Journal, 2022, 17, e202101215.	3.3	6
178	Type I interferons and SARS-CoV-2: from cells to organisms. Current Opinion in Immunology, 2022, 74, 172-182.	5.5	49
180	Deciphering Respiratory-Virus-Associated Interferon Signaling in COPD Airway Epithelium. Medicina (Lithuania), 2022, 58, 121.	2.0	6
181	Alpha-Soluble NSF Attachment Protein Prevents the Cleavage of the SARS-CoV-2 Spike Protein by Functioning as an Interferon-Upregulated Furin Inhibitor. MBio, 2022, 13, e0244321.	4.1	8
182	What's happening where when SARS-CoV-2 infects: are TLR7 andÂMAFB sufficient to explain patient vulnerability?. Immunity and Ageing, 2022, 19, 6.	4.2	7
183	Interferon Control of Human Coronavirus Infection and Viral Evasion: Mechanistic Insights and Implications for Antiviral Drug and Vaccine Development. Journal of Molecular Biology, 2022, 434, 167438.	4.2	7
184	Coordinated regulation of interferon and inflammasome signaling pathways by SARS-CoV-2 proteins. Journal of Microbiology, 2022, 60, 300-307.	2.8	6
185	Differential interferon-α subtype induced immune signatures are associated with suppression of SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	33
186	A Detailed Overview of Immune Escape, Antibody Escape, Partial Vaccine Escape of SARS-CoV-2 and Their Emerging Variants With Escape Mutations. Frontiers in Immunology, 2022, 13, 801522.	4.8	73
187	Myeloid cell interferon responses correlate with clearance of SARS-CoV-2. Nature Communications, 2022, 13, 679.	12.8	30
188	RIG-I-induced innate antiviral immunity protects mice from lethal SARS-CoV-2 infection. Molecular Therapy - Nucleic Acids, 2022, 27, 1225-1234.	5.1	14
189	The severe acute respiratory syndrome coronavirus 2 non-structural proteins 1 and 15 proteins mediate antiviral immune evasion. Current Research in Virological Science, 2022, 3, 100021.	3.5	6

#	Article	IF	CITATIONS
190	Therapeutic Options for Coronavirus Disease 2019 (COVID-19): Where Are We Now?. Current Infectious Disease Reports, 2021, 23, 28.	3.0	5
191	Waves and variants of SARS-CoV-2: understanding the causes and effect of the COVID-19 catastrophe. Infection, 2022, 50, 309-325.	4.7	112
192	Delayed induction of type I and III interferons mediates nasal epithelial cell permissiveness to SARS-CoV-2. Nature Communications, 2021, 12, 7092.	12.8	65
193	The role of respiratory microbiota in the protection against viral diseases: respiratory commensal bacteria as next-generation probiotics for COVID-19. Bioscience of Microbiota, Food and Health, 2022, , ·	1.8	8
194	<i>In vitro</i> antiviral activity of VIFERON® rectal suppositories against SARS-CoV-2. Russian Journal of Infection and Immunity, 2022, 12, 142-148.	0.7	1
195	The RNA helicase DHX16 recognizes specific viral RNA to trigger RIG-I-dependent innate antiviral immunity. Cell Reports, 2022, 38, 110434.	6.4	16
196	Adopting Natural Host Immune Response Against Zoonosis. Journal of Education, Management and Development Studies, 2022, 2, 52-66.	0.3	0
197	Increased Sensitivity of SARS-CoV-2 to Type III Interferon in Human Intestinal Epithelial Cells. Journal of Virology, 2022, 96, e0170521.	3.4	17
198	COVID-19: impact on Public Health and hypothesis-driven investigations on genetic susceptibility and severity. Immunogenetics, 2022, 74, 381-407.	2.4	5
199	SARS-CoV-2 pathogenesis. Nature Reviews Microbiology, 2022, 20, 270-284.	28.6	404
199 201	SARS-CoV-2 pathogenesis. Nature Reviews Microbiology, 2022, 20, 270-284. Interferon antagonists encoded by SARS-CoV-2 at a glance. Medical Microbiology and Immunology, 2023, 212, 125-131.	28.6 4.8	404 20
199 201 202	SARS-CoV-2 pathogenesis. Nature Reviews Microbiology, 2022, 20, 270-284. Interferon antagonists encoded by SARS-CoV-2 at a glance. Medical Microbiology and Immunology, 2023, 212, 125-131. A multi-tissue study of immune gene expression profiling highlights the key role of the nasal epithelium in COVID-19 severity. Environmental Research, 2022, 210, 112890.	28.6 4.8 7.5	404 20 23
199 201 202 203	SARS-CoV-2 pathogenesis. Nature Reviews Microbiology, 2022, 20, 270-284. Interferon antagonists encoded by SARS-CoV-2 at a glance. Medical Microbiology and Immunology, 2023, 212, 125-131. A multi-tissue study of immune gene expression profiling highlights the key role of the nasal epithelium in COVID-19 severity. Environmental Research, 2022, 210, 112890. Post-COVID-19 arthritis: is it hyperinflammation or autoimmunity?. European Cytokine Network, 2021, 32, 83-88.	28.6 4.8 7.5 2.0	404 20 23 22
199 201 202 203 203	SARS-CoV-2 pathogenesis. Nature Reviews Microbiology, 2022, 20, 270-284. Interferon antagonists encoded by SARS-CoV-2 at a glance. Medical Microbiology and Immunology, 2023, 212, 125-131. A multi-tissue study of immune gene expression profiling highlights the key role of the nasal epithelium in COVID-19 severity. Environmental Research, 2022, 210, 112890. Post-COVID-19 arthritis: is it hyperinflammation or autoimmunity?. European Cytokine Network, 2021, 32, 83-88. Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature, 2022, 602, 321-327.	28.6 4.8 7.5 2.0 27.8	404 20 23 22 179
 199 201 202 203 204 205 	SARS-CoV-2 pathogenesis. Nature Reviews Microbiology, 2022, 20, 270-284. Interferon antagonists encoded by SARS-CoV-2 at a glance. Medical Microbiology and Immunology, 2023, 212, 125-131. A multi-tissue study of immune gene expression profiling highlights the key role of the nasal epithelium in COVID-19 severity. Environmental Research, 2022, 210, 112890. Post-COVID-19 arthritis: is it hyperinflammation or autoimmunity?. European Cytokine Network, 2021, 32, 83-88. Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature, 2022, 602, 321-327. Clinical Experience with Ropeginterferon Alfa-2b in the Off-Label Use for the Treatment of COVID-19 Patients in Taiwan. Advances in Therapy, 2022, 39, 910-922.	28.6 4.8 7.5 2.0 27.8 2.9	 404 20 23 22 179 6
199 201 202 203 204 205	SARS-CoV-2 pathogenesis. Nature Reviews Microbiology, 2022, 20, 270-284. Interferon antagonists encoded by SARS-CoV-2 at a glance. Medical Microbiology and Immunology, 2023, 212, 125-131. A multi-tissue study of immune gene expression profiling highlights the key role of the nasal epithelium in COVID-19 severity. Environmental Research, 2022, 210, 112890. Post-COVID-19 arthritis: is it hyperinflammation or autoimmunity?. European Cytokine Network, 2021, 32, 83-88. Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature, 2022, 602, 321-327. Clinical Experience with Ropeginterferon Alfa-2b in the Off-Label Use for the Treatment of COVID-19 Patients in Taiwan. Advances in Therapy, 2022, 39, 910-922. Can the immune system be targeted to treat COVID-19?., 2021, , 69-85.	28.6 4.8 7.5 2.0 27.8 2.9	404 20 23 22 179 6
 199 201 202 203 204 205 206 207 	SARS-CoV-2 pathogenesis. Nature Reviews Microbiology, 2022, 20, 270-284. Interferon antagonists encoded by SARS-CoV-2 at a glance. Medical Microbiology and Immunology, 2023, 212, 125-131. A multi-tissue study of immune gene expression profiling highlights the key role of the nasal epithelium in COVID-19 severity. Environmental Research, 2022, 210, 112890. Post-COVID-19 arthritis: is it hyperinflammation or autoimmunity?. European Cytokine Network, 2021, 32, 83-88. Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature, 2022, 602, 321-327. Clinical Experience with Ropeginterferon Alfa-2b in the Off-Label Use for the Treatment of COVID-19 Patients in Taiwan. Advances in Therapy, 2022, 39, 910-922. Can the Immune system be targeted to treat COVID-19?., 2021, 69-85. Identification of transcriptional regulatory network associated with response of host epithelial cells to SARS-CoV-2. Scientific Reports, 2021, 11, 23928.	28.6 4.8 7.5 2.0 27.8 2.9 3.3	404 20 23 22 179 6 1

#	Article	IF	CITATIONS
212	Immune Signature of COVID-19: In-Depth Reasons and Consequences of the Cytokine Storm. International Journal of Molecular Sciences, 2022, 23, 4545.	4.1	11
213	Identification of DAXX as a restriction factor of SARS-CoV-2 through a CRISPR/Cas9 screen. Nature Communications, 2022, 13, 2442.	12.8	25
215	The Evolutionary Dance between Innate Host Antiviral Pathways and SARS-CoV-2. Pathogens, 2022, 11, 538.	2.8	4
216	Enrichment analysis on regulatory subspaces: A novel direction for the superior description of cellular responses to SARS-CoV-2. Computers in Biology and Medicine, 2022, 146, 105443.	7.0	0
217	Omicron variant of SARS-CoV-2 exhibits an increased resilience to the antiviral type I interferon response. , 2022, 1, .		16
218	Type-I interferons in the immunopathogenesis and treatment of Coronavirus disease 2019. European Journal of Pharmacology, 2022, 927, 175051.	3.5	9
219	Dopamine Reduces SARS-CoV-2 Replication In Vitro through Downregulation of D2 Receptors and Upregulation of Type-I Interferons. Cells, 2022, 11, 1691.	4.1	9
220	The Translational Landscape of SARS-CoV-2-infected Cells Reveals Suppression of Innate Immune Genes. MBio, 2022, 13, .	4.1	21
221	The Role of Antibodies in the Treatment of SARS-CoV-2 Virus Infection, and Evaluating Their Contribution to Antibody-Dependent Enhancement of Infection. International Journal of Molecular Sciences, 2022, 23, 6078.	4.1	4
222	Increased LAMP1 Expression Enhances SARS-CoV-1 and SARS-CoV-2 Production in Vero-Derived Transgenic Cell Lines. Molecular Biology, 2022, 56, 463-468.	1.3	2
223	Absence of negativization of nasal swab test and frailty as risk factors for mortality in elderly COVID-19 patients admitted in long-term care facilities. European Geriatric Medicine, 2022, 13, 933-939.	2.8	3
224	Implicating effector genes at COVID-19 GWAS loci using promoter-focused Capture-C in disease-relevant immune cell types. Genome Biology, 2022, 23, .	8.8	12
225	The impact of SARS-CoV-2 treatment on the cardiovascular system: an updated review. Inflammopharmacology, 2022, 30, 1143-1151.	3.9	4
226	Identifying enhancers of innate immune signaling as broad-spectrum antivirals active against emerging viruses. Cell Chemical Biology, 2022, 29, 1113-1125.e6.	5.2	10
227	Cytokines and microRNAs in SARS-CoV-2: What do we know?. Molecular Therapy - Nucleic Acids, 2022, 29, 219-242.	5.1	18
228	Production of a functionally active recombinant SARS-CoV-2 (COVID-19) 3C-like protease and a soluble inactive 3C-like protease-RBD chimeric in a prokaryotic expression system. Epidemiology and Infection, 2022, 150, .	2.1	Ο
229	HYGIEIA: HYpothesizing the Genesis of Infectious Diseases and Epidemics through an Integrated Systems Biology Approach. Viruses, 2022, 14, 1373.	3.3	2
230	Characterization of SARS-CoV-2 Evasion: Interferon Pathway and Therapeutic Options. Viruses, 2022, 14, 1247.	3.3	24

#	Article	IF	Citations
231	Attenuation of <scp>SARSâ€CoV</scp> â€2 replication and associated inflammation by concomitant targeting of viral and host cap 2'â€Oâ€ribose methyltransferases. EMBO Journal, 2022, 41, .	7.8	18
232	A Review on Immunological Responses to SARS-CoV-2 and Various COVID-19 Vaccine Regimens. Pharmaceutical Research, 2022, 39, 2119-2134.	3.5	10
233	Exploring the Immunomodulatory Aspect of Mesenchymal Stem Cells for Treatment of Severe Coronavirus Disease 19. Cells, 2022, 11, 2175.	4.1	7
234	Innate immunity to SARS-CoV-2 infection: A review. Epidemiology and Infection, 0, , 1-49.	2.1	9
235	A comprehensive evaluation of the immune system response and type-I Interferon signaling pathway in hospitalized COVID-19 patients. Cell Communication and Signaling, 2022, 20, .	6.5	19
236	A Path-Based Analysis of Infected Cell Line and COVID-19 Patient Transcriptome Reveals Novel Potential Targets and Drugs Against SARS-CoV-2. Frontiers in Immunology, 0, 13, .	4.8	6
237	COPD, but Not Asthma, Is Associated with Worse Outcomes in COVID-19: Real-Life Data from Four Main Centers in Northwest Italy. Journal of Personalized Medicine, 2022, 12, 1184.	2.5	1
238	SARS-CoV-2 impairs interferon production via NSP2-induced repression of mRNA translation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	28
239	Comprehensive Subcellular Localization of Swine Acute Diarrhea Syndrome Coronavirus Proteins. Journal of Virology, 2022, 96, .	3.4	1
240	Self-assembling short immunostimulatory duplex RNAs with broad-spectrum antiviral activity. Molecular Therapy - Nucleic Acids, 2022, 29, 923-940.	5.1	7
241	Importancia de los Interferones en la respuesta inmune antiviral contra SARS-CoV-2. Revista De La Universidad Industrial De Santander Salud, 2022, 54, .	0.2	0
242	An Orally Administered Nonpathogenic Attenuated Vaccine Virus Can Be Used to Control SARS-CoV-2 Infection: A Complementary Plan B to COVID-19 Vaccination. Cureus, 2022, , .	0.5	3
243	SARS-CoV-2 Variant Delta Potently Suppresses Innate Immune Response and Evades Interferon-Activated Antiviral Responses in Human Colon Epithelial Cells. Microbiology Spectrum, 2022, 10, .	3.0	9
244	Pharmacologic therapies of ARDS: From natural herb to nanomedicine. Frontiers in Pharmacology, 0, 13, .	3.5	4
245	Choosing a cellular model to study SARS-CoV-2. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	22
246	Early suppression of antiviral host response and protocadherins by SARS-CoV-2 Spike protein in THP-1-derived macrophage-like cells. Frontiers in Immunology, 0, 13, .	4.8	0
248	GPR183 antagonism reduces macrophage infiltration in influenza and SARS-CoV-2 infection. European Respiratory Journal, 2023, 61, 2201306.	6.7	15
249	Nonspecific Effects of Infant Vaccines Make Children More Resistant to SARS-CoV-2 Infection. Children, 2022, 9, 1858.	1.5	2

#	Article	IF	CITATIONS
250	Transcription factor Nrf2 as a potential therapeutic target for COVID-19. Cell Stress and Chaperones, 2023, 28, 11-20.	2.9	4
251	Molecular Function of cGAS-STING in SARS-CoV-2: A Novel Approach to COVID-19 Treatment. BioMed Research International, 2022, 2022, 1-10.	1.9	3
252	Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	3
253	Potential role of <scp>AIM2</scp> inflammasome in <scp>SARS oV</scp> â€2 infection. Scandinavian Journal of Immunology, 2023, 97, .	2.7	2
254	Type I interferon signaling in SARS-CoV-2 associated neurocognitive disorder (SAND): Mapping host-virus interactions to an etiopathogenesis. Frontiers in Neurology, 0, 13, .	2.4	4
255	Cellular APOBEC3A deaminase drives mutations in the SARS-CoV-2 genome. Nucleic Acids Research, 2023, 51, 783-795.	14.5	21
256	Innate immune evasion strategies of SARS-CoV-2. Nature Reviews Microbiology, 0, , .	28.6	31
257	The Safety and Efficacy of the Protease Inhibitors Lopinavir/Ritonavir as Monotherapy or Combined with Interferon in COVID-19 Patients. Processes, 2023, 11, 398.	2.8	0
258	SARS-CoV-2 Establishes a Productive Infection in Hepatoma and Glioblastoma Multiforme Cell Lines. Cancers, 2023, 15, 632.	3.7	3
259	Efficacy of interferon alpha for the treatment of hospitalized patients with COVID-19: A meta-analysis. Frontiers in Immunology, 0, 14, .	4.8	10
260	The main protease of SARS-CoV-2 downregulates innate immunity via a translational repression. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	1
261	SARSâ€CoVâ€2 NSP7 inhibits type I and III IFN production by targeting the RIGâ€I/MDA5, TRIF, and STING signaling pathways. Journal of Medical Virology, 2023, 95, .	5.0	14
262	Immunometabolic Signature during Respiratory Viral Infection: A Potential Target for Host-Directed Therapies. Viruses, 2023, 15, 525.	3.3	2
264	Mechanistic insight into the protective and pathogenic immune-responses against SARS-CoV-2. Molecular Immunology, 2023, 156, 111-126.	2.2	5
265	Cardiovascular-related proteomic changes in ECFCs exposed to the serum of COVID-19 patients. International Journal of Biological Sciences, 2023, 19, 1664-1680.	6.4	0
266	SARS-CoV-2 Inhibits NRF2-Mediated Antioxidant Responses in Airway Epithelial Cells and in the Lung of a Murine Model of Infection. Microbiology Spectrum, 2023, 11, .	3.0	11
267	Assessment of the potential value of combining western medicine therapies with traditional chinese medicine in the treatment of COVID-19: Mechanistic perspectives. Technology and Health Care, 2023, , 1-16.	1.2	0
268	Analysis of the Differential Expression and Antiviral Activity of Porcine Interferon-α In Vitro. International Journal of Peptide Research and Therapeutics, 2023, 29, .	1.9	1

#	Article	IF	CITATIONS
269	Plasmacytoid dendritic cells stimulated with Lactococcus lactis strain Plasma produce soluble factors to suppress SARS-CoV-2 replication. Biochemical and Biophysical Research Communications, 2023, 662, 26-30.	2.1	1
271	Interfering with Interferons: A Critical Mechanism for Critical COVID-19 Pneumonia. Annual Review of Immunology, 2023, 41, 561-585.	21.8	15
272	Potential of Interferon Lambda as an Inhibitor of SARS-CoV-2. Molecular Biology, 2023, 57, 291-298.	1.3	1
273	Interferon regulatory factor 3 mediates effective antiviral responses to human coronavirus 229E and OC43 infection. Frontiers in Immunology, 0, 14, .	4.8	5
274	Antiviral Therapy of COVID-19. International Journal of Molecular Sciences, 2023, 24, 8867.	4.1	7
276	The value of Interferon β in multiple sclerosis and novel opportunities for its anti-viral activity: a narrative literature review. Frontiers in Immunology, 0, 14, .	4.8	5
277	The RNA Interference Effector Protein Argonaute 2 Functions as a Restriction Factor Against SARS-CoV-2. Journal of Molecular Biology, 2023, 435, 168170.	4.2	4
278	Immunomodulatory Role of Interferons in Viral and Bacterial Infections. International Journal of Molecular Sciences, 2023, 24, 10115.	4.1	9
279	Reconsideration of interferon treatment for viral diseases: Lessons from SARS, MERS, and COVID-19. International Immunopharmacology, 2023, 121, 110485.	3.8	0
280	Interferon at the crossroads of SARS-CoV-2 infection and COVID-19 disease. Journal of Biological Chemistry, 2023, 299, 104960.	3.4	5
281	SARS-CoV-2 ORF6 protein does not antagonize interferon signaling in respiratory epithelial Calu-3 cells during infection. MBio, 0, , .	4.1	2
282	Contribution to pathogenesis of accessory proteins of deadly human coronaviruses. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	4
283	Biological mechanisms underpinning the development of long COVID. IScience, 2023, 26, 106935.	4.1	5
285	A single inactivating amino acid change in the SARS-CoV-2 NSP3 Mac1 domain attenuates viral replication in vivo. PLoS Pathogens, 2023, 19, e1011614.	4.7	3
286	Co-infection of mice with SARS-CoV-2 and Mycobacterium tuberculosis limits early viral replication but does not affect mycobacterial loads. Frontiers in Immunology, 0, 14, .	4.8	4
287	Clinical and immunological efficacy of intranasal interferon in the post-vaccination period in patients vaccinated against SARS-CoV-2 coronavirus. Russian Journal of Immunology: RJI: Official Journal of Russian Society of Immunology, 2023, 26, 705-712.	0.4	0
288	Type I/type III IFN and related factors regulate JEV infection and BBB endothelial integrity. Journal of Neuroinflammation, 2023, 20, .	7.2	0
289	Plant and animal positive-sense single-stranded RNA viruses encode small proteins important for viral infection in their negative-sense strand. Molecular Plant, 2023, 16, 1794-1810.	8.3	6

#	Article	IF	CITATIONS
290	SARS-CoV-2 replicates in the human testis with slow kinetics and has no major deleterious effects <i>ex vivo</i> . Journal of Virology, 0, , .	3.4	0
291	Generation of quality-controled SARS-CoV-2 variant stocks. Nature Protocols, 0, , .	12.0	0
292	SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks― , 2024, 21, 171-183.		4
293	Participation of Single-Nucleotide Variants in IFNAR1 and IFNAR2 in the Immune Response against SARS-CoV-2 Infection: A Systematic Review. Pathogens, 2023, 12, 1320.	2.8	1
295	Type I interferon signaling induces a delayed antiproliferative response in respiratory epithelial cells during SARS-CoV-2 infection. Journal of Virology, 0, , .	3.4	0
296	Bacterial-induced or passively administered interferon gamma conditions the lung for early control of SARS-CoV-2. Nature Communications, 2023, 14, .	12.8	3
301	Interferon-Î ³ as a Potential Inhibitor of SARS-CoV-2 ORF6 Accessory Protein. International Journal of Molecular Sciences, 2024, 25, 2155.	4.1	0
302	The Wnt/β-catenin pathway is important for replication of SARS-CoV-2 and other pathogenic RNA viruses. , 2024, 2, .		0
303	The Effects of SARS-CoV-2 on the Angiopoietin/Tie Axis and the Vascular Endothelium. Encyclopedia, 2024, 4, 544-557.	4.5	0