Complete chemical structures of human mitochondrial

Nature Communications 11, 4269 DOI: 10.1038/s41467-020-18068-6

Citation Report

#	Article	IF	CITATIONS
1	tRNA Biology in the Pathogenesis of Diabetes: Role of Genetic and Environmental Factors. International Journal of Molecular Sciences, 2021, 22, 496.	1.8	9
3	Mass spectrometric analysis of mRNA 5′ terminal modifications. Methods in Enzymology, 2021, 658, 407-418.	0.4	2
4	Mass Spectrometry-Based Methods for Characterization of Hypomodifications in Transfer RNA. RNA Technologies, 2021, , 555-592.	0.2	1
5	The human tRNA taurine modification enzyme GTPBP3 is an active GTPase linked to mitochondrial diseases. Nucleic Acids Research, 2021, 49, 2816-2834.	6.5	18
6	Human transfer RNA modopathies: diseases caused by aberrations in transfer RNA modifications. FEBS Journal, 2021, 288, 7096-7122.	2.2	58
7	The expanding world of tRNA modifications and their disease relevance. Nature Reviews Molecular Cell Biology, 2021, 22, 375-392.	16.1	282
8	Loss of Ftsj1 perturbs codon-specific translation efficiency in the brain and is associated with X-linked intellectual disability. Science Advances, 2021, 7, .	4.7	30
9	Bioinformatic Prediction of an tRNASec Gene Nested inside an Elongation Factor SelB Gene in Alphaproteobacteria. International Journal of Molecular Sciences, 2021, 22, 4605.	1.8	2
10	Tissue-specific reprogramming of host tRNA transcriptome by the microbiome. Genome Research, 2021, 31, 947-957.	2.4	11
11	Ablation of Mto1 in zebrafish exhibited hypertrophic cardiomyopathy manifested by mitochondrion RNA maturation deficiency. Nucleic Acids Research, 2021, 49, 4689-4704.	6.5	9
13	The human tRNA-guanine transglycosylase displays promiscuous nucleobase preference but strict tRNA specificity. Nucleic Acids Research, 2021, 49, 4877-4890.	6.5	8
15	Mitochondrial noncoding RNAs: new wine in an old bottle. RNA Biology, 2021, 18, 2168-2182.	1.5	14
16	Structural and functional insights into human tRNA guanine transglycosylase. RNA Biology, 2021, 18, 382-396.	1.5	14
17	RNA leaving Deoxyribozymes Differentiate Methylated Cytidine Isomers in RNA. Angewandte Chemie - International Edition, 2021, 60, 19058-19062.	7.2	13
18	Human Mitochondrial RNA Processing and Modifications: Overview. International Journal of Molecular Sciences, 2021, 22, 7999.	1.8	24
19	Mechanistic insights into mitochondrial tRNAAla 3'-end metabolism deficiency. Journal of Biological Chemistry, 2021, 297, 100816.	1.6	15
20	RNA leaving Deoxyribozymes Differentiate Methylated Cytidine Isomers in RNA. Angewandte Chemie, 2021, 133, 19206-19210.	1.6	1
21	Microâ€flow hydrophilic interaction liquid chromatography coupled with triple quadrupole mass spectrometry detects modified nucleosides in the transfer RNA pool of cyanobacteria. Journal of Separation Science, 2021, 44, 3208-3218	1.3	3

CITATION REPORT

#	Article	IF	CITATIONS
22	Queuine, a bacterial-derived hypermodified nucleobase, shows protection in in vitro models of neurodegeneration. PLoS ONE, 2021, 16, e0253216.	1.1	14
23	Tissue-specific expression atlas of murine mitochondrial tRNAs. Journal of Biological Chemistry, 2021, 297, 100960.	1.6	14
24	RelA-SpoT Homolog toxins pyrophosphorylate the CCA end of tRNA to inhibit protein synthesis. Molecular Cell, 2021, 81, 3160-3170.e9.	4.5	26
25	Potential biomarkers and targets of mitochondrial dynamics. Clinical and Translational Medicine, 2021, 11, e529.	1.7	18
26	Mitochondrial tRNA-Derived Fragments and Their Contribution to Gene Expression Regulation. Frontiers in Physiology, 2021, 12, 729452.	1.3	10
27	Pseudouridines in RNAs: switching atoms means shifting paradigms. FEBS Letters, 2021, 595, 2310-2322.	1.3	13
28	Interplay between Host tRNAs and HIV-1: A Structural Perspective. Viruses, 2021, 13, 1819.	1.5	6
29	Structural basis of RNA processing by human mitochondrial RNase P. Nature Structural and Molecular Biology, 2021, 28, 713-723.	3.6	48
30	Cooperative methylation of human tRNA3Lys at positions A58 and U54 drives the early and late steps of HIV-1 replication. Nucleic Acids Research, 2021, 49, 11855-11867.	6.5	11
31	A deafness-associated tRNA mutation caused pleiotropic effects on the m1G37 modification, processing, stability and aminoacylation of tRNAlle and mitochondrial translation. Nucleic Acids Research, 2021, 49, 1075-1093.	6.5	19
32	Full-Range Profiling of tRNA Modifications Using LC–MS/MS at Single-Base Resolution through a Site-Specific Cleavage Strategy. Analytical Chemistry, 2021, 93, 1423-1432.	3.2	12
33	Modifications of the human tRNA anticodon loop and their associations with genetic diseases. Cellular and Molecular Life Sciences, 2021, 78, 7087-7105.	2.4	15
34	The epitranscriptome of small non-coding RNAs. Non-coding RNA Research, 2021, 6, 167-173.	2.4	13
35	The structural and functional workings of KEOPS. Nucleic Acids Research, 2021, 49, 10818-10834.	6.5	23
36	The Effect of tRNA[Ser]Sec Isopentenylation on Selenoprotein Expression. International Journal of Molecular Sciences, 2021, 22, 11454.	1.8	8
37	Primary mitochondrial myopathies in childhood. Neuromuscular Disorders, 2021, 31, 978-987.	0.3	4
38	Mass Spectrometric Analysis of Mitochondrial RNA Modifications. Methods in Molecular Biology, 2021, 2192, 89-101.	0.4	1
40	RNA marker modifications reveal the necessity for rigorous preparation protocols to avoid artifacts in epitranscriptomic analysis. Nucleic Acids Research, 2022, 50, 4201-4215.	6.5	13

ARTICLE IF CITATIONS # Balancing of mitochondrial translation through METTL8-mediated m3C modification of mitochondrial 4.5 44 41 tRNAs. Molecular Cell, 2021, 81, 4810-4825.e12. Pathogenic SLC25A26 variants impair SAH transport activity causing mitochondrial disease. Human 42 1.4 Molecular Genetics, 2022, 31, 2049-2062. Into the matrix: current methods for mitochondrial translation studies. Journal of Biochemistry, 43 0.9 3 2022, 171, 379-387. The RNA methyltransferase METTL8 installs m3C32 in mitochondrial tRNAsThr/Ser(UCN) to optimise 5.8 tRNA structure and mitochondrial translation. Nature Communications, 2022, 13, 209. "Superwobbling―and tRNA-34 Wobble and tRNA-37 Anticodon Loop Modifications in Evolution and 46 1.1 4 Devolution of the Genetic Code. Life, 2022, 12, 252. OUP accepted manuscript. Nucleic Acids Research, 2022, , . 6.5 Roles and dynamics of 3-methylcytidine in cellular RNAs. Trends in Biochemical Sciences, 2022, 47, 48 3.7 11 596-608. Genetic code degeneracy is established by the decoding center of the ribosome. Nucleic Acids 40 6.5 Research, 2022, 50, 4113-4126. 50 Protonation-Dependent Sequencing of 5-Formylcytidine in RNA. Biochemistry, 2022, 61, 535-544. 1.2 10 Mito-FUNCAT-FACS reveals cellular heterogeneity in mitochondrial translation. Rna, 2022, 28, 895-904. 1.6 Molecular basis for human mitochondrial tRNA m3C modification by alternatively spliced METTL8. 52 6.5 18 Nucleic Acids Research, 2022, 50, 4012-4028. Methyltransferase METTL8 is required for 3-methylcytosine modification in human mitochondrial 1.6 tRNAs. Journal of Biological Chemistry, 2022, 298, 101788. <scp>RNA</scp> nucleotide methylation: 2021 update. Wiley Interdisciplinary Reviews RNA, 2022, 13, 54 3.2 39 e1691. A versatile tRNA modification-sensitive northern blot method with enhanced performance. Rna, 2022, 1.6 28, 418-432. TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and 57 5.8 43 the unfolded protein response in bladder cancer. Nature Communications, 2022, 13, 2165. MitoVisualize: a resource for analysis of variants in human mitochondrial RNAs and DNA. 1.8 Bioinformatics, 2022, 38, 2967-2969. The plant epitranscriptome: revisiting pseudouridine and 2′â€∢i>O</i>àê€methyl RNA modifications. Plant 59 4.1 10 Biotechnology Journal, 2022, 20, 1241-1256. Organization and expression of the mammalian mitochondrial genome. Nature Reviews Genetics, 2022, 23, 606-623.

CITATION REPORT

#	Article	IF	CITATIONS
62	Regulation of A-to-I RNA editing and stop codon recoding to control selenoprotein expression during skeletal myogenesis. Nature Communications, 2022, 13, 2503.	5.8	5
63	The tRNA regulome in neurodevelopmental and neuropsychiatric disease. Molecular Psychiatry, 2022, 27, 3204-3213.	4.1	9
64	m1A RNA Modification in Gene Expression Regulation. Genes, 2022, 13, 910.	1.0	28
66	Personalized Medicine in Mitochondrial Health and Disease: Molecular Basis of Therapeutic Approaches Based on Nutritional Supplements and Their Analogs. Molecules, 2022, 27, 3494.	1.7	18
67	Mitochondrial Protein Synthesis. , 2022, , .		0
68	Identification and functional implications of pseudouridine RNA modification on small noncoding RNAs in the mammalian pathogen Trypanosoma brucei. Journal of Biological Chemistry, 2022, 298, 102141.	1.6	4
69	Analysis of queuosine and 2-thio tRNA modifications by high throughput sequencing. Nucleic Acids Research, 2022, 50, e99-e99.	6.5	8
70	tRNA dysregulation and disease. Nature Reviews Genetics, 2022, 23, 651-664.	7.7	52
71	Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature, 2022, 607, 593-603.	13.7	102
72	The emergent role of mitochondrial <scp>RNA</scp> modifications in metabolic alterations. Wiley Interdisciplinary Reviews RNA, 2023, 14, .	3.2	7
73	Dynamic Landscapes of tRNA Transcriptomes and Translatomes in Diverse Mouse Tissues. Genomics, Proteomics and Bioinformatics, 2023, 21, 834-849.	3.0	4
74	Human TRUB1 is a highly conserved pseudouridine synthase responsible for the formation of Î ⁻ 55 in mitochondrial tRNAAsn, tRNAGIn, tRNAGIu and tRNAPro. Nucleic Acids Research, 2022, 50, 9368-9381.	6.5	6
75	Structural basis for shape-selective recognition and aminoacylation of a D-armless human mitochondrial tRNA. Nature Communications, 2022, 13, .	5.8	10
76	tRNA derived small RNAsâ \in "Small players with big roles. Frontiers in Genetics, 0, 13, .	1.1	9
77	The role of RNA modification in hepatocellular carcinoma. Frontiers in Pharmacology, 0, 13, .	1.6	6
78	Formation and removal of 1, <i>N</i> 6-dimethyladenosine in mammalian transfer RNA. Nucleic Acids Research, 2022, 50, 9858-9872.	6.5	15
79	ANGEL2 phosphatase activity is required for non-canonical mitochondrial RNA processing. Nature Communications, 2022, 13, .	5.8	1
80	Targeting metabolic rewiring might decrease spread of tumor cells: Mitochondrial tRNA modifications promote cancer metastasis. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	3

CITATION REPORT

#	Article	IF	Citations
81	Conservation and Diversification of tRNA t6A-Modifying Enzymes across the Three Domains of Life. International Journal of Molecular Sciences, 2022, 23, 13600.	1.8	12
82	Quantification of substoichiometric modification reveals global tsRNA hypomodification, preferences for angiogenin-mediated tRNA cleavage, and idiosyncratic epitranscriptomes of human neuronal cell-lines. Computational and Structural Biotechnology Journal, 2023, 21, 401-417.	1.9	7
83	Application of mutational profiling: New functional analyses reveal the tRNA recognition mechanism of tRNA m1A22 methyltransferase. Journal of Biological Chemistry, 2023, 299, 102759.	1.6	3
84	The long and short: Non-coding RNAs in the mammalian inner ear. Hearing Research, 2023, 428, 108666.	0.9	4
85	tModBase: deciphering the landscape of tRNA modifications and their dynamic changes from epitranscriptome data. Nucleic Acids Research, 2023, 51, D315-D327.	6.5	8
86	tRNA-like Transcripts from the NEAT1-MALAT1 Genomic Region Critically Influence Human Innate Immunity and Macrophage Functions. Cells, 2022, 11, 3970.	1.8	3
87	Insulin Resistance in Mitochondrial Diabetes. Biomolecules, 2023, 13, 126.	1.8	7
88	Structural basis of Qng1-mediated salvage of the micronutrient queuine from queuosine-5′-monophosphate as the biological substrate. Nucleic Acids Research, 2023, 51, 935-951.	6.5	5
89	Human mitochondria require mtRF1 for translation termination at non-canonical stop codons. Nature Communications, 2023, 14, .	5.8	8
90	Modopathies Caused by Mutations in Genes Encoding for Mitochondrial RNA Modifying Enzymes: Molecular Mechanisms and Yeast Disease Models. International Journal of Molecular Sciences, 2023, 24, 2178.	1.8	3
91	High-throughput Assessment of Mitochondrial Protein Synthesis in Mammalian Cells Using Mito-FUNCAT FACS. Bio-protocol, 2023, 13, .	0.2	0
92	The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Research, 2023, 51, 1528-1570.	6.5	30
93	Epitranscriptomic regulation of cortical neurogenesis via Mettl8-dependent mitochondrial tRNA m3C modification. Cell Stem Cell, 2023, 30, 300-311.e11.	5.2	10
94	CDKAL1 Drives the Maintenance of Cancer Stemâ€Like Cells by Assembling the eIF4F Translation Initiation Complex. Advanced Science, 0, , 2206542.	5.6	2
95	Disruption to tRNA Modification by Queuine Contributes to Inflammatory Bowel Disease. Cellular and Molecular Gastroenterology and Hepatology, 2023, 15, 1371-1389.	2.3	4
96	Nuclease P1 Digestion for Bottom-Up RNA Sequencing of Modified siRNA Therapeutics. Analytical Chemistry, 2023, 95, 4404-4411.	3.2	4
97	The Transcriptome-Wide Mapping of 2-Methylthio- <i>N</i> ⁶ -isopentenyladenosine at Single-Base Resolution. Journal of the American Chemical Society, 2023, 145, 5467-5473.	6.6	4
98	tRNA Modifications and Modifying Enzymes in Disease, the Potential Therapeutic Targets. International Journal of Biological Sciences, 2023, 19, 1146-1162.	2.6	5

CITATION REPORT

	Сіт	TION REPORT	
#	Article	IF	CITATIONS
99	Restoration of mitochondrial function through activation of hypomodified tRNAs with pathogenic mutations associated with mitochondrial diseases. Nucleic Acids Research, 2023, 51, 7563-7579.	6.5	7
100	NSUN3-mediated mitochondrial tRNA 5-formylcytidine modification is essential for embryonic development and respiratory complexes in mice. Communications Biology, 2023, 6, .	2.0	2
101	Quantitative profiling of pseudouridylation landscape in the human transcriptome. Nature Chemical Biology, 2023, 19, 1185-1195.	3.9	24
105	Translation in Mitochondrial Ribosomes. Methods in Molecular Biology, 2023, , 53-72.	0.4	0
109	Digital RNase Footprinting of RNA-Protein Complexes and Ribosomes in Mitochondria. Methods in Molecular Biology, 2023, , 317-328.	0.4	0
118	RNA modifications in physiology and disease: towards clinical applications. Nature Reviews Genetics, 2024, 25, 104-122.	7.7	9
119	A century of mitochondrial research, 1922â \in "2022. The Enzymes, 2023, , .	0.7	0
134	In-Gel Cyanoethylation for Pseudouridines Mass Spectrometry Detection of Bacterial Regulatory RNA. Methods in Molecular Biology, 2024, , 273-287.	0.4	0