Mesenchymal stem cells for cartilage regeneration

Journal of Tissue Engineering 11, 204173142094383 DOI: 10.1177/2041731420943839

Citation Report

#	Article	IF	CITATIONS
1	Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering. Membranes, 2020, 10, 348.	1.4	75
2	Current Nanoparticle-Based Technologies for Osteoarthritis Therapy. Nanomaterials, 2020, 10, 2368.	1.9	29
3	Post-decellularization techniques ameliorate cartilage decellularization process for tissue engineering applications. Journal of Tissue Engineering, 2021, 12, 204173142098356.	2.3	20
4	Defined MSC exosome with high yield and purity to improve regenerative activity. Journal of Tissue Engineering, 2021, 12, 204173142110086.	2.3	47
5	Recent advances in polymeric scaffolds containing carbon nanotube and graphene oxide for cartilage and bone regeneration. Materials Today Communications, 2021, 26, 102097.	0.9	27
6	Biophysical and Biochemical Cues of Biomaterials Guide Mesenchymal Stem Cell Behaviors. Frontiers in Cell and Developmental Biology, 2021, 9, 640388.	1.8	56
7	Assessment of properties, applications and limitations of scaffolds based on cellulose and its derivatives for cartilage tissue engineering: A review. International Journal of Biological Macromolecules, 2021, 175, 495-515.	3.6	48
8	Minicircles for Investigating and Treating Arthritic Diseases. Pharmaceutics, 2021, 13, 736.	2.0	1
9	Comparative Analysis of MSC-Derived Exosomes Depending on Cell Culture Media for Regenerative Bioactivity. Tissue Engineering and Regenerative Medicine, 2021, 18, 355-367.	1.6	21
10	Long wait times for knee and hip total joint replacement in Canada: An isolated health system problem, or a symptom of a larger problem?. Osteoarthritis and Cartilage Open, 2021, 3, 100141.	0.9	16
11	The Potential Use of Mesenchymal Stem Cells and Their Derived Exosomes for Orthopedic Diseases Treatment. Stem Cell Reviews and Reports, 2022, 18, 933-951.	1.7	50
12	Preclinical Testing of New Hydrogel Materials for Cartilage Repair: Overcoming Fixation Issues in a Large Animal Model. International Journal of Biomaterials, 2021, 2021, 1-14.	1.1	4
13	Bioorthogonal hydroxyethyl cellulose-based scaffold crosslinked via click chemistry for cartilage tissue engineering applications. International Journal of Biological Macromolecules, 2021, 183, 2030-2043.	3.6	16
14	Chondroinductive/chondroconductive peptides and their-functionalized biomaterials for cartilage tissue engineering. Bioactive Materials, 2022, 9, 221-238.	8.6	27
15	Characterization of Osteogenesis and Chondrogenesis of Human Decellularized Allogeneic Bone with Mesenchymal Stem Cells Derived from Bone Marrow, Adipose Tissue, and Wharton's Jelly. International Journal of Molecular Sciences, 2021, 22, 8987.	1.8	10
16	Polymer Scaffolds-Enhanced Bone Regeneration in Osteonecrosis Therapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 761302.	2.0	7
17	Intra-articular injection of orthobiologics in patients undergoing high tibial osteotomy for knee osteoarthritis is safe and effective – a systematic review. Journal of Experimental Orthopaedics, 2021, 8, 83.	0.8	5
18	Enhanced efficacy of transforming growth factor-β1 loaded an injectable cross-linked thiolated chitosan and carboxymethyl cellulose-based hydrogels for cartilage tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 2402-2422.	1.9	10

ATION RED

#	Article	IF	CITATIONS
19	Rational design of a highly porous electronic scaffold with concurrent enhancement in cell behaviors and differentiation under electrical stimulation. Journal of Materials Chemistry B, 2021, 9, 7674-7685.	2.9	9
20	The Application of Bioreactors for Cartilage Tissue Engineering: Advances, Limitations, and Future Perspectives. Stem Cells International, 2021, 2021, 1-13.	1.2	29
21	Meniscus regeneration with injectable Pluronic/PMMA-reinforced fibrin hydrogels in a rabbit segmental meniscectomy model. Journal of Tissue Engineering, 2021, 12, 204173142110501.	2.3	17
22	The Developing Field of Scaffold-Free Tissue Engineering for Articular Cartilage Repair. Tissue Engineering - Part B: Reviews, 2022, 28, 995-1006.	2.5	6
23	Mesenchymal Stem Cell-Derived Exosomes and MicroRNAs in Cartilage Regeneration: Biogenesis, Efficacy, miRNA Enrichment and Delivery. Pharmaceuticals, 2021, 14, 1093.	1.7	29
24	Course correction of adjuvant arthritis with cryopreserved multipotent mesenchymal stromal cells. Regulatory Mechanisms in Biosystems, 2021, 12, 545-553.	0.5	3
25	Physical Gold Nanoparticle-Decorated Polyethylene Glycol-Hydroxyapatite Composites Guide Osteogenesis and Angiogenesis of Mesenchymal Stem Cells. Biomedicines, 2021, 9, 1632.	1.4	9
26	Methods of Modification of Mesenchymal Stem Cells and Conditions of Their Culturing for Hyaline Cartilage Tissue Engineering. Biomedicines, 2021, 9, 1666.	1.4	5
27	Dry arthroscopy with a simple retraction technique for knee joint cartilage repair using allogenic human umbilical cord blood-derived mesenchymal stem cells. Arthroscopy Techniques, 2021, 10, e2747-e2752.	0.5	2
28	Biomimetic Methacrylated Gelatin Hydrogel Loaded With Bone Marrow Mesenchymal Stem Cells for Bone Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 770049.	2.0	22
29	Mapping Thematic Trends and Analysing Hotspots Concerning the Use of Stem Cells for Cartilage Regeneration: A Bibliometric Analysis From 2010 to 2020. Frontiers in Pharmacology, 2021, 12, 737939.	1.6	7
30	A minimal standardized human bone marrow microphysiological system to assess resident cell behavior during normal and pathological processes. Biomaterials Science, 2022, 10, 485-498.	2.6	1
31	Folate-modified triptolide liposomes target activated macrophages for safe rheumatoid arthritis therapy. Biomaterials Science, 2022, 10, 499-513.	2.6	14
32	Effect of passage number of genetically modified TGF-β3 expressing primary chondrocytes on the chondrogenesis of ATDC5 cells in a 3D coculture system. Biomedical Materials (Bristol), 2022, 17, 024102.	1.7	1
33	Combined Mesenchymal Stem CellsÂand Cartilage Acellular Matrix InjectionÂTherapy for Osteoarthritis in Goats. Tissue Engineering and Regenerative Medicine, 2022, 19, 177-187.	1.6	4
34	Three-Dimensional Printing Strategies for Irregularly Shaped Cartilage Tissue Engineering: Current State and Challenges. Frontiers in Bioengineering and Biotechnology, 2021, 9, 777039.	2.0	4
35	Sources and Therapeutic Strategies of Mesenchymal Stem Cells in Regenerative Medicine. , 2022, , 1-28.		16
36	Development of chitosan/hyaluronic acid hydrogel scaffolds via enzymatic reaction for cartilage tissue engineering. Materials Today Communications, 2022, 30, 103230.	0.9	23

#	Article	IF	CITATIONS
37	Indoleamine 2, 3 Dioxygenase 1 Impairs Chondrogenic Differentiation of Mesenchymal Stem Cells in the Joint of Osteoarthritis Mice Model. Frontiers in Immunology, 2021, 12, 781185.	2.2	4
38	Bionic biphasic composite scaffolds with osteochondrogenic factors for regeneration of full-thickness osteochondral defects. Biomaterials Science, 2022, 10, 1713-1723.	2.6	6
39	Intrauterine infusion of clinically graded human umbilical cord-derived mesenchymal stem cells for the treatment of poor healing after uterine injury: a phase I clinical trial. Stem Cell Research and Therapy, 2022, 13, 85.	2.4	11
40	Delivery of Mesenchymal Stem Cell in Dialdehyde Methylcellulose-Succinyl-Chitosan Hydrogel Promotes Chondrogenesis in a Porcine Model. Polymers, 2022, 14, 1474.	2.0	1
41	The Use of Autologous Chondrocyte and Mesenchymal Stem Cell Implants for the Treatment of Focal Chondral Defects in Human Knee Joints—A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 2022, 23, 4065.	1.8	14
42	Development of New Collagen/Clay Composite Biomaterials. International Journal of Molecular Sciences, 2022, 23, 401.	1.8	13
43	Ultra-Low Electromagnetic Fields Application on In Vitro Cartilage Regeneration: A Pilot Study to Improve Treatment of Osteoarticular Diseases. Applied Sciences (Switzerland), 2022, 12, 4116.	1.3	0
44	The effect of LDHs nanoparticles on the cellular behavior of stem cell-laden 3D-bioprinted scaffold. Journal of Biomaterials Applications, 2022, 37, 48-54.	1.2	4
45	The effects of cigarette smoking and nicotine on the therapeutic potential of mesenchymal stem cells. Histology and Histopathology, 2021, , 18400.	0.5	1
46	PTH (1-34) enhances the therapeutic effect of bone marrow mesenchymal stem cell-derived exosomes by inhibiting proinflammatory cytokines expression on OA chondrocyte repair in vitro. Arthritis Research and Therapy, 2022, 24, 96.	1.6	10
47	Hyperelastic, shapeâ€memorable, and ultraâ€cellâ€adhesive degradable polycaprolactoneâ€polyurethane copolymer for tissue regeneration. Bioengineering and Translational Medicine, 2022, 7, .	3.9	10
49	A novel protocol for injectable artificial cartilage constructs based on programmed shape-morphing hydrogels for cartilage regeneration. Chemical Engineering Journal, 2022, 446, 137109.	6.6	4
50	A sonication-induced silk-collagen hydrogel for functional cartilage regeneration. Journal of Materials Chemistry B, 2022, 10, 5045-5057.	2.9	9
51	Thermo-Responsive Gel Containing Hydroxytyrosol-Chitosan Nanoparticles (Hyt@tgel) Counteracts the Increase of Osteoarthritis Biomarkers in Human Chondrocytes. Antioxidants, 2022, 11, 1210.	2.2	12
52	Research progress in seed cells for cartilage tissue engineering. Regenerative Medicine, 2022, 17, 659-675.	0.8	7
53	Polymer nanotherapeutics: A versatile platform for effective rheumatoid arthritis therapy. Journal of Controlled Release, 2022, 348, 397-419.	4.8	11
54	Advances in hydrogels for stem cell therapy: regulation mechanisms and tissue engineering applications. Journal of Materials Chemistry B, 2022, 10, 5520-5536.	2.9	9
55	Stem Cell for Cartilage Repair. , 2022, , 1-35.		1

#	Article	IF	CITATIONS
56	3D biomaterial P scaffolds carrying umbilical cord mesenchymal stem cells improve biointegration of keratoprosthesis. Biomedical Materials (Bristol), 2022, 17, 055004.	1.7	1
57	Mesenchymal stem/stromal cells in breast cancer development and management. Seminars in Cancer Biology, 2022, 86, 81-92.	4.3	13
58	Ultrasound-augmented anti-inflammatory exosomes for targeted therapy in rheumatoid arthritis. Journal of Materials Chemistry B, 2022, 10, 7862-7874.	2.9	8
59	Soft substrates direct stem cell differentiation into the chondrogenic lineage without the use of growth factors. Journal of Tissue Engineering, 2022, 13, 204173142211221.	2.3	14
60	Hydrogel nanosheets confined 2D rhombic ice: a new platform enhancing chondrogenesis. Biomedical Materials (Bristol), 2022, 17, 065004.	1.7	2
61	Lipid Metabolism in Cartilage Development, Degeneration, and Regeneration. Nutrients, 2022, 14, 3984.	1.7	15
62	Updates on mesenchymal stem cell therapies for articular cartilage regeneration in large animal models. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	8
63	The sternum reconstruction: Present and future perspectives. Frontiers in Oncology, 0, 12, .	1.3	2
64	Recent Advances in the Hydrogel-Based Biomolecule Delivery System for Cartilage Tissue Engineering. Advances in Materials Science and Engineering, 2022, 2022, 1-16.	1.0	1
65	A hybrid cartilage extracellular matrix-based hydrogel/poly (ε-caprolactone) scaffold incorporated with Kartogenin for cartilage tissue engineering. Journal of Biomaterials Applications, 2023, 37, 1243-1258.	1.2	3
66	Hyaline Cartilage Microtissues Engineered from Adult Dedifferentiated Chondrocytes: Safety and Role of WNT Signaling. Stem Cells Translational Medicine, 0, , .	1.6	4
67	Sources and Therapeutic Strategies of Mesenchymal Stem Cells in Regenerative Medicine. , 2022, , 23-49.		0
68	Stem Cell for Cartilage Repair. , 2022, , 349-382.		0
69	Fabrication of biphasic cartilage-bone integrated scaffolds based on tissue-specific photo-crosslinkable acellular matrix hydrogels. Materials Today Bio, 2022, 17, 100489.	2.6	11
70	Perinatal Tissue–Derived Allografts and Stromal Cells for the Treatment of Knee Osteoarthritis: A Review of Preclinical and Clinical Evidence. Cartilage, 0, , 194760352211377.	1.4	2
71	RUNX2 stabilization by long non-coding RNAs contributes to hypertrophic changes in human chondrocytes. International Journal of Biological Sciences, 2023, 19, 13-33.	2.6	9
72	miR-140-5p protects cartilage progenitor/stem cells from fate changes in knee osteoarthritis. International Immunopharmacology, 2023, 114, 109576.	1.7	5
73	Sericin-reinforced dual-crosslinked hydrogel for cartilage defect repair. Colloids and Surfaces B: Biointerfaces, 2023, 222, 113061.	2.5	5

#	Article	IF	CITATIONS
74	Physico-biological evaluation of 3D printed dECM/TOCN/alginate hydrogel based scaffolds for cartilage tissue regeneration. , 2023, 145, 213239.		11
75	Within or Without You? A Perspective Comparing In Situ and Ex Situ Tissue Engineering Strategies for Articular Cartilage Repair. Advanced Healthcare Materials, 2022, 11, .	3.9	4
76	Evaluating the Effect of Hypoxia on Human Adult Mesenchymal Stromal Cell Chondrogenesis In Vitro: A Systematic Review. International Journal of Molecular Sciences, 2022, 23, 15210.	1.8	2
77	Pulsed Electromagnetic Field Therapy and Direct Current Electric Field Modulation Promote the Migration of Fibroblast-like Synoviocytes to Accelerate Cartilage Repair In Vitro. Applied Sciences (Switzerland), 2022, 12, 12406.	1.3	3
78	Recent Advances in "Functional Engineering of Articular Cartilage Zones by Polymeric Biomaterials Mediated with Physical, Mechanical, and Biological/Chemical Cues― Advanced Healthcare Materials, 2023, 12, .	3.9	1
79	Comparative effectiveness of adipose-derived mesenchymal stromal cells in the management of knee osteoarthritis: A meta-analysis. World Journal of Orthopedics, 0, 14, 23-41.	0.8	14
80	Generation of human immortalized chondrocytes from osteoarthritic and healthy cartilage. Bone and Joint Research, 2023, 12, 46-57.	1.3	2
81	Mechano-responsive hydrogel for direct stem cell manufacturing to therapy. Bioactive Materials, 2023, 24, 387-400.	8.6	8
82	Synergistic effects of 3D chitosanâ€based hybrid scaffolds and mesenchymal stem cells in orthopaedic tissue engineering. IET Nanobiotechnology, 2023, 17, 41-48.	1.9	6
83	Recent development in multizonal scaffolds for osteochondral regeneration. Bioactive Materials, 2023, 25, 122-159.	8.6	7
84	Adipose stem cell transplantation using adhesive protein-based viscous immiscible liquid for cartilage reconstruction. Chemical Engineering Journal, 2023, 463, 142379.	6.6	2
85	Recent advances in biofabrication strategies based on bioprinting for vascularized tissue repair and regeneration. Materials and Design, 2023, 229, 111885.	3.3	4
86	Alginate sulfate/ECM composite hydrogel containing electrospun nanofiber with encapsulated human adipose-derived stem cells for cartilage tissue engineering. International Journal of Biological Macromolecules, 2023, 238, 124098.	3.6	7
87	The Effects of Mechanical Load on Chondrogenic Responses of Bone Marrow Mesenchymal Stem Cells and Chondrocytes Encapsulated in Chondroitin Sulfate-Based Hydrogel. International Journal of Molecular Sciences, 2023, 24, 2915.	1.8	5
88	Thermosensitive and biodegradable PCL-based hydrogels: potential scaffolds for cartilage tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2023, 34, 695-714.	1.9	1
89	Bone Marrow-Derived Mesenchymal Stem Cell Implants for the Treatment of Focal Chondral Defects of the Knee in Animal Models: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 2023, 24, 3227.	1.8	4
90	3D Bioprinting Using Synovium-Derived MSC-Laden Photo-Cross-Linked ECM Bioink for Cartilage Regeneration. ACS Applied Materials & Interfaces, 2023, 15, 8895-8913.	4.0	14
91	Bibliometric and visualization analysis of stem cell therapy for meniscal regeneration from 2012 to 2022. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	3

#	Article	IF	CITATIONS
92	Advances in Mechanical Properties of Hydrogels for Cartilage Tissue Defect Repair. Macromolecular Bioscience, 2023, 23, .	2.1	10
95	Similar Short-term Results Between Scaffold Implanted Mesenchymal Stem Cells versus Acellular Scaffolds with Concentrated Bone Marrow Aspirate Augmentation for the Repair of Chondral Defects of the Knee: Evidence from a Meta-Analysis. Journal of Cartilage & Joint Preservation, 2023, , 100128.	0.2	0
96	Function and mechanism of mesenchymal stem cells in the healing of diabetic foot wounds. Frontiers in Endocrinology, 0, 14, .	1.5	6
97	Encapsulation of Human Umbilical Cord Mesenchymal Stem Cells in LunaGel Photocrosslinkable Extracellular Matrix and Subcutaneous Transplantation in Mice. Biomedicines, 2023, 11, 1158.	1.4	3
98	Low-intensity pulsed ultrasound promotes mesenchymal stem cell transplantation-based articular cartilage regeneration via inhibiting the TNF signaling pathway. Stem Cell Research and Therapy, 2023, 14, .	2.4	3
99	Encapsulation of cartilage cells. , 2023, , 525-555.		0
113	Mesenchymal Stem Cells for Bone and Cartilage Regeneration: State of the Art. , 2023, , 1-26.		0
117	Stimuli-responsive hydrogels: cutting-edge platforms for cartilage tissue engineering. , 2024, , 467-486.		1
123	Principles of Tissue Engineering and Regenerative Medicine. , 2023, , 127-148.		0
132	Cartilage: Structure, Function, and the Pathogenesis of Osteoarthritis. , 0, , .		0
133	ARTHROprint: A System for the Immediate Restoration of Cartilage Lesions by Implantation of Printable Autologous Cell Scaffolds. IFMBE Proceedings, 2024, , 455-461.	0.2	0