Microbial lipases and their industrial applications: a cor

Microbial Cell Factories 19, 169

DOI: 10.1186/s12934-020-01428-8

Citation Report

#	Article	IF	CITATIONS
1	Identification, characterization, and immobilization of a novel YbfF esterase from Halomonas elongata. International Journal of Biological Macromolecules, 2020, 165, 1139-1148.	3.6	8
2	White-Rot Fungi for Bioremediation of Polychlorinated Biphenyl Contaminated Soil. Fungal Biology, 2021, , 43-64.	0.3	O
3	Lipase from new isolate Bacillus cereus ATA179: optimization of production conditions, partial purification, characterization and its potential in the detergent industry. Turkish Journal of Biology, 2021, 45, 287-300.	2.1	8
4	Lipase production from Aspergillus aculeatus Ms.11 in broth medium with variation of agitation speed. AIP Conference Proceedings, 2021, , .	0.3	O
5	Characterization and application of natural and recombinant butelase-1 to improve industrial enzymes by end-to-end circularization. RSC Advances, 2021, 11, 23105-23112.	1.7	12
6	Utilizing palm oil mill effluent (<scp>POME</scp>) for the immobilization of <i>Aspergillus oryzae</i> wholeâ€cell lipase strains for biodiesel synthesis. Biofuels, Bioproducts and Biorefining, 2021, 15, 804-814.	1.9	12
8	Antioxidant and Antibacterial Activity of Caprylic Acid Vanillyl Ester Produced by Lipase-Mediated Transesterification. Journal of Microbiology and Biotechnology, 2021, 31, 317-326.	0.9	6
10	Molecular biology interventions for activity improvement and production of industrial enzymes. Bioresource Technology, 2021, 324, 124596.	4.8	22
11	Immobilized GDEst-95, GDEst-lip and GD-95RM lipolytic enzymes for continuous flow hydrolysis and transesterification reactions. International Journal of Biological Macromolecules, 2021, 173, 421-434.	3.6	4
12	Characterization of Two Unique Cold-Active Lipases Derived from a Novel Deep-Sea Cold Seep Bacterium. Microorganisms, 2021, 9, 802.	1.6	7
13	Production strategies and biotechnological relevance of microbial lipases: a review. Brazilian Journal of Microbiology, 2021, 52, 1257-1269.	0.8	27
14	Identification and Heterologous Production of a Lipase from Geobacillus kaustophilus DSM 7263T and Tailoring Its N-Terminal by a His-Tag Epitope. Protein Journal, 2021, 40, 436-447.	0.7	5
15	Sustainable enzymatic technologies in waste animal fat and protein management. Journal of Environmental Management, 2021, 284, 112040.	3.8	20
16	CAL-B-mediated efficient synthesis of a set of valuable amides by direct amidation of phenoxy- and aryl-propionic acids. Chemical Papers, 2021, 75, 4045-4053.	1.0	2
17	Diversity, Ecological Role and Biotechnological Potential of Antarctic Marine Fungi. Journal of Fungi (Basel, Switzerland), 2021, 7, 391.	1.5	20
18	Lipase-Catalyzed Production of Sorbitol Laurate in a "2-in-1―Deep Eutectic System: Factors Affecting the Synthesis and Scalability. Molecules, 2021, 26, 2759.	1.7	14
20	Increasing the potential of Cajuput leaf waste as cattle feed through fermentation pretreatment. Biogenesis Jurnal Ilmiah Biologi, 2021, 9, .	0.0	0
21	Studies on the Catalytic Properties of Crude Freeze-Dried Preparations of Yarrowia lipolytica Extracellular Lipases for Geranyl Ester Derivative Synthesis. Biomolecules, 2021, 11, 839.	1.8	O

#	Article	IF	CITATIONS
22	Novozym $\hat{A}^{@}$ 435 as bio-catalyst in the synthesis of methyl laurate. Energy Conversion and Management: X, 2021, 10, 100061.	0.9	1
23	Lipase-catalyzed enhancement of milk flavor components in the application of modified skim milk products. Journal of Food Measurement and Characterization, 2021, 15, 4256-4266.	1.6	3
24	Choline dihydrogen phosphate-based deep eutectic solvent: A suitable bioplatform for lipase extraction. Separation and Purification Technology, 2021, 265, 118525.	3.9	9
25	Enhancement of protein thermostability by three consecutive mutations using loop-walking method and machine learning. Scientific Reports, 2021, 11, 11883.	1.6	13
26	Aeration and Stirring in Yarrowia lipolytica Lipase Biosynthesis during Batch Cultures with Waste Fish Oil as a Carbon Source. Fermentation, 2021, 7, 88.	1.4	14
27	One-step direct transesterification of wet yeast for biodiesel production catalyzed by magnetic nanoparticle-immobilized lipase. Renewable Energy, 2021, 171, 11-21.	4.3	34
28	Fervidicoccus fontis Strain 3639Fd, the First Crenarchaeon Capable of Growth on Lipids. Microbiology, 2021, 90, 435-442.	0.5	1
29	Optimization of an organic solvent-tolerant lipase production by <i>Staphylococcus capitis</i> Immobilization for biodiesel production and biodegradation of waste greases. Preparative Biochemistry and Biotechnology, 2022, 52, 108-122.	1.0	7
30	Polypropylene as a selective support for the immobilization of lipolytic enzymes: hyperâ€activation, purification and biotechnological applications. Journal of Chemical Technology and Biotechnology, 2022, 97, 436-445.	1.6	7
31	Anti-Obesity Drug Orlistat Alleviates Western-Diet-Driven Colitis-Associated Colon Cancer via Inhibition of STAT3 and NF-ήB-Mediated Signaling. Cells, 2021, 10, 2060.	1.8	21
32	Structure-based molecular docking approach for identifying Sâ \in formylglutathione hydrolase from Sphingobium chungbukense. Toxicology and Environmental Health Sciences, 0 , , 1 .	1.1	2
33	Review of Microorganisms and Their Enzymatic Products for Industrial Bioprocesses. Industrial Biotechnology, 2021, 17, 214-226.	0.5	6
34	Two polyurethanases PueA and PueB are major extracellular lipases partly secreted by the mediation of their cognate ABC exporter AprDEF in Pseudomonas protegens Pfâ€5. Letters in Applied Microbiology, 2021, 73, 652-657.	1.0	2
35	Statistical Optimization of Extracellular Thermo-Alkaline Lipase Production from Aeromonas caviae LipT51 with Response Surface Methodology. Journal of the Institute of Science and Technology, 0, , 1770-1780.	0.3	0
36	Nanobioremediation: A sustainable approach towards the degradation of sodium dodecyl sulfate in the environment and simulated conditions. Journal of Basic Microbiology, 2022, 62, 348-360.	1.8	15
37	Biological potential and chemical composition of bioactive compounds from endophytic fungi associated with thai mangrove plants. South African Journal of Botany, 2021, 141, 66-76.	1.2	22
38	Screening, characterization, and optimization of lipase enzyme producing bacteria isolated from dairy effluents contaminated muddy soil. Applied Nanoscience (Switzerland), 0 , 1 .	1.6	0
39	A Valuable Product of Microbial Cell Factories: Microbial Lipase. Frontiers in Microbiology, 2021, 12, 743377.	1.5	26

#	Article	IF	Citations
40	Temperature-resistant and solvent-tolerant lipases as industrial biocatalysts: Biotechnological approaches and applications. International Journal of Biological Macromolecules, 2021, 187, 127-142.	3.6	37
41	New derivatives of the iridoid specioside from fungal biotransformation. Applied Microbiology and Biotechnology, 2021, 105, 7731-7741.	1.7	5
42	Decyl oleate production by enzymatic esterification using Geotrichum candidum lipase immobilized on a support prepared from rice husk. Biocatalysis and Agricultural Biotechnology, 2021, 36, 102142.	1.5	5
43	Optimization of nutrient medium composition for the production of lipase from waste cooking oil using response surface methodology and artificial neural networks. Chemical Engineering Communications, 2022, 209, 1531-1541.	1.5	7
44	Utilization of Clay Materials as Support for Aspergillus japonicus Lipase: An Eco-Friendly Approach. Catalysts, 2021, 11, 1173.	1.6	13
45	Concomitant production of value-added products with polyhydroxyalkanoate (PHA) synthesis: A review. Bioresource Technology, 2021, 337, 125419.	4.8	48
46	Effect of surfactant on the morphology and activity of lipase-Cu3(PO4)2â«3H2O hybrid microflowers. Materials Letters, 2021, 305, 130751.	1.3	2
47	Effective lipase extraction: Designing a natural liquid support for immobilization. Separation and Purification Technology, 2021, 278, 119601.	3.9	3
48	Biocatalytic Approach for Novel Functional Oligoesters of $\hat{l}\mu\text{-Caprolactone}$ and Malic Acid. Processes, 2021, 9, 232.	1.3	4
49	Trends in lipase engineering for enhanced biocatalysis. Biotechnology and Applied Biochemistry, 2022, 69, 265-272.	1.4	18
50	Current and future perspectives of enzyme treatments for cellulosic fibers: a review., 2021,, 69-76.		2
51	Applicability of fungi in agriculture and environmental sustainability., 2021,, 155-172.		2
52	Enhancing Lipase Biosynthesis by Aspergillus Melleus and its Biocatalytic Potential for Degradation of Polyester Vylon-200. Catalysis Letters, 2021, 151, 2257-2271.	1.4	5
53	Preparation and characterization of a novel thermostable lipase from <i>Thermomicrobium roseum</i> . Catalysis Science and Technology, 2021, 11, 7386-7397.	2.1	11
54	Continuous Synthesis of Biodiesel from Outstanding Kernel Oil in a Packed Bed Reactor Using Burkholderia cepacia Lipase Immobilized on Magnetic Nanosupport. Catalysis Letters, 0, , 1.	1.4	2
55	Immobilization and bioimprinting strategies to enhance the performance in organic medium of the metagenomic lipase LipC12. Journal of Biotechnology, 2021, 342, 13-27.	1.9	9
56	Taguchi design-assisted co-immobilization of lipase A and B from Candida antarctica onto chitosan: Characterization, kinetic resolution application, and docking studies. Chemical Engineering Research and Design, 2022, 177, 223-244.	2.7	72
57	Diversifying Arena of Drug Synthesis: In the Realm of Lipase Mediated Waves of Biocatalysis. Catalysts, 2021, 11, 1328.	1.6	10

#	Article	IF	Citations
58	An encapsulated report on enzyme-assisted transesterification with an allusion to lipase. 3 Biotech, 2021, 11, 481.	1.1	4
59	Effect of inoculum size, inducer and metal ion on lipase production by Rhodococcus strain UCC 0009. E3S Web of Conferences, 2020, 211, 02012.	0.2	0
60	Recent trends in the microbial degradation and bioremediation of emerging pollutants in wastewater treatment system., 2022,, 99-125.		4
61	METHODS OF IMMOBILIZATION OF MICROBIAL ENZYMES ON SOLID SURFACES AND THEIR USE. Military Medical Science Letters (Vojenske Zdravotnicke Listy), 0, , .	0.2	0
62	Agro-Industrial Wastes: A Substrate for Multi-Enzymes Production by Cryphonectria parasitica. Fermentation, 2021, 7, 279.	1.4	7
63	Effect of Flutriafol Exposure on Residue Characteristics in Pig Muscle and Fat Tissue. Food Science of Animal Resources, 2022, 42, 186-196.	1.7	2
64	Molecular characterization of lipase from a psychrotrophic bacterium Pseudomonas sp. CRBC14. Current Genetics, 2022, 68, 243-251.	0.8	7
65	Structure and <i>in silico</i> simulations of a cold-active esterase reveals its prime cold-adaptation mechanism. Open Biology, 2021, 11, 210182.	1.5	10
66	Bioprospection and secondary metabolites profiling of marine Streptomyces levis strain KS46. Saudi Journal of Biological Sciences, 2022, 29, 667-679.	1.8	18
67	Microbial lipases: Propitious biocatalysts for the food industry. Food Bioscience, 2022, 45, 101509.	2.0	43
68	Mechanisms underlying the deterioration of fish quality after harvest and methods of preservation. Food Control, 2022, 135, 108805.	2.8	29
69	Effect of Biodegradable and Polypropylene Film Packaging on the Safety Profile of Jelly Marmalade. Food Processing: Techniques and Technology, 2020, 50, 536-548.	0.3	1
70	Extremozymes in food production and processing. , 2022, , 25-43.		1
71	The changes of microbial diversity and flavor compounds during the fermentation of millet Huangjiu, a traditional Chinese beverage. PLoS ONE, 2022, 17, e0262353.	1.1	16
73	Enzyme technology for production of food ingredients and functional foods. , 2022, , 1-11.		1
74	Plant growth-promoting attributes of an endophyte Enterobacter roggenkampii BLS02 isolated from Barleria lupulina Lindl Organic Agriculture, 2022, 12, 137-145.	1.2	5
75	<i>Vibrio gazogenes</i> Inhibits Aflatoxin Production Through Downregulation of Aflatoxin Biosynthetic Genes in <i>Aspergillus flavus</i> PhytoFrontiers, 2022, 2, 218-229.	0.8	1
76	Enzymes in probiotics and genetically modified foods. , 2022, , 13-23.		1

#	Article	IF	CITATIONS
77	An overview of enzyme technology usedÂin food industry. , 2022, , 333-345.		1
78	Trends in the enzymatic inhibition by natural extracts. , 2022, , 413-425.		0
79	Identification of heavy metals tolerant Brevundimonas sp. from rhizospheric zone of Saccharum munja L. and their efficacy in in-situ phytoremediation. Chemosphere, 2022, 295, 133823.	4.2	29
80	A review on the utility of microbial lipases in wastewater treatment. Journal of Water Process Engineering, 2022, 46, 102591.	2.6	36
81	The changing face of SDS denaturation: Complexes of Thermomyces lanuginosus lipase with SDS at pH 4.0, 6.0 and 8.0. Journal of Colloid and Interface Science, 2022, 614, 214-232.	5.0	15
82	A critical review on exploitation of agro-industrial biomass as substrates for the therapeutic microbial enzymes production and implemented protein purification techniques. Chemosphere, 2022, 294, 133712.	4.2	21
83	Microbial bioprospecting for biorefinery application: Bottlenecks and sustainability., 2022,, 277-296.		0
84	Recent updates on lentil and quinoa protein-based dairy protein alternatives: Nutrition, technologies, and challenges. Food Chemistry, 2022, 383, 132386.	4.2	22
85	Sarocladium strictum lipase (LipSs) produced using crude glycerol as sole carbon source: A promising enzyme for biodiesel production. Biocatalysis and Agricultural Biotechnology, 2022, 40, 102299.	1.5	2
86	Matching Extremophilic Lipases and Aminoacid-Based Ionic Liquids for the Design of Biocompatible Separation Platforms. SSRN Electronic Journal, 0, , .	0.4	0
87	A flexible kinetic assay efficiently sorts prospective biocatalysts for PET plastic subunit hydrolysis. RSC Advances, 2022, 12, 8119-8130.	1.7	8
88	Biosurfactants for pharmacological interventions in cancer therapy. , 2022, , 421-437.		0
89	Characterization of Lipases from & L	0.2	1
90	Sources, purification, immobilization and industrial applications of microbial lipases: An overview. Critical Reviews in Food Science and Nutrition, 2023, 63, 6653-6686.	5.4	12
91	Fractionation of Oil from Black Soldier Fly Larvae (<i>Hermetia illucens</i>). European Journal of Lipid Science and Technology, 0, , 2100252.	1.0	0
92	Stereoselective Promiscuous Reactions Catalyzed by Lipases. International Journal of Molecular Sciences, 2022, 23, 2675.	1.8	21
93	Enhancing Lipase Production of Bacillus salmalaya Strain 139SI Using Different Carbon Sources and Surfactants. Applied Microbiology, 2022, 2, 237-247.	0.7	10
94	Tailored Nanoparticles With the Potential to Reduce Ruminant Methane Emissions. Frontiers in Microbiology, 2022, 13, 816695.	1.5	4

#	ARTICLE	IF	Citations
95	Ultrahigh-throughput screening of industrial enzyme-producing strains by droplet-based microfluidic system. Journal of Industrial Microbiology and Biotechnology, 2022, 49, .	1.4	9
96	Iron and manganese lipoxygenases of plant pathogenic fungi and their role in biosynthesis of jasmonates. Archives of Biochemistry and Biophysics, 2022, 722, 109169.	1.4	9
97	Production of 4-Ethyl Malate through Position-Specific Hydrolysis of <i>Photobacterium lipolyticum</i> M37 Lipase. Journal of Microbiology and Biotechnology, 2022, 32, 1-10.	0.9	0
98	Analysis of structural and biomimetic characteristics of the green-synthesized Fe3O4 nanozyme from the fruit peel extract of Punica granatum. Chemical Papers, 2022, 76, 3863-3878.	1.0	8
99	Marine fungal abilities to enzymatically degrade algal polysaccharides, proteins and lipids: a review. Journal of Applied Phycology, 0, , 1.	1.5	4
100	The Synthesis of (Magnetic) Crosslinked Enzyme Aggregates With Laccase, Cellulase, î²-Galactosidase and Transglutaminase. Frontiers in Bioengineering and Biotechnology, 2022, 10, 813919.	2.0	8
101	Recent developments of lipase immobilization technology and application of immobilized lipase mixtures for biodiesel production. Biofuels, Bioproducts and Biorefining, 2022, 16, 1062-1094.	1.9	19
102	Effective Production of Human Milk Fat Substitutes Rich in 1,3-Dioleoyl-2-palmitoyl Glycerol (OPO) viaa New Strategy. Food Biophysics, 2022, 17, 495-507.	1.4	2
103	The safety and technological properties of Bacillus velezensis DMB06 used as a starter candidate were evaluated by genome analysis. LWT - Food Science and Technology, 2022, 161, 113398.	2.5	10
104	Salting out Tergitol 15S-based surfactants for extremolipases separation. Journal of Molecular Liquids, 2022, 353, 118736.	2.3	2
105	Insight into immobilization efficiency of Lipase enzyme as a biocatalyst on the graphene oxide for adsorption of Azo dyes from industrial wastewater effluent. Journal of Molecular Liquids, 2022, 354, 118849.	2.3	29
106	Biotechnological valorization of mycelium-bound lipase of Penicillium purpurogenum in hydrolysis of high content lauric acid vegetable oils. Chemical Engineering Research and Design, 2022, 161, 498-505.	2.7	2
107	Immobilized fungal enzymes: Innovations and potential applications in biodegradation and biosynthesis. Biotechnology Advances, 2022, 57, 107936.	6.0	23
108	Identification of an acetyl esterase in the supernatant of the environmental strain Bacillus sp. HR21-6. Biochimie, 2022, 198, 48-59.	1.3	0
109	Improved methanol tolerance of Rhizomucor miehei lipase based on Nâ€glycosylation within the α-helix region and its application in biodiesel production. Biotechnology for Biofuels, 2021, 14, 237.	6.2	7
110	Production of new lipase from <i>Preussia africana</i> and partial characterization. Preparative Biochemistry and Biotechnology, 2021, , 1-8.	1.0	1
111	Biofilm Responsive Zwitterionic Antimicrobial Nanoparticles to Treat Cutaneous Infection. Biomacromolecules, 2022, 23, 303-315.	2.6	10
112	Recent advances in the enzymatic synthesis of lipophilic antioxidant and antimicrobial compounds. World Journal of Microbiology and Biotechnology, 2022, 38, 11.	1.7	12

#	Article	IF	CITATIONS
113	Partial purification, characterization and immobilization of a novel lipase from a native isolate of Lactobacillus fermentum. Iranian Journal of Microbiology, 2021, 13, 871-877.	0.8	1
114	Effect of Different TiO ₂ Morphologies on the Activity of Immobilized Lipase for Biodiesel Production. ACS Omega, 2021, 6, 35484-35493.	1.6	7
115	A Comprehensive Insight into Fungal Enzymes: Structure, Classification, and Their Role in Mankind's Challenges. Journal of Fungi (Basel, Switzerland), 2022, 8, 23.	1.5	57
116	Production of a halotolerant lipase from <i>Halomonas</i> sp. strain <scp>C2SS100</scp> : Optimization by responseâ€surface methodology and application in detergent formulations. Journal of Surfactants and Detergents, 2022, 25, 361-376.	1.0	4
117	Challenges and opportunities of using immobilized lipase as biosensor. Biotechnology and Genetic Engineering Reviews, 2022, 38, 87-110.	2.4	9
118	Physicochemical and Pharmacological Properties of Palm Oil: an Approach for Quality, Safety, and Nutrition Evaluation of Palm Oil. Food Analytical Methods, 2022, 15, 2290-2305.	1.3	22
119	Catalytic Routes to Produce Polyphenolic Esters (PEs) from Biomass Feedstocks. Catalysts, 2022, 12, 447.	1.6	4
120	Bacillus cereus (EG-Q3) in the Gut of Ectropis grisescens Contributes to Host Response to Starvation Conditions. Frontiers in Microbiology, 2022, 13, 785415.	1.5	1
121	Selection and rational use of pancreatic enzyme drugs. Farmacist Ro, 2022, 2, 16.	0.0	0
122	Microbial Lipases for Polyester Degradation. Microorganisms for Sustainability, 2022, , 71-92.	0.4	1
124	Functional and molecular characterization of a cold-active lipase from Psychrobacter celer PU3 with potential antibiofilm property. International Journal of Biological Macromolecules, 2022, 211, 741-753.	3.6	8
125	Aspergillus niger based lipase-tween 80 aggregates as interfacial activated biocatalyst for biodiesel production: Optimization using response surface methodology. Main Group Chemistry, 2022, , 1-17.	0.4	0
126	Structure-Guided Engineering of a Family IV Cold-Adapted Esterase Expands Its Substrate Range. International Journal of Molecular Sciences, 2022, 23, 4703.	1.8	2
127	An effect of choline lactate based low transition temperature mixtures on the lipase catalytic properties. Colloids and Surfaces B: Biointerfaces, 2022, 216, 112518.	2.5	2
128	Application of Hierarchical Clustering to Analyze Solvent-Accessible Surface Area Patterns in Amycolatopsis lipases. Biology, 2022, 11, 652.	1.3	6
129	Extremozymes as Future Appropriate Benign Elements for Eco-friendly Wet Processing of Wool and Silk. Journal of Natural Fibers, 2022, 19, 15035-15044.	1.7	6
130	Potential of Halophilic Penicillium chrysogenum Isolated from Algerian Saline Soil to Produce Laccase on Olive Oil Wastes. Current Microbiology, 2022, 79, 178.	1.0	4
131	Green processing of seafood waste biomass towards blue economy. Current Research in Environmental Sustainability, 2022, 4, 100164.	1.7	27

#	Article	IF	CITATIONS
132	Optimization and Purification of Terpenyl Flavor Esters Catalyzed by Black Cumin (Nigella sativa) Seedling Lipase in Organic Media. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	0
134	Response Surface Methodology for Optimization Membrane Disruption Using Thermolysis in Lipase Lk2 and Lk3. Journal of Pure and Applied Microbiology, 2022, 16, 1274-1283.	0.3	2
135	Lipase and lactic acid bacteria for biodegradation and bioremediation. , 2022, , 265-286.		0
136	Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms, 2022, 10, 1180.	1.6	65
137	Biofuel generation from food waste through immobilized enzymes on magnetic nanoparticles. Materials Today: Proceedings, 2023, 72, 62-66.	0.9	6
138	Hydrolysis of Edible Oils by Fungal Lipases: An Effective Tool to Produce Bioactive Extracts with Antioxidant and Antimicrobial Potential. Foods, 2022, 11, 1711.	1.9	6
139	Kinetic Modeling, Thermodynamic Approach and Molecular Dynamics Simulation of Thermal Inactivation of Lipases from Burkholderia cepacia and Rhizomucor miehei. International Journal of Molecular Sciences, 2022, 23, 6828.	1.8	8
140	Possible Charged Residue Switch for Acylglycerol Selectivity of Lipase MAS1. Applied Biochemistry and Biotechnology, 2022, 194, 5119-5131.	1.4	3
141	Sustainable bioremediation approach to treat the sago industry effluents and evaluate the possibility of yielded biomass as a single cell protein (SCP) using cyanide tolerant Streptomyces tritici D5. Chemosphere, 2022, 304, 135248.	4.2	6
142	Old dogs, new trick: Classical starchË—sodium iodide reagent as the chromogenic substrate of peroxidase-like nanozymes. Sensors and Actuators B: Chemical, 2022, 368, 132229.	4.0	4
143	Extremophilic lipases for industrial applications: A general review. Biotechnology Advances, 2022, 60, 108002.	6.0	37
144	Optimization of Lipase Production by a Newly Isolate of Lactobacillus Fermentum. Iranian Journal of Science and Technology, Transaction A: Science, 2022, 46, 1103-1113.	0.7	1
145	Parametric optimisation for detoxification of non-oil $\langle i \rangle$ Jatropha $\langle i \rangle$ residual material using Taguchi method. Advances in Materials and Processing Technologies, 0 , , 1 - 10 .	0.8	1
146	The radiophiles of Deinococcaceae family: Resourceful microbes for innovative biotechnological applications. Current Research in Microbial Sciences, 2022, 3, 100153.	1.4	5
147	Enzymatic Active Release of Violacein Present in Nanostructured Lipid Carrier by Lipase Encapsulated in 3D-Bioprinted Chitosan-Hydroxypropyl Methylcellulose Matrix With Anticancer Activity. Frontiers in Chemistry, 0, 10, .	1.8	2
148	Nanotechnology-based preservation approaches for aquatic food products: A review with the current knowledge. Critical Reviews in Food Science and Nutrition, 2023, 63, 3255-3278.	5.4	4
149	Effective immobilization of $\langle i \rangle$ candida cylindracea $\langle i \rangle$ lipase on surfactant-modified bentonite. Molecular Crystals and Liquid Crystals, 0, , 1-14.	0.4	0
150	Recent developments in promiscuous enzymatic reactions for carbon–nitrogen bond formation. Bioorganic Chemistry, 2022, 127, 106014.	2.0	3

#	Article	IF	Citations
151	Enzyme Assisted Food Processing. , 2023, , .		0
152	Extracellular Enzyme of Endophytic Fungi Isolated from Ziziphus spina Leaves as Medicinal Plant. International Journal of Biomaterials, 2022, 2022, 1-9.	1.1	14
153	An improved process for the preparation of ethyl-(R)-2-hydroxy-4-phenylbutyrate, (R)-HPB ester by lipase from Thermomyces lanuginosus. Bioresource Technology Reports, 2022, 19, 101163.	1.5	0
154	Evaluation of the effect of various nutritional and environmental factors on biosurfactant production by Staphylococcus epidermidis. Biodiversitas, 2022, 23, .	0.2	O
155	What makes Yarrowia lipolytica well suited for industry?. Trends in Biotechnology, 2023, 41, 242-254.	4.9	41
156	Characterisation Studies on Lipases of Brevibacterium, Bacillus and Pseudomonas Spp Produced Under Sub-Merged Fermentation of Different Carbon Sources., 2022, 1, 1-8.		0
157	Transitions in bacterial communities across two fermentation-based virgin coconut oil (VCO) production processes. Heliyon, 2022, 8, e10154.	1.4	2
158	The High â€~Lipolytic Jump' of Immobilized Amano A Lipase from Aspergillus niger in Developed â€~ESS Catalytic Triangles' Containing Natural Origin Substrates. Catalysts, 2022, 12, 853.	1.6	4
159	Production of Extracellular Lipase by Bacillus halotolerans from Oil-Contaminated Soil in a Pilot-Scale Submerged Bioreactor. Processes, 2022, 10, 1548.	1.3	3
160	Multi-substrate sequential optimization, characterization and immobilization of lipase produced by Pseudomonas plecoglossicida S7. Environmental Science and Pollution Research, 2023, 30, 4555-4569.	2.7	7
161	Rational Design of Lipase ROL to Increase Its Thermostability for Production of Structured Tags. International Journal of Molecular Sciences, 2022, 23, 9515.	1.8	6
162	Glycine Substitution of Residues with Unfavored Dihedral Angles Improves Protein Thermostability. Catalysts, 2022, 12, 898.	1.6	2
163	Small-Molecules as Chemiluminescent Probes to Detect Lipase Activity. International Journal of Molecular Sciences, 2022, 23, 9039.	1.8	4
164	Identification of a Novel Lipase with AHSMG Pentapeptide in Hypocreales and Glomerellales Filamentous Fungi. International Journal of Molecular Sciences, 2022, 23, 9367.	1.8	2
165	Intracellular-to-extracellular localization switch of acidic lipase in <i>Enterobacter cloacae</i> evaluation of production kinetics and enantioselective esterification potential for pharmaceutical applications. Preparative Biochemistry and Biotechnology, 2023, 53, 542-556.	1.0	3
166	Promiscuous Lipase-Catalyzed Knoevenagel–Phospha–Michael Reaction for the Synthesis of Antimicrobial β-Phosphono Malonates. International Journal of Molecular Sciences, 2022, 23, 8819.	1.8	5
167	Chloroperoxidase applications in chemical synthesis of industrial relevance. Biocatalysis and Biotransformation, 0, , 1-18.	1.1	1
168	A critical review on sustainable biogas production with focus on microbial-substrate interactions: bottlenecks and breakthroughs. Bioresource Technology Reports, 2022, 19, 101170.	1.5	5

#	Article	IF	CITATIONS
169	A chemo-enzymatic transformation of linalyl acetate to estragole, a phenyl propanoid ether using recombinant esterase in acetone reaction system. Process Biochemistry, 2022, 121, 707-715.	1.8	0
170	The degradation and toxicity of commercially traded vegetable oils following spills in aquatic environment. Environmental Research, 2022, 214, 113985.	3.7	1
171	Enzyme-powered micro- and nano-motors: key parameters for an application-oriented design. Chemical Science, 2022, 13, 9128-9146.	3.7	25
172	Molecular characterization of transesterification activity of novel lipase family I.1. Bioscience Reports, 2022, 42, .	1.1	4
173	Extracting extremophilic lipases from aqueous streams by using biocompatible ionic liquids. Journal of Molecular Liquids, 2022, 366, 120214.	2.3	2
174	A critical review on biomass-based sustainable biorefineries using nanobiocatalysts: Opportunities, challenges, and future perspectives. Bioresource Technology, 2022, 363, 127926.	4.8	20
175	Enzyme technology in value addition of dairy and milk production., 2023,, 77-96.		0
176	Effect of temperature variation on the structure of gene-translated thermostable lipase by molecular dynamic simulation. AIP Conference Proceedings, 2022, , .	0.3	0
177	Biocatalysis in subcritical and supercritical fluids. , 2022, , 377-401.		1
178	Enzyme in Milk and Milk Products: Role and Application. , 2022, , 139-164.		0
179	Recent Advances in Lipases and Their Applications in the Food and Nutraceutical Industry. Catalysts, 2022, 12, 960.	1.6	14
180	Characterization and purification of esterase from Cellulomonas fimi DB19 isolated from Zanthoxylum armatum with its possible role in diesel biodegradation. Archives of Microbiology, 2022, 204, .	1.0	1
182	PreliminaryÂforensic assessment of the visualised fingerprints on nonporous substrates immersed in water using the green and optimised novel nanobio-based reagent. Scientific Reports, 2022, 12, .	1.6	1
183	Optimization of catalytic properties of Mucor racemosus lipase through immobilization in a biocompatible alginate gelatin hydrogel matrix for free fatty acid production: a sustainable robust biocatalyst for ultrasound-assisted olive oil hydrolysis. 3 Biotech, 2022, 12, .	1.1	4
184	Perspective on the heavy metal pollution and recent remediation strategies. Current Research in Microbial Sciences, 2022, 3, 100166.	1.4	12
185	Brackish and Hypersaline Lakes as Potential Reservoir for Enzymes Involved in Decomposition of Organic Materials on Frescoes. Fermentation, 2022, 8, 462.	1.4	3
186	The Potential of Phylogenetically Diverse Culturable Actinobacteria from Litopenaeus vannamei Pond Sediment as Extracellular Proteolytic and Lipolytic Enzyme Producers. Tropical Life Sciences Research, 2022, 33, 165-192.	0.5	2
188	A Convenient U-Shape Microreactor for Continuous Flow Biocatalysis with Enzyme-Coated Magnetic Nanoparticles-Lipase-Catalyzed Enantiomer Selective Acylation of 4-(Morpholin-4-yl)butan-2-ol. Catalysts, 2022, 12, 1065.	1.6	8

#	Article	IF	CITATIONS
189	Microbial Lipases and Their Potential in the Production of Pharmaceutical Building Blocks. International Journal of Molecular Sciences, 2022, 23, 9933.	1.8	21
190	Fungal lipases as biocatalysts: A promising platform in several industrial biotechnology applications. Biotechnology and Bioengineering, 2022, 119, 3370-3392.	1.7	13
191	Resolution of (R, S)-4-BrMA Catalyzed by Pseudomonas cepacia Lipase in an Organic Phase. Catalysis Letters, 2023, 153, 2352-2358.	1.4	1
192	Changes in Selected Quality Indices in Microbially Fermented Commercial Almond and Oat Drinks. Applied Sciences (Switzerland), 2022, 12, 9983.	1.3	7
193	Purification, Biochemical and Kinetic Characterization of a Novel Alkaline sn-1,3-Regioselective Triacylglycerol Lipase from Penicilliumcrustosum Thom Strain P22 Isolated from Moroccan Olive Mill Wastewater. International Journal of Molecular Sciences, 2022, 23, 11920.	1.8	4
194	Statistical Optimisation of Used-Cooking-Oil Degradation by Burkholderia vietnamiensis AQ5-12 and Burkholderia sp. AQ5-13. Processes, 2022, 10, 2178.	1.3	0
195	Intracellular-to-extracellular localization switch of acidic lipase in Enterobacter cloacae through multi-objective medium optimization: aqueous two-phase purification and activity kinetics. World Journal of Microbiology and Biotechnology, 2022, 38, .	1.7	3
196	Application of Biobased Solvents in Asymmetric Catalysis. Molecules, 2022, 27, 6701.	1.7	10
197	Ordered Macro–Microporous ZIF-8 with Different Macropore Sizes and Their Stable Derivatives for Lipase Immobilization in Biodiesel Production. ACS Sustainable Chemistry and Engineering, 2022, 10, 14503-14514.	3.2	11
198	Diversity of the manganese lipoxygenase gene family – A mini-review. Fungal Genetics and Biology, 2022, 163, 103746.	0.9	2
199	An Appraisal on Prominent Industrial and Biotechnological Applications of Bacterial Lipases. Molecular Biotechnology, 0, , .	1.3	9
200	Introductory Chapter: Highlighting Pros and Cons of Bacterial Biofilms. , 0, , .		0
201	A jacalin-related lectin domain-containing lipase from chestnut (Castanea crenata): Purification, characterization, and protein identification. Current Research in Food Science, 2022, , .	2.7	0
202	Applications of Microbial Enzymes in Industries and Medicine. Environmental and Microbial Biotechnology, 2022, , 293-327.	0.4	0
203	Effects of Aquatic (Freshwater and Marine) Pollution on Microbial Enzyme Activities. Environmental and Microbial Biotechnology, 2022, , 379-403.	0.4	0
204	Occurrence and Distribution of Microbial Enzymes in Freshwater. Environmental and Microbial Biotechnology, 2022, , 61-82.	0.4	0
205	Application of Anoxybacillus gonensins UF7 lipase as a catalyst for biodiesel production from waste frying oils. Fuel, 2023, 334, 126672.	3.4	11
207	Optimised Protocol for Drying Aqueous Enzyme Solutions in Organic Solvents – Comparison of Free and Immobilised <i>Candida antarctica</i> Lipase B. ChemCatChem, 2023, 15, .	1.8	1

#	Article	IF	CITATIONS
208	In planta production and characterization of full-length human adipose triglyceride lipase. Plant Biotechnology Reports, 0 , , .	0.9	0
209	Rhodotorula mucilaginosa—alternative sources of natural carotenoids, lipids, and enzymes for industrial use. Heliyon, 2022, 8, e11505.	1.4	17
210	A novel hybrid biocatalyst from immobilized Eversa < sup> \hat{A}^{\otimes} < /sup> Transform 2.0 lipase and its application in biolubricant synthesis. Biocatalysis and Biotransformation, 0, , 1-22.	1.1	13
211	Structural features, temperature adaptation and industrial applications of microbial lipases from psychrophilic, mesophilic and thermophilic origins. International Journal of Biological Macromolecules, 2023, 225, 822-839.	3.6	13
213	Measuring and reporting enzyme's immobilization efficiency., 2023,, 115-147.		0
214	The feruloyl esterase from Thermobacillus xylanilyticus shows broad specificity for processing pre-biotic feruloylated xylooligosaccharides at high temperatures. Food Chemistry, 2023, 405, 134939.	4.2	2
215	Optimization of low-cost solid-state fermentation media for the production of thermostable lipases using agro-industrial residues as substrate in culture of Bacillus amyloliquefaciens. Biocatalysis and Agricultural Biotechnology, 2023, 47, 102559.	1.5	11
216	Sustainable enzymatic treatment of organic waste in a framework of circular economy. Bioresource Technology, 2023, 370, 128487.	4.8	11
217	Optimistic and possible contribution of nanomaterial on biomedical applications: A review. Environmental Research, 2023, 218, 114921.	3.7	9
218	Microbial spoilage mechanisms of vacuum-packed lamb meat: A review. International Journal of Food Microbiology, 2023, 387, 110056.	2.1	1
219	Heterologous expression, molecular studies and biochemical characterization of a novel alkaline esterase gene from <i>Bacillus thuringiensis</i> for detergent industry. RSC Advances, 2022, 12, 34482-34495.	1.7	3
220	Effect of the Enzyme Lipase on Delignification of Kraft Pulp. Fibre Chemistry, 2022, 54, 170-175.	0.0	0
221	Synthesis of Ibuprofen Monoglyceride Using Novozym®435: Biocatalyst Activation and Stabilization in Multiphasic Systems. Catalysts, 2022, 12, 1531.	1.6	3
222	Resolution of Racemic Aryloxy-Propan-2-yl Acetates via Lipase-Catalyzed Hydrolysis: Preparation of Enantiomerically Pure/Enantioenriched Mexiletine Intermediates and Analogs. Catalysts, 2022, 12, 1566.	1.6	3
223	Cold-Active Lipases and Esterases: A Review on Recombinant Overexpression and Other Essential Issues. International Journal of Molecular Sciences, 2022, 23, 15394.	1.8	1
224	Structure elucidation of <i>Staphylococcus capitis</i> lipase. Molecular dynamics simulations to investigate the effects of calcium and zinc ions on the structural stability. Journal of Biomolecular Structure and Dynamics, 2023, 41, 10450-10462.	2.0	0
225	Biodiesel Production by Single and Mixed Immobilized Lipases Using Waste Cooking Oil. Molecules, 2022, 27, 8736.	1.7	4
226	Chemoenzymatic Synthesis of Optically Active Alcohols Possessing 1,2,3,4-Tetrahydroquinoline Moiety Employing Lipases or Variants of the Acyltransferase from Mycobacterium smegmatisÂ. Catalysts, 2022, 12, 1610.	1.6	1

#	ARTICLE	IF	CITATIONS
227	Heterofunctional Methacrylate Beads Bearing Octadecyl and Vinyl Sulfone Groups: Tricks to Obtain an Interfacially Activated Lipase from Thermomyces lanuginosus and Covalently Attached to the Support. Catalysts, 2023, 13, 108.	1.6	3
228	Lipases and their applications in biomedical field. Current Biotechnology, 2023, 12, .	0.2	O
229	Purification of lipase from <i>Burkholderia metallica</i> fermentation broth in a column chromatography using polymer impregnated resins. Preparative Biochemistry and Biotechnology, 2023, 53, 872-879.	1.0	1
230	Y12F mutation in Pseudomonas plecoglossicida S7 lipase enhances its thermal and pH stability for industrial applications: a combination of in silico and in vitro study. World Journal of Microbiology and Biotechnology, 2023, 39, .	1.7	2
231	Application of Milk Permeate as an Inducer for the Production of Microbial Recombinant Lipolytic Enzymes. Fermentation, 2023, 9, 27.	1.4	5
232	Bati Butter as a Potential Substrate for Lipase Production by Aspergillus terreus NRRL-255. Foods, 2023, 12, 564.	1.9	0
233	Industrial applications of thermophilic/hyperthermophilic enzymes. , 2023, , 105-284.		0
234	Biotechnological production of biofuels. , 2023, , 151-197.		0
235	Effect of \hat{l}^2 $\hat{a}^{"}$ hydroxy $\hat{a}^{"}$ \hat{l}^3 -aminophosphonate (\hat{l}^2 $\hat{a}^{"}$ HPC) on the hydrolytic activity of Nocardia brasiliensis as determined by FT $\hat{a}^{"}$ IR spectrometry. Frontiers in Microbiology, 0, 14, .	1.5	1
236	Novel Lipase Reactor based on Discontinuous Interfaces in Hydrogel-Organogel Hybrid Gel: A Preliminary Exploration. Journal of Agricultural and Food Chemistry, 2023, 71, 2113-2123.	2.4	6
237	Useful microbial enzymesâ€"an introduction. , 2023, , 11-23.		1
238	Synthesis and Characterization of Aminoamidine-Based Polyacrylonitrile Fibers for Lipase Immobilization with Effective Reusability and Storage Stability. International Journal of Molecular Sciences, 2023, 24, 1970.	1.8	7
239	Exogenous Penicillium camemberti Lipase Preparation Exerts Prebiotic-like Effects by Increasing Cecal Bifidobacterium and Lactobacillus Abundance in Rats. Fermentation, 2023, 9, 227.	1.4	0
240	A comprehensive review on the potential of microbial enzymes in multipollutant bioremediation: Mechanisms, challenges, and future prospects. Journal of Environmental Management, 2023, 334, 117532.	3.8	44
241	Effective lipase immobilization on crosslinked functional porous polypyrrole aggregates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 667, 131362.	2.3	3
242	Olive mill wastewater biodegradation for bacterial lipase production using a response surface methodology. Biomass Conversion and Biorefinery, 2024, 14, 1187-1200.	2.9	0
243	Peroxygenaseâ€Promoted Enzymatic Cascades for the Valorisation of Fatty Acids. ChemCatChem, 2023, 15,	1.8	2
245	Immobilization of lipase on spent coffee grounds by physical and covalent methods: A comparison study. Biochemical Engineering Journal, 2023, 192, 108827.	1.8	4

#	Article	IF	CITATIONS
246	Biodegradation of Oil by a Newly Isolated Strain Acinetobacter junii WCO-9 and Its Comparative Pan-Genome Analysis. Microorganisms, 2023, 11, 407.	1.6	1
247	Scalability of U-Shape Magnetic Nanoparticles-Based Microreactor–Lipase-Catalyzed Preparative Scale Kinetic Resolutions of Drug-like Fragments. Catalysts, 2023, 13, 384.	1.6	2
248	Renewable, sustainable, and natural lignocellulosic carriers for lipase immobilization: A review. Journal of Biotechnology, 2023, 365, 29-47.	1.9	13
249	Progress on Lipase Immobilization Technology in Edible Oil and Fat Modifications. Food Reviews International, 2024, 40, 457-503.	4.3	4
250	Bioinformatics-Based Screening Approach for the Identification and Characterization of Lipolytic Enzymes from the Marine Diatom Phaeodactylum tricornutum. Marine Drugs, 2023, 21, 125.	2.2	3
251	The Recent Advances in the Utility of Microbial Lipases: A Review. Microorganisms, 2023, 11, 510.	1.6	19
252	Lipase atalysed Polymerization of Eutectic Mixtures. ChemSusChem, 2023, 16, .	3.6	4
253	Investigation of amino acids related to Staphylococcus saprophyticus AG1 EstAG1 carboxylesterase catalytic function revealed a new family of bacterial lipolytic enzymes. International Journal of Biological Macromolecules, 2023, 235, 123791.	3.6	2
254	Computational Modelling and Molecular Docking of Industrial Leather Enzymes. Molecular Biotechnology, 0 , 0 .	1.3	0
255	Standard Analytical Techniques and <i>de novo</i> Proposals for Successfull Soil Biodegradation Process Proposals., 0, , .		O
256	Biobased enzymes for environmental remediation. , 2023, , 323-348.		0
257	Techno-economic analysis of production and purification of lipase from <i>Bacillus subtilis</i> (NCIM) Tj ETQq1 1	. 0,784314 1.0	1 rgBT /Over
258	Screening, identification, and characterization of lipase-producing halotolerant Bacillus altitudinis Ant19 from Antarctic soil. Archives of Microbiology, 2023, 205, .	1.0	4
259	Inside Out Computational Redesign of Cavities for Improving Thermostability and Catalytic Activity of <i>Rhizomucor Miehei</i> Lipase. Applied and Environmental Microbiology, 2023, 89, .	1.4	3
260	Purification and characterization of lipase produced from Bacillus cereus (PCSIR NL-37). Revista Bionatura, 2023, 8, 1-8.	0.1	0
261	Insights into the genomic evolution and the alkali tolerance mechanisms of Agaricus sinodeliciosus by comparative genomic and transcriptomic analyses. Microbial Genomics, 2023, 9, .	1.0	O
262	Bioremediation of Hydrocarbon Pollutants: Recent Promising Sustainable Approaches, Scope, and Challenges. Sustainability, 2023, 15, 5847.	1.6	5
263	Anoxybacillus: an overview of a versatile genus with recent biotechnological applications. World Journal of Microbiology and Biotechnology, 2023, 39, .	1.7	4

#	Article	IF	CITATIONS
264	Biocatalytic Resolutions., 2022,,.		0
265	Directed Evolution of Lipase to Have Enhanced Activity toward Short Chain Fatty Acids and Elucidation of Structural Features of Mutant. KSBB Journal, 2023, 38, 21-27.	0.1	0
266	Combined Nanofibrous Face Mask: Co-Formulation of Lipases and Antibiotic Agent by Electrospinning Technique. Pharmaceutics, 2023, 15, 1174.	2.0	1
267	Bioprospection of Endophytic Fungi for Extracellular Enzymes. , 2023, , 127-146.		O
268	DIVERISTY and enzymatic potential of indigenous bacteria from unexplored contaminted soils in Faisalabad. Heliyon, 2023, 9, e15256.	1.4	1
269	Purification and characterization of a psychrophilic lipase from Serratia marcescens VT 1 and its application in methyl ester synthesis. Bioresource Technology Reports, 2023, 22, 101443.	1.5	3
270	SCREENING THE EFFECT OF THE EXPRESSION MEDIUM AND GROWTH CONDITIONS ON THE PERFORMANCE OF ENGINEERED XYLANASE PRODUCED BY IMMOBILIZED RECOMBINANT E. COLI. Jurnal Teknologi (Sciences) Tj	ET Q.q O O () r g BT /Overlo
271	Applicable Strains, Processing Techniques and Health Benefits of Fermented Oat Beverages: A Review. Foods, 2023, 12, 1708.	1.9	4
272	Immobilized KDN Lipase on Macroporous Resin for Isopropyl Myristate Synthesis. Catalysts, 2023, 13, 772.	1.6	1
278	Fungal Therapeutic Enzymes: Utility in the Treatment of Human Ailments. , 2023, , 493-512.		0
282	Role of microbial enzymes in bioremediation: Emerging opportunities and limitations., 2023,, 277-300.		2
290	Enantioselective Transformations in the Synthesis of Therapeutic Agents. Chemical Reviews, 2023, 123, 9397-9446.	23.0	7
294	Conversion of fish processing waste to value-added commodities: a waste to wealth strategies for greening of the environment., 2023,, 421-466.		0
309	Extremophiles: the species that evolve and survive under hostile conditions. 3 Biotech, 2023, 13, .	1.1	2
325	Applications of Microbial Enzymes in the Food Industry. , 2023, , 173-192.		0
326	Bacterial lipases: biotechnological and industrial applications. , 2024, , 197-209.		0
333	Use of Lipases as a Sustainable and Efficient Method for the Synthesis and Degradation of Polymers. Journal of Polymers and the Environment, 0, , .	2.4	0
334	Naturally Derived Biomaterials: Advances and Opportunities. Engineering Materials, 2023, , 3-41.	0.3	0

#	ARTICLE	IF	CITATIONS
335	Microbial Enzymes for Wastewater Treatment. Handbook of Environmental Engineering, 2024, , 65-132.	0.2	0
337	The Role and Application of Microbial Enzymes in Microplastics' Bioremediation: Available and Future Perspectives. ACS Symposium Series, 0, , 33-56.	0.5	0
341	Potential Application of Bacteria in Degrading Xenobiotics for Sustainable Environmental Management., 2023,, 321-339.		0
349	Sustainability in Production of Enzymes From Fruit and Vegetable Waste. World Sustainability Series, 2024, , 111-140.	0.3	O
356	Immobilization and Co-mobilization: An Unexploited Biotechnological Tool for Enhancing Efficiency of Biofertilizers., 2023,, 219-236.		0
362	An Overview of Crosslinked Enzyme Aggregates: Concept of Development and Trends of Applications. Applied Biochemistry and Biotechnology, 0, , .	1.4	O
376	A Review on Lipases: Sources, Assays, Immobilization Techniques on Nanomaterials and Applications. BioNanoScience, 0, , .	1.5	0
379	Application of Microbial Enzymes in Food Industry. , 2024, , 323-336.		O
388	Emerging reservoir of ecofriendly resources within a natural endowment: industrial application of bacterial and fungal endophytes., 2024,, 467-483.		0
389	Introduction to Vegetable Oils. Composites Science and Technology, 2024, , 1-20.	0.4	О