Metalâ€based nanoparticles for bone tissue engineering

Journal of Tissue Engineering and Regenerative Medicine 14, 1687-1714 DOI: 10.1002/term.3131

Citation Report

#	Article	IF	CITATIONS
1	Changes of lipid profiles in human umbilical vein endothelial cells exposed to zirconia nanoparticles with or without the presence of free fatty acids. Journal of Applied Toxicology, 2021, 41, 765-774.	1.4	10
2	Advances in Growth Factor Delivery for Bone Tissue Engineering. International Journal of Molecular Sciences, 2021, 22, 903.	1.8	94
3	Intrinsically radiopaque biomaterial assortments: a short review on the physical principles, X-ray imageability, and state-of-the-art developments. Journal of Materials Chemistry B, 2021, 9, 8569-8593.	2.9	16
4	Nanoplatforms for Sepsis Management: Rapid Detection/Warning, Pathogen Elimination and Restoring Immune Homeostasis. Nano-Micro Letters, 2021, 13, 88.	14.4	10
5	Toxic proteins application in cancer therapy. Molecular Biology Reports, 2021, 48, 3827-3840.	1.0	8
6	The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. Journal of Controlled Release, 2021, 332, 460-492.	4.8	50
7	Chitosan/heparin blends in ionic liquid produce polyelectrolyte complexes that quickly adsorb citrate-capped silver nanoparticles, forming bactericidal composites. Journal of Molecular Liquids, 2021, 330, 115548.	2.3	7
8	Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering. Journal of Controlled Release, 2021, 333, 391-417.	4.8	37
9	Dentistry pathways of coronaviruses transmission: a review. VirusDisease, 2021, , 1-9.	1.0	1
10	Hybrid Bionanocomposite Containing Magnesium Hydroxide Nanoparticles Embedded in a Carboxymethyl Cellulose Hydrogel Plus Silk Fibroin as a Scaffold for Wound Dressing Applications. ACS Applied Materials & Interfaces, 2021, 13, 33840-33849.	4.0	77
11	Functionalized magnetic nanoparticles for the separation and purification of proteins and peptides. TrAC - Trends in Analytical Chemistry, 2021, 141, 116291.	5.8	70
12	Non-spherical nanostructures in nanomedicine: From noble metal nanorods to transition metal dichalcogenide nanosheets. Applied Materials Today, 2021, 24, 101107.	2.3	16
13	Investigating the physical characteristics and cellular interplay on 3D-printed scaffolds depending on the incorporated silica size for hard tissue regeneration. Materials and Design, 2021, 207, 109866.	3.3	9
14	Tungsten disulfide nanoparticle-containing PCL and PLGA-coated bioactive glass composite scaffolds for bone tissue engineering applications. Journal of Materials Science, 2021, 56, 18650-18667.	1.7	13
15	Electro-conductive carbon nanofibers containing ferrous sulfate for bone tissue engineering. Life Sciences, 2021, 282, 119602.	2.0	12
16	Antibacterial biomaterials in bone tissue engineering. Journal of Materials Chemistry B, 2021, 9, 2594-2612.	2.9	62
18	Bioceramics-Based Biomaterials for Bone Tissue Engineering. , 2021, , 573-587.		1
19	A bimetallic load-bearing bioceramics of TiO2 @ ZrO2 integrated polycaprolactone fibrous tissue construct exhibits anti bactericidal effect and induces osteogenesis in MC3T3-E1 cells. Materials Science and Engineering C, 2021, 131, 112501.	3.8	13

#	Article	IF	CITATIONS
20	Commentary: "Silver Nanoparticles Coated Poly(L-Lactide) Electrospun Membrane for Implant Associated Infections Prevention― Frontiers in Pharmacology, 2021, 12, 759304.	1.6	0
21	Engineered Magnetic Nanocomposites to Modulate Cellular Function. Small, 2022, 18, e2104079.	5.2	16
22	Metal/metal oxide nanoparticles: Toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicology Reports, 2021, 8, 1970-1978.	1.6	48
23	EVALUATION OF THE ANTIOXIDANT AND Îʿ-AMYLASE INHIBITORY ACTIVITIES OF Mitragyna inermis (WILLD) O. KUNTZE AND Tamarindus indica LINN Journal of Experimental Biology and Agricultural Sciences, 2020, 8, 676-682.	0.1	4
24	Self-assembled gel tubes, filaments and 3D-printing with <i>in situ</i> metal nanoparticle formation and enhanced stem cell growth. Chemical Science, 2022, 13, 1972-1981.	3.7	12
25	Double-crosslinked bifunctional hydrogels with encapsulated anti-cancer drug for bone tumor cell ablation and bone tissue regeneration. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112364.	2.5	14
26	Nanobiomaterials for regenerative medicine. , 2022, , 141-187.		2
27	Magnetic graphene oxide–lignin nanobiocomposite: a novel, eco-friendly and stable nanostructure suitable for hyperthermia in cancer therapy. RSC Advances, 2022, 12, 3593-3601.	1.7	21
28	Polycaprolactone/Graphene Oxide–Silver Nanocomposite: A Multifunctional Agent for Biomedical Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 912-930.	1.9	11
29	Review: the latest advances in biomedical applications of chitosan hydrogel as a powerful natural structure with eye-catching biological properties. Journal of Materials Science, 2022, 57, 3855-3891.	1.7	34
30	Novel 3D Bioglass Scaffolds for Bone Tissue Regeneration. Polymers, 2022, 14, 445.	2.0	20
31	Applications of plant-based nanoparticles in nanomedicine: A review. Sustainable Chemistry and Pharmacy, 2022, 25, 100606.	1.6	55
32	Recent Advance in Biological Responsive Nanomaterials for Biosensing and Molecular Imaging Application. International Journal of Molecular Sciences, 2022, 23, 1923.	1.8	1
33	Advanced bioactive nanomaterials for biomedical applications. Exploration, 2021, 1, .	5.4	156
34	Design and Preparation of Proline, Tryptophan and Poly-L-Lysine Functionalized Magnetic Nanoparticles and Their Radiolabeling with 131i and 177lu for Potential Theranostic Use. SSRN Electronic Journal, 0, , .	0.4	0
35	Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Research, 2022, 10, 17.	5.4	156
36	Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics, 2022, 14, 770.	2.0	26
37	Therapeutic Application of Genetically Engineered Ribosome-Inactivating Toxin Proteins for Cancer. Journal of Biomedical Research & Environmental Sciences, 2021, 2, 1216-1228.	0.1	2

CITATION REPORT

#	Article	IF	CITATIONS
38	Facile synthesis of visible region luminescent silver decorated graphene oxide nanohybrid for biomedical applications: In combination with DFT calculations. Materials Today: Proceedings, 2022, 58, 918-926.	0.9	6
39	Novel Strategies for Spinal Cord Regeneration. International Journal of Molecular Sciences, 2022, 23, 4552.	1.8	13
40	Plasma Electroless Reduction: A Green Process for Designing Metallic Nanostructure Interfaces onto Polymeric Surfaces and 3D Scaffolds. ACS Applied Materials & Interfaces, 2022, 14, 25065-25079.	4.0	7
41	Current trends in stimuli-responsive nanotheranostics based on metal–organic frameworks for cancer therapy. Materials Today, 2022, 57, 192-224.	8.3	25
42	Improved Neural Differentiation of Human-induced Pluripotent Stem Cell [hiPSCs] on a Novel Polyurethane-based Scaffold Containing Iron Oxide Nanoparticles [Fe ₂ O ₃ NPs]. Current Stem Cell Research and Therapy, 2023, 18, 993-1000.	0.6	1
43	Nanomaterials in Bone Regeneration. Applied Sciences (Switzerland), 2022, 12, 6793.	1.3	15
44	Conductive and Semiconductive Nanocompositeâ€Based Hydrogels for Cardiac Tissue Engineering. Advanced Healthcare Materials, 2022, 11, .	3.9	22
46	Nano-engineered biomaterials: Safety matters and toxicity evaluation. Materials Today Advances, 2022, 15, 100260.	2.5	14
47	Recent advances on biomedical applications of pectin-containing biomaterials. International Journal of Biological Macromolecules, 2022, 217, 1-18.	3.6	28
48	Metal-based nano-delivery platform for treating bone disease and regeneration. Frontiers in Chemistry, 0, 10, .	1.8	2
49	Medical high-entropy alloy: Outstanding mechanical properties and superb biological compatibility. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
50	A concise review on implications of silver nanoparticles in bone tissue engineering. , 2022, 141, 213099.		10
51	Design and preparation of proline, tryptophan and poly-l-lysine functionalized magnetic nanoparticles and their radiolabeling with 1311 and 177Lu for potential theranostic use. International Journal of Pharmaceutics, 2022, 628, 122288.	2.6	5
52	Role of Iron Oxide (Fe2O3) Nanocomposites in Advanced Biomedical Applications: A State-of-the-Art Review. Nanomaterials, 2022, 12, 3873.	1.9	22
53	Cross-linked lignin/agarose hydrogels coated with iron oxide magnetic nanoparticles for in vitro hyperthermia cancer therapy. Journal of Materials Research, 2022, 37, 4392-4402.	1.2	5
54	Recent advances on injectable nanocomposite hydrogels towards bone tissue rehabilitation. Journal of Applied Polymer Science, 2023, 140, .	1.3	10
55	<scp>3Dâ€printed MgO</scp> nanoparticle loaded polycaprolactone <scp><i>β</i></scp> â€tricalcium phosphate composite scaffold for bone tissue engineering applications: Inâ€vitro and inâ€vivo evaluation. Journal of Biomedical Materials Research - Part A, 2023, 111, 322-339.	2.1	10
56	FeS2-incorporated 3D PCL scaffold improves new bone formation and neovascularization in a rat calvarial defect model. International Journal of Bioprinting, 2022, 9, 636.	1.7	2

CITATION REPORT

#	Article	IF	CITATIONS
57	Polyetheretherketone surface engineered with a degradable hybrid coating for accelerating osteogenesis. Materials Letters, 2023, 331, 133515.	1.3	5
58	Design, Fabrication, and Application of Mini-Scaffolds for Cell Components in Tissue Engineering. Polymers, 2022, 14, 5068.	2.0	2
59	Nanomaterials supported by polymers for tissue engineering applications: A review. Heliyon, 2022, 8, e12193.	1.4	15
60	Bone Tissue Engineering Scaffolds: Function of Multiâ€Material Hierarchically Structured Scaffolds. Advanced Healthcare Materials, 2023, 12, .	3.9	34
61	Pectin Based Hydrogels for Drug Delivery Applications: A Mini Review. Gels, 2022, 8, 834.	2.1	12
62	Recent advances in carbon dots: synthesis and applications in bone tissue engineering. Nanoscale, 2023, 15, 3106-3119.	2.8	11
63	Electrospinning Inorganic Nanomaterials to Fabricate Bionanocomposites for Soft and Hard Tissue Repair. Nanomaterials, 2023, 13, 204.	1.9	8
64	Investigation of biological activity and hyperthermia application of a quaternary magnetic nanobiocomposite based on funtionalized carbon nitride nanosheets by carboxymethyl cellulose hydrogel and silk fibroin. Cellulose, 0, , .	2.4	0
65	Bench-to-bedside: Feasibility of nano-engineered and drug-delivery biomaterials for bone-anchored implants and periodontal applications. Materials Today Bio, 2023, 18, 100540.	2.6	14
66	Advanced bioactive nanomaterials for diagnosis and treatment of major chronic diseases. Frontiers in Molecular Biosciences, 0, 10, .	1.6	1
67	Encapsulation of bioactive compunds: Role of nanotechnology. , 2023, , 39-65.		0
68	Antimicrobial and Pro-Osteogenic Coaxially Electrospun Magnesium Oxide Nanoparticles-Polycaprolactone /Parathyroid Hormone-Polycaprolactone Composite Barrier Membrane for Guided Bone Regeneration. International Journal of Nanomedicine, 0, Volume 18, 369-383.	3.3	4
69	Purification of alkaline phosphatase from bovine milk through metal ion affinity by a novel magnetic nanocomposite based on functionalized chitosan with dopamine and nickel. Materials Today Communications, 2023, 34, 105461.	0.9	3
70	Osteoimmunomodulatory Nanoparticles for Bone Regeneration. Nanomaterials, 2023, 13, 692.	1.9	13
71	Carbohydrate polymer derived nanocomposites: design, features and potential for biomedical applications. Polymer-Plastics Technology and Materials, 2023, 62, 582-603.	0.6	2
72	A Novel Nanocomposite Scaffold Based on Polyurethane (PU) Containing Cobalt Nanoparticles (CoNPs) for Bone Tissue Engineering Applications. Current Stem Cell Research and Therapy, 2023, 18, 1120-1132.	0.6	2
73	Optimization of a silver-nanoprism conjugated with 3,3′,5,5′-tetramethylbenzidine towards easy-to-make colorimetric analysis of acetaldehyde: a new platform towards rapid analysis of carcinogenic agents and environmental technology. RSC Advances, 2023, 13, 6225-6238.	1.7	3
74	Nanoengineering/technology for tissue engineering and organ printing. , 2023, , 35-54.		3

CITATION REPORT

#	Article	IF	CITATIONS
75	Gold Nanoparticles Enriched Graphene System for Therapeutics: A Novel Combination of Experimental and Theoretical Studies. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33, 1331-1338.	1.9	5
76	Scaffold Using Chitosan, Agarose, Cellulose, Dextran and Protein for Tissue Engineering—A Review. Polymers, 2023, 15, 1525.	2.0	12
77	Wound Healing Activity of Cotton Fabrics Loaded with Silver Nanoparticles in Experimental Model of Diabetes. Biomedical and Pharmacology Journal, 2023, 16, 53-65.	0.2	2
78	Lanthanum Oxide Nanoparticles Reinforced Collagen Æ™â€Carrageenan Hydroxyapatite Biocomposite as Angioâ€Osteogenic Biomaterial for In Vivo Osseointegration and Bone Repair. Advanced Biology, 2023, 7,	1.4	4
84	Emerging Trends in Zinc Ferrite Nanoparticles for Biomedical and Environmental Applications. Applied Biochemistry and Biotechnology, 2024, 196, 1008-1043.	1.4	2
101	Effects of mechanical properties of carbon-based nanocomposites on scaffolds for tissue engineering applications: a comprehensive review. Nanoscale Advances, 2024, 6, 337-366.	2.2	2
104	Metallic Nanoparticles: Synthesis and Applications in Medicine. Recent Advances in Biotechnology, 2023, , 57-80.	0.1	0
107	3D printing technology and its combination with nanotechnology in bone tissue engineering. Biomedical Engineering Letters, 0, , .	2.1	0
109	Antimicrobial Metal and Metal Oxide Nanoparticles in Bone Tissue Repair. , 0, , .		0

Antimicrobial Metal and Metal Oxide Nanoparticles in Bone Tissue Repair. , 0, , . 109