Evolving standards of care and new challenges in the m cancer

Ca-A Cancer Journal for Clinicians 70, 355-374

DOI: 10.3322/caac.21634

Citation Report

#	Article	IF	CITATIONS
1	The evolution and advances of biomarker use in clinical trials for breast cancer treatment—a narrative review. Translational Breast Cancer Research, 0, 2, 6-6.	0.4	0
2	Targeting transcription of MCL-1 sensitizes HER2-amplified breast cancers to HER2 inhibitors. Cell Death and Disease, 2021, 12, 179.	6.3	11
3	HER2-PI9 and HER2-I12: two novel and functionally active splice variants of the oncogene HER2 in breast cancer. Journal of Cancer Research and Clinical Oncology, 2021, 147, 2893-2912.	2.5	2
4	Trans-(â^')-Kusunokinin: A Potential Anticancer Lignan Compound against HER2 in Breast Cancer Cell Lines?. Molecules, 2021, 26, 4537.	3.8	5
5	Adjuvant Photodynamic Therapy, Mediated via Topical Versus Systemic Administration of 5â€Aminolevulinic Acid for Control of Murine Mammary Tumor after Surgical Resection∢sup>â€. Photochemistry and Photobiology, 2022, 98, 117-126.	2.5	1
6	Loss of HER2â€positivity following neoadjuvant targeted therapy for breast cancer is not associated with inferior oncologic outcomes. Journal of Surgical Oncology, 2021, 124, 1224-1234.	1.7	9
7	Efficacy and Safety of Anti-HER2 Agents in Combination With Chemotherapy for Metastatic HER2-Positive Breast Cancer Patient: A Network Meta-Analysis. Frontiers in Oncology, 2021, 11, 731210.	2.8	5
8	CDKN1C as a prognostic biomarker correlated with immune infiltrates and therapeutic responses in breast cancer patients. Journal of Cellular and Molecular Medicine, 2021, 25, 9390-9401.	3.6	10
9	Prognostic Score for De Novo Metastatic Breast Cancer With Liver Metastasis and Its Predictive Value of Locoregional Treatment Benefit. Frontiers in Oncology, 2021, 11, 651636.	2.8	4
10	Adverse Drug Reactions with HER2-Positive Breast Cancer Treatment: An Analysis from the Italian Pharmacovigilance Database. Drugs - Real World Outcomes, 2022, 9, 91-107.	1.6	15
11	Alliance A011801 (compassHER2 RD): postneoadjuvant T-DM1Â+ tucatinib/placebo in patients with residual HER2-positive invasive breast cancer. Future Oncology, 2021, 17, 4665-4676.	2.4	8
12	Comparing Biomarkers for Predicting Pathological Responses to Neoadjuvant Therapy in HER2-Positive Breast Cancer: A Systematic Review and Meta-Analysis. Frontiers in Oncology, 2021, 11, 731148.	2.8	5
13	Largeâ€scale genomic sequencing reveals adaptive opportunity of targeting mutatedâ€Pl3Kα in early and advanced HER2â€positive breast cancer. Clinical and Translational Medicine, 2021, 11, e589.	4.0	6
14	Establishment of a tumor immune microenvironment-based molecular classification system of breast cancer for immunotherapy. Aging, 2021, 13, 24313-24338.	3.1	2
15	Sociodemographic and Clinical Predictors of Neoadjuvant Chemotherapy in cT1-T2/N0 HER2-Amplified Breast Cancer. Annals of Surgical Oncology, 2022, 29, 3051-3061.	1.5	3
16	Clinical Outcomes in Breast Cancer Patients with HER2-Positive, Node-Negative Tumors (â‰\$ cm). Breast Care, 0, , .	1.4	O
17	Neoadjuvant pyrotinib plus trastuzumab and nab-paclitaxel for HER2-positive early or locally advanced breast cancer: an exploratory phase II trial. Gland Surgery, 2022, 11, 216-225.	1.1	7
18	Decitabine potentiates efficacy of doxorubicin in a preclinical trastuzumab-resistant HER2-positive breast cancer models. Biomedicine and Pharmacotherapy, 2022, 147, 112662.	5.6	14

#	ARTICLE	IF	CITATIONS
19	The Pharmacological Mechanisms of Xiaochaihutang in Treating Breast Cancer Based on Network Pharmacology. Contrast Media and Molecular Imaging, 2022, 2022, 1-11.	0.8	5
20	Margetuximab Versus Trastuzumab in Patients With Advanced Breast Cancer: A Cost-effectiveness Analysis. Clinical Breast Cancer, 2022, 22, e629-e635.	2.4	4
21	Breast Cancer Phenotype Associated With Li-Fraumeni Syndrome: A Brazilian Cohort Enriched by TP53 p.R337H Carriers. Frontiers in Oncology, 2022, 12, 836937.	2.8	8
22	HER2-Altered Non-Small Cell Lung Cancer: Biology, Clinicopathologic Features, and Emerging Therapies. Frontiers in Oncology, 2022, 12, 860313.	2.8	12
23	Flubendazole induces mitochondrial dysfunction and DRP1-mediated mitophagy by targeting EVA1A in breast cancer. Cell Death and Disease, 2022, 13, 375.	6.3	13
24	Relationship Between Breast and Axillary Pathologic Complete Response According to Clinical Nodal Stage: A Nationwide Study From Korean Breast Cancer Society. Journal of Breast Cancer, 2022, 25, 94.	1.9	4
25	Dual-Targeted Therapy Circumvents Non-Genetic Drug Resistance to Targeted Therapy. Frontiers in Oncology, 2022, 12, 859455.	2.8	2
26	Longitude Variation of the microRNA-497/FGF-23 Axis during Treatment and Its Linkage with Neoadjuvant/Adjuvant Trastuzumab-Induced Cardiotoxicity in HER2-Positive Breast Cancer Patients. Frontiers in Surgery, 2022, 9, .	1.4	1
27	Using population-based data to evaluate the impact of adherence to endocrine therapy on survival in breast cancer through the web-application BreCanSurvPred. Scientific Reports, 2022, 12, 8097.	3.3	6
28	HER2-MCNN: a HER2 classification method based on multi convolution neural network. , 2021, , .		0
29	Breast cancer in the era of precision medicine. Molecular Biology Reports, 2022, 49, 10023-10037.	2.3	19
30	Determining the Optimal (Neo)Adjuvant Regimen for Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer Regarding Survival Outcome: A Network Meta-Analysis. Frontiers in Immunology, 0, 13, .	4.8	0
31	Evaluation of Safety and Clinically Relevant Drug–Drug Interactions with Tucatinib in Healthy Volunteers. Clinical Pharmacokinetics, 2022, 61, 1417-1426.	3.5	7
32	Efficacy and Safety of Pyrotinib in Human Epidermal Growth Factor Receptor 2-Positive Advanced Breast Cancer: A Multicenter, Retrospective, Real-World Study. OncoTargets and Therapy, 0, Volume 15, 1067-1078.	2.0	2
33	Imaging strategies for receptor tyrosine kinase dimers in living cells. Analytical and Bioanalytical Chemistry, 2023, 415, 67-82.	3.7	2
35	A multicentre single arm phase 2 trial of neoadjuvant pyrotinib and letrozole plus dalpiciclib for triple-positive breast cancer. Nature Communications, 2022, 13, .	12.8	11
36	Efficacy and safety of pyrotinib and radiotherapy vs. pyrotinib-based therapy in patients with HER2+ breast cancer with brain metastasis: a retrospective cohort study. Annals of Translational Medicine, 2022, 10, 1228-1228.	1.7	1
37	HDACs/mTOR inhibitor synergizes with pyrotinib in HER2-positive pancreatic cancer through degradation of mutant P53. Cancer Cell International, 2022, 22, .	4.1	2

3

#	Article	IF	CITATIONS
38	A Dualâ€Responsive STAT3 Inhibitor Nanoprodrug Combined with Oncolytic Virus Elicits Synergistic Antitumor Immune Responses by Igniting Pyroptosis. Advanced Materials, 2023, 35, .	21.0	28
39	Characteristics, treatment and outcomes of HER2 positive male breast cancer. American Journal of Surgery, 2023, 225, 489-493.	1.8	2
40	The Pharmacokinetics and Safety of Tucatinib in Volunteers with Hepatic Impairment. Clinical Pharmacokinetics, 2022, 61, 1761-1770.	3.5	3
41	PTEN rs701848 Polymorphism is Associated with Trastuzumab Resistance in HER2-positive Metastatic Breast Cancer and Predicts Progression-free Survival. Clinical Breast Cancer, 2023, 23, e131-e139.	2.4	3
42	Data on 2D culture characterisation of potential markers in human HER2-positive breast cancer cell lines. Data in Brief, 2023, 46, 108880.	1.0	0
43	Bioinformatics combined with clinical data to analyze clinical characteristics and prognosis in patients with HER2 low expression breast cancer. Gland Surgery, 2023, .	1.1	0
44	Challenges and future of HER2-positive gastric cancer therapy. Frontiers in Oncology, $0,13,.$	2.8	3
45	Radiogenomic analysis of prediction HER2 status in breast cancer by linking ultrasound radiomic feature module with biological functions. Journal of Translational Medicine, 2023, 21, .	4.4	8
46	Resistance to Antibody-Drug Conjugates Targeting HER2 in Breast Cancer: Molecular Landscape and Future Challenges. Cancers, 2023, 15, 1130.	3.7	7
47	IBIS: identify biomarker-based subgroups with a Bayesian enrichment design for targeted combination therapy. BMC Medical Research Methodology, 2023, 23, .	3.1	1
48	Pathological complete response and prognosis after neoadjuvant chemotherapy in patients with HER2-low breast cancer. Annals of Diagnostic Pathology, 2023, 64, 152125.	1.3	2
49	Potential roles and molecular mechanisms of bioactive ingredients in Curcumae Rhizoma against breast cancer. Phytomedicine, 2023, 114, 154810.	5.3	8
50	Novel roles of RNA-binding proteins in drug resistance of breast cancer: from molecular biology to targeting therapeutics. Cell Death Discovery, 2023, 9, .	4.7	6
51	Survival benefit and biomarker analysis of pyrotinib or pyrotinib plus capecitabine for patients with HER2-positive metastatic breast cancer: a pooled analysis of two phase I studies. Biomarker Research, 2023, 11, .	6.8	2
52	The role of irreversible pan-HER tyrosine kinase inhibitors in the treatment of HER2-Positive metastatic breast cancer. Frontiers in Pharmacology, 0, 14, .	3.5	1
53	Molecular landscape and emerging therapeutic strategies in breast cancer brain metastasis. Therapeutic Advances in Medical Oncology, 2023, 15, 175883592311659.	3.2	0
54	Targeted RASSF1A expression inhibits proliferation of HER2‑positive breast cancer cells <i>inÂvitro</i> Experimental and Therapeutic Medicine, 2023, 25, .	1.8	0
55	Deep learning radiomics model based on breast ultrasound video to predict HER2 expression status. Frontiers in Endocrinology, 0, 14 , .	3.5	6

#	ARTICLE	IF	CITATIONS
56	Manufacture and evaluation of a HER2-positive breast cancer immunotoxin 4D5Fv-PE25. Microbial Cell Factories, 2023, 22, .	4.0	0
57	A Phase II Study of Neoadjuvant PLD/Cyclophosphamide and Sequential <i>nab</i> -Paclitaxel Plus Dual HER2 Blockade in HER2-Positive Breast Cancer. Oncologist, 2024, 29, e15-e24.	3.7	1
58	The preclinical study of 177Lu-DOTA-LTVSPWY as a potential therapeutic agent against HER2 overexpressed cancer. Annals of Nuclear Medicine, 2023, 37, 400-409.	2.2	0
59	Analysis of clinical features, genomic landscapes and survival outcomes in HER2-low breast cancer. Journal of Translational Medicine, 2023, 21, .	4.4	1
60	Trastuzumab-resistant breast cancer cells-derived tumor xenograft models exhibit distinct sensitivity to lapatinib treatment in vivo. Biological Procedures Online, 2023, 25, .	2.9	2
61	Emerging insights into mechanisms of trastuzumab resistance in HER2-positive cancers. International Immunopharmacology, 2023, 122, 110602.	3 . 8	3
62	Is HER2 ultra-low breast cancer different from HER2 null or HER2 low breast cancer? A study of 1363 patients. Breast Cancer Research and Treatment, 2023, 202, 313-323.	2.5	1
63	Multiparametric MRI and Radiomics for the Prediction of HER2-Zero, -Low, and -Positive Breast Cancers. Radiology, 2023, 308, .	7.3	12
64	Rare HER2 L796P missense mutation promotes the growth and oncogenic signaling in breast cancer cells. Proteomics - Clinical Applications, 2024, 18, .	1.6	0
66	A novel nanobody-based HER2-targeting antibody exhibits potent synergistic antitumor efficacy in trastuzumab-resistant cancer cells. Frontiers in Immunology, $0,14,.$	4.8	0
67	Efficacy of Pyrotinib With/Without Trastuzumab in Treatment-Refractory, HER2-Positive Metastatic Colorectal Cancer: Result From a Prospective Observational Study. Clinical Colorectal Cancer, 2024, 23, 58-66.	2.3	0
68	Identification and validation of <scp><i>N</i>⁷â€methylguanosineâ€associated</scp> gene <scp>NCBP1</scp> as prognostic and immuneâ€associated biomarkers in breast cancer patients. Journal of Cellular and Molecular Medicine, 2024, 28, .	3.6	0
69	Rational Identification of Novel Antibodyâ€Drug Conjugate with High Bystander Killing Effect against Heterogeneous Tumors. Advanced Science, 2024, 11, .	11.2	0
70	Cuproptosis-related genes predict prognosis and trastuzumab therapeutic response in HER2-positive breast cancer. Scientific Reports, 2024, 14, .	3.3	0
71	Improving HER2-Positive Breast Cancer Targeted Therapy Prediction Using multiMSnet: A Multi-Scale Pathological Image-Based Approach., 2023,,.		0
72	Effectiveness of [67Cu]Cu-trastuzumab as a theranostic against HER2-positive breast cancer. European Journal of Nuclear Medicine and Molecular Imaging, 0, , .	6.4	0
73	A Multifunctional Bimetallic Nanoplatform for Synergic Local Hyperthermia and Chemotherapy Targeting HER2â€Positive Breast Cancer. Advanced Science, 2024, 11, .	11.2	0
74	Clinical sequencing defines the somatic and germline mutation landscapes of Chinese HER2-Low Breast Cancer. Cancer Letters, 2024, 588, 216763.	7.2	0

#	Article	IF	CITATIONS
75	Efficacy and safety of trastuzumab deruxtecan in treating human epidermal growth factor receptor 2-low/positive advanced breast cancer: A meta-analysis of randomized controlled trials. Critical Reviews in Oncology/Hematology, 2024, 196, 104305.	4.4	0
76	Evaluating a targeted Palbociclib-Trastuzumab loaded smart niosome platform for treating HER2 positive breast cancer cells. International Journal of Pharmaceutics: X, 2024, 7, 100237.	1.6	0
77	A pilot trial of neoadjuvant pyrotinib plus trastuzumab, dalpiciclib, and letrozole for tripleâ€positive breast cancer. MedComm, 2024, 5, .	7.2	0